Please use this identifier to cite or link to this item: http://hdl.handle.net/2289/7014
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNagesh, B V-
dc.contributor.authorLakkegowda, Yogesha-
dc.contributor.authorPratibha, R.-
dc.contributor.authorBhattacharya, Sarbari-
dc.contributor.authorAnanthamurthy, Sharath-
dc.date.accessioned2018-10-10T15:31:53Z-
dc.date.available2018-10-10T15:31:53Z-
dc.date.issued2014-03-04-
dc.identifier.citationProceedings of the SPIE Vol.8947, p 89471, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XII, aniel L. Farkas; Dan V. Nicolau; Robert C. Leif, Editor(s)en_US
dc.identifier.urihttp://hdl.handle.net/2289/7014-
dc.descriptionRestricted Accessen_US
dc.description.abstractA microscopic object finds an equilibrium orientation under a laser tweezer such that a maximum of its volume lies in the region of highest electric field. Furthermore, birefringent microscopic objects show no rotational diffusion after reorienting under a linearly polarized optical trap and also are seen to follow the plane of polarization when the latter is changed using a half wave plate. We observe that a healthy human Red Blood Cell (RBC) reproduces these observations in an optical tweezer, which confirms it to be birefringent. Polarization microscopy based measurements reveal that the birefringence is confined to the cell’s dimple region and the mean value of retardation for polarized green light (λ = 546nm) is 9 ± 1.5nm. We provide a simple geometrical model that attributes the birefringence to the nature of arrangement of the phospholipid molecules of the bilayer. This predicts the observed variation in the measured birefringence, from the dimple to the rim of the cell which we further show, can serve to demarcate the extent of the dimple region. This points to the value of birefringence measurements in revealing cell membrane contours. . We extend this technique to understand the birefringence of a chicken RBC, an oblate shaped cell, wherein the slow axis is identified to be coincident with the long axis of the cell. Further, we observe the birefringence to be confined to the edges of the cell. Experiments to probe the optomechanical response of the chicken RBC are in progress.en_US
dc.language.isoenen_US
dc.publisherSPIE - Society of Photo-Optical Instrumentation Engineersen_US
dc.relation.urihttps://doi.org/10.1117/12.2039222en_US
dc.rights2014 Society of Photo-Optical Instrumentation Engineers (SPIE)en_US
dc.titleOptical properties of red blood cells: an optical tweezer based analysisen_US
dc.typeArticleen_US
Appears in Collections:Research Papers (SCM)

Files in This Item:
File Description SizeFormat 
2014_Proc. of SPIE Vol. 8947 89471P-1.pdf
  Restricted Access
Restricted Access550.06 kBAdobe PDFView/Open Request a copy


Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.