Please use this identifier to cite or link to this item: http://hdl.handle.net/2289/3582
Title: Long-term flux variations in Cen X-3: clues from flux-dependent orbital modulation and pulsed fraction
Authors: Raichur, Harsha
Paul, Biswajit
Keywords: Binaries
Neutron stars
Pulsars
X-ray binaries
X-ray:stars
Issue Date: May-2008
Publisher: Blackwell Publishing for the RAS
Citation: Monthly Notices of the Royal Astronomical Society, 2008, Vol.387, p439
Abstract: We have investigated the long-term flux variation in Cen X-3 using orbital modulation and pulsed fraction in different flux states using observations made with the All-Sky Monitor and the Proportional Counter Array on board the Rossi X-ray Timing Explorer. In the high state, the eclipse ingress and egress are found to be sharp whereas in the intermediate state the transitions are more gradual. In the low state, instead of eclipse ingress and egress, the light curve shows a smooth flux variation with orbital phase. The orbital modulation of the X-ray light curve in the low state shows that the X-ray emission observed in this state is from an extended object. The flux-dependent orbital modulations indicate that the different flux states of Cen X-3 are primarily due to varying degree of obscuration. Measurement of the pulsed fraction in different flux states is consistent with the X-ray emission of Cen X-3 having one highly varying component with a constant pulsed fraction and an unpulsed component and in the low state, the unpulsed component becomes dominant. The observed X-ray emission in the low state is likely to be due to scattering of X-rays from the stellar wind of the companion star. Though we cannot ascertain the origin and nature of the obscuring material that causes the aperiodic long-term flux variation, we point out that a precessing accretion disc driven by radiative forces is a distinct possibility.
Description: Restricted Access. An open-access version is available at arXiv.org (one of the alternative locations)
URI: http://hdl.handle.net/2289/3582
ISSN: E-ISSN: 1365-2966
P-ISSN: 0035-8711
Alternative Location: http://adsabs.harvard.edu/abs/2008MNRAS.387..439R
http://arxiv.org/abs/0804.1614
http://dx.doi.org/10.1111/j.1365-2966.2008.13251.x
Copyright: Journal compilation © 2008 RAS
Appears in Collections:Research Papers (A&A)

Files in This Item:
File Description SizeFormat 
2008 MNRAS V387 p439.pdf
  Restricted Access
Restricted Access275.05 kBAdobe PDFView/Open Request a copy


Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.