Please use this identifier to cite or link to this item: http://hdl.handle.net/2289/3063
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSrikanth, R.-
dc.date.accessioned2007-06-21T08:56:56Z-
dc.date.available2007-06-21T08:56:56Z-
dc.date.issued2003-06-
dc.identifier.citationQuantum Information Processing, 2003, Vol.2, p153-199en
dc.identifier.issn1570-0755-
dc.identifier.issn1573-1332 (Online)-
dc.identifier.urihttp://hdl.handle.net/2289/3063-
dc.descriptionRestricted Access.en
dc.description.abstractIs the dynamical evolution of physical systems objectively a manifestation of information processing by the universe? We find that an affirmative answer has important consequences for the measurement problem. In particular, we calculate the amount of quantum information processing involved in the evolution of physical systems, assuming a finite degree of fine-graining of Hilbert space. This assumption is shown to imply that there is a finite capacity to sustain the immense entanglement that measurement entails. When this capacity is overwhelmed, the system's unitary evolution becomes computationally unstable and the system suffers an information transition (ldquocollapserdquo). Classical behavior arises from the rapid cycles of unitary evolution and information transition. Thus, the fine-graining of Hilbert space determines the location of the ldquoHeisenberg cutrdquo, the mesoscopic threshold separating the microscopic, quantum system from the macroscopic, classical environment. The model can be viewed as a probablistic complement to decoherence, that completes the measurement process by turning decohered improper mixtures of states into proper mixtures. It is shown to provide a natural resolution to the measurement problem and the basis problem.en
dc.format.extent309528 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoenen
dc.publisherSpringer Verlagen
dc.relation.urihttp://dx.doi.org/10.1023/B:QINP.0000004123.82268.f4en
dc.rights2003 Springer-Verlagen
dc.subjectQuantum measurement theoryen
dc.subjectquantum information processingen
dc.subjectentanglement productionen
dc.titleA computational model for quantum measurementen
dc.typeArticleen
Appears in Collections:Research Papers (LAMP)

Files in This Item:
File Description SizeFormat 
2003 Quntinfproc.pdf
  Restricted Access
Restricted Access302.27 kBAdobe PDFView/Open Request a copy


Items in RRI Digital Repository are protected by copyright, with all rights reserved, unless otherwise indicated.