Please use this identifier to cite or link to this item: http://hdl.handle.net/2289/6480
Title: Influence of pulse width on the laser ablation of zinc in nitrogen ambient
Authors: Smijesh, N.
Rao, H Kavya
Philip, Reji
Issue Date: Apr-2016
Publisher: Springer-Verlag
Citation: Applied Physics A: Materials Science and Processing, 2016, Vol.122, p460
Abstract: Time-resolved spectroscopic measurements of expanding plasma plumes generated by irradiating a solid zinc target with laser pulses of 7 ns and 100 fs durations are carried out in the ambient pressure range of 0.05–200 Torr of nitrogen. At the relatively high input fluence of ~16 J/cm2, fast and slow atomic species are found to appear at different times in the optical time-of-flight (OTOF) spectra, the dynamics of which is primarily determined by the pulse duration of the excitation laser. In fs LPP, the average speed of fast species is unaffected by an increase in ambient pressure, while in ns LPP, the speed is found to reduce with pressure. The slow species shows a sharp peak in the OTOF spectra with a narrow velocity distribution for fs LPP, indicating a large number density and low electron temperature, which is consistent with optical emission spectroscopic (OES) studies. On the other hand, for ns LPP, the OTOF of slow species shows a more broadened profile which can be attributed to strong plume–laser interaction. The dynamics of slow species is heavily influenced by the presence of shock waves, which leads to the occurrence of much slower species at larger pressures.
Description: Restricted Access.
URI: http://hdl.handle.net/2289/6480
ISSN: 0947-8396
1432-0630 (online)
Alternative Location: http://dx.doi.org/10.1007/s00339-016-9972-3
Copyright: 2016 Springer Verlag Berlin Heidelberg
Appears in Collections:Research Papers (LAMP)

Files in This Item:
File Description SizeFormat 
2016_ApPhyA_122_460.pdf
  Restricted Access
Restricted Access833.4 kBAdobe PDFView/Open Request a copy


Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.