Please use this identifier to cite or link to this item: http://hdl.handle.net/2289/7753
Title: Topological aspects of periodically driven non-Hermitian Su-Schrieffer-Heeger model
Authors: Vyas, Vivek M
Roy, Dibyendu
Issue Date: Feb-2021
Publisher: Americal Physical Society
Citation: Physical Review B, 2021, Vol.103, p075441
Abstract: A non-Hermitian generalization of the Su-Schrieffer-Heeger model driven by a periodic external potential is investigated, and its topological features are explored. We find that the bi-orthonormal geometric phase acts as a topological index, well capturing the presence/absence of the zero modes. The model is observed to display trivial and nontrivial insulator phases and a topologically nontrivial Möbius metallic phase. The driving field amplitude is shown to be a control parameter causing topological phase transitions in this model. While the system displays zero modes in the metallic phase apart from the nontrivial insulator phase, the metallic zero modes are not robust, as are the ones found in the insulating phase. We further find that zero modes' energy converges slowly to zero as a function of the number of dimers in the Möbius metallic phase compared to the nontrivial insulating phase.
Description: Open Access
URI: http://hdl.handle.net/2289/7753
ISSN: 2469-9950
2469-9969 (online)
Alternative Location: https://arxiv.org/pdf/2011.06947.pdf
https://ui.adsabs.harvard.edu/abs/2021PhRvB.103g5441V/abstract
https://doi.org/10.1103/PhysRevB.103.075441
Copyright: 2021 The American Physical Society
Appears in Collections:Research Papers (TP)

Files in This Item:
File Description SizeFormat 
2021_Phys Rev B_Vol.103_Article No.075441.pdfOpen Access10.9 MBAdobe PDFView/Open


Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.