Please use this identifier to cite or link to this item:
Title: Higher harmonics increase LISA's mass reach for supermassive black holes
Authors: Arun, K.G.
Iyer, B.R.
Sathyaprakash, B.S.
Sinha, Siddhartha
Issue Date: Jun-2007
Publisher: American Physical Society
Citation: Physical Review D, 2007, Vol.75, p124002
Abstract: urrent expectations on the signal-to-noise ratios and masses of supermassive black holes which the Laser Interferometer Space Antenna (LISA) can observe are based on using in matched filtering only the dominant harmonic of the inspiral waveform at twice the orbital frequency. Other harmonics will affect the signal-to-noise ratio of systems currently believed to be observable by LISA. More significantly, inclusion of other harmonics in our matched filters would mean that more massive systems that were previously thought to be not visible in LISA should be detectable with reasonable SNRs. Our estimates show that we should be able to significantly increase the mass reach of LISA and observe the more commonly occurring supermassive black holes of masses ~108M[sun]. More specifically, with the inclusion of all known harmonics LISA will be able to observe even supermassive black hole coalescences with total mass ~108M[sun](109M[sun]) (and mass ratio 0.1) for a low frequency cutoff of 10-4 Hz (10-5 Hz) with an SNR up to ~60 (~30) at a distance of 3 Gpc. This is important from the astrophysical viewpoint since observational evidence for the existence of black holes in this mass range is quite strong and binaries containing such supermassive black holes will be inaccessible to LISA if one uses as detection templates only the dominant harmonic.
Description: Open Access.
ISSN: 1550-7998
1550-2368 (online)
Alternative Location:
Copyright: 2007 American Physical Society
Appears in Collections:Research Papers (TP)

Files in This Item:
File Description SizeFormat 
2007 PR-D V75 p124002.pdf
  Restricted Access
Open Access410.25 kBAdobe PDFView/Open Request a copy

Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.