Please use this identifier to cite or link to this item:
Title: Detecting neutral hydrogen in emission at redshift z ≃ 1
Authors: Kandai, Nishikanta
Sethi, S.K.
Matteo, T.D.
Croft, Rupert A.C.
Springel, V.
Jana, Anirban
Gardner, Jeffrey P.
Keywords: galaxies: evolution
large-scale structure of Universe
radio lines: galaxies
Issue Date: Aug-2011
Publisher: Wiley-Blackwell for the RAS
Citation: Monthly Notices of the Royal Astronomical Society, 2011, Vol.415, p2580
Abstract: We use a large N-body simulation to examine the detectability of H I in emission at redshift z≃ 1, and the constraints imposed by current observations on the neutral hydrogen mass function of galaxies at this epoch. We consider three different models for populating dark matter haloes with H I, designed to encompass uncertainties at this redshift. These models are consistent with recent observations of the detection of H I in emission at z≃ 0.8. Whilst detection of 21-cm emission from individual haloes requires extremely long integrations with existing radio interferometers, such as the Giant Meter Radio Telescope (GMRT), we show that the stacked 21-cm signal from a large number of haloes can be easily detected. However, the stacking procedure requires accurate redshifts of galaxies. We show that radio observations of the field of the Deep Extragalactic Evolutionary Probe 2 (DEEP2) spectroscopic galaxy redshift survey should allow detection of the H I mass function at the 5-12σ level in the mass range 1011.4 h-1 Mȯ≤Mhalo≤ 1012.5 h-1 Mȯ, with a moderate amount of observation time. Assuming a larger noise level that corresponds to an upper bound for the expected noise for the GMRT, the detection significance for the H I mass function is still at the 1.7-3σ level. We find that optically undetected satellite galaxies enhance the H I emission profile of the parent halo, leading to broader wings as well as a higher peak signal in the stacked profile of a large number of haloes. We show that it is in principle possible to discern the contribution of undetected satellites to the total H I signal, even though cosmic variance limitation make this challenging for some of our models.
Description: Restricted Access. An open-access version is available at (one of the alternative locations)
ISSN: 0035-8711
1365-2966 (Online)
Alternative Location:
Copyright: 2011 The authors & the Royal Astronomical Society
Appears in Collections:Research Papers (A&A)

Files in This Item:
File Description SizeFormat 
  Restricted Access
Restricted access6.57 MBAdobe PDFView/Open Request a copy

Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.