Please use this identifier to cite or link to this item:
Title: Physical and chemical conditions in methanol maser selected hot cores and UCH II regions
Authors: Purcell, C.R.
Longmore, S.N.
Burton, M.G.
Walsh, A.J.
Minier, V.
Cunningham, M.R.
Balasubramanyam, R.
Keywords: surveys
stars: formation
stars: pre-main-sequence
ISM: abundances
ISM: molecules
Issue Date: Mar-2009
Publisher: Blackwell Publishing for the RAS
Citation: Monthly Notices of the Royal Astronomical Society, 2009, Vol. 394(1), p323-339
Abstract: We present the results of a targeted 3-mm spectral line survey towards the eighty-three 6.67 GHz methanol maser selected star-forming clumps observed by Purcell. In addition to the previously reported measurements of HCO+ (1–0), H13CO+ (1–0) and CH3CN (5–4) and (6–5), we used the Mopra antenna to detect emission lines of N2H+ (1–0), HCN (1–0) and HNC (1–0) towards 82/83 clumps (99 per cent), and CH3OH (2–1) towards 78/83 clumps (94 per cent). The molecular line data have been used to derive virial and local thermodynamic equilibrium masses, rotational temperatures and chemical abundances in the clumps, and these properties have been compared between subsamples associated with different indicators of evolution. The greatest differences are found between clumps associated with 8.6 GHz radio emission, indicating the presence of an Ultra-Compact H ii (UCH ii) region, and 'isolated' masers (without associated radio emission), and between clumps exhibiting CH3CN emission and those without. In particular, thermal CH3OH is found to be brighter and more abundant in UCH ii regions and in sources with detected CH3CN, and may constitute a crude molecular clock in single dish observations. Clumps associated with 8.6 GHz radio emission tend to be more massive and more luminous than clumps without radio emission. This is likely because the most massive clumps evolve so rapidly that a Hyper-Compact H ii or UCH ii region is the first visible tracer of star formation. The gas mass to submm/infrared luminosity relation for the combined sample was found to be L∝M0.68 , considerably shallower than expected for massive main-sequence stars. This implies that the mass of the clumps is comparable to, or greater than, the mass of the stellar content. We also find that the mass of the hot core is correlated with the mass of the clump in which it is embedded.
Description: Restricted Access. An open-access version is available at (one of the alternative locations)
ISSN: 0035-8711
1365-2966 (Online)
Alternative Location:
Copyright: 2009 The Royal Astronomical Society
Appears in Collections:Research Papers (A&A)

Files in This Item:
File Description SizeFormat 
  Restricted Access
Restricted access1.35 MBAdobe PDFView/Open Request a copy

Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.