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Poincaré sphere representation for three state systems
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Abstract. We point out that the Poincaré sphere can be used to represent the rays of a three
state quantum system. Those interested in geometric phase phenomena may find this rep-
resentation a useful aid to visualize the global structure of ray space.
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1. Introduction

The Poincaré sphere [ 1] provides a simple and elegant geometric representation of the
rays of a two state system. It was originally introduced in optics, in the context of
polarized light and has subsequently been widely used [2]. More recently, the Poincaré
sphere has become popular in studies of the geometric phase [3-12] for two state
systems. This article shows how the Poincaré sphere can also be used to represent the
rays of three or N state systems. There appears to be some current interest [13-15]in
this question and we hope that the following exposition will be useful. We will assume
that the reader is familiar with the Poincaré sphere for two state systems and with
Pancharatnam’s work [16,17,6,7,18,19] on the interference of polarized light.

This presentation makes use of spinors. While two component (Weyl) spinors are
used in some areas of general relativity, their application to the present situation may
not be known in the geometric phase community. The purpose of this article is to bridge
this gap. In §2 we briefly summarize the spinorial formulae that will be used in §3 to
show how spinors can be used to represent the ray space of a three state system. Readers
desiring to learn more about spinors should consult Penrose and Rindler [20] and
Wald [21].

2. Spinorial preliminaries

Let (V,¢) be a two dimensional complex vector space, where ¢ is an antisymmetric
nondegenerate bilinear form on V. Elements of V are called spinors and written &4,
A =1,2. ¢ provides a natural isomorphism between V and its dual V'*. ‘Lowering the
index’ on &4 yields the element & ,: = EB¢p . in V*. Note that £, = 0. Itis usual to pick
a basis (14,04) in V so that 110, = 1. Such a frame is called a spin frame. The group of
transformations that leaves the structure (¥, ¢) invariant is SL(2, C), the double cover of
the Lorentz group. ’ :
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One can similarly consider ¥, the complex conjugate space of V, whose elements are
" written &4 e Vand the dual of ¥, 7* with elements £ ,.€ V*. The SL(2, C) spinors defined
above (while suitable for applications to general relativity) are too general for our
purpose. We need to introduce more structure (see p. 376 of ref. [21] or ref. [22])and
reduce the group down to SU(2). This is done by introducing a positive definite,
Hermitian inner product G ,,. on V. The group of linear transformations on V that
preserves both ¢ and G, ,. is SU(2). We can choose our spin frame so that [21]

G =141, 40,40,
and use G, ,. to define a 1 operation on spinors.
ét«i =& Gau-
We will sometimes use Dirac notation | £) for the element &4 of V and (¢| for the element
&', of V*. Note that ({| is not &, for (£]¢) is positive definite, whereas ¢ ,&4 vanishes.
Spinors have some features which take getting used to. These stem from the fact that

indices are raised and lowered by an antisymmetric tensor rather than a symmetric one.
Here are a few properties that the readers may find useful to verify:

1. &4y, = — &, (This is sometimes referred to as ‘Penrose’s seesaw’.) "
2. M= —¢.
3. &' is orthogonal to &: (£7)¢) =0.

These are all straightforward consequences of the spinorial formalism.
A spinor x* can be thought of as representing the state of a spin half system. The ray
Kk corresponding to the state

k4 =214 + 0*
can be represented by z, a point on the extended complex plane C*. (We allow the

possibility z = oo, which is needed to represent k* = 11)) The extended complex plane
C* can be stereographically mapped onto the Poincaré sphere. The formula

z = cot(6/2)e™
relates the stereographic coordinate z to the point p on the Poincaré sphere with polar

coordinates, 6, ¢. The group SL(2,C), which acts on spinors, acts on the extended
complex plane by M&bius transformations

az+b
-
cz+d

where a, b, ¢, d are the entries of the SL(2,C) matrix. Composing (1) with the
stereographic projection, we get an action of SL(2,C) on the Poincaré sphere [20].
These maps are conformal transformations and map circles to circles on the Poincaré
sphere. In the physical interpretation used by relativists, spinors represent null vectors
(the momentum four vectors of photons) and rays represent points on the sky [20]. The
action of SL(2, C) on the Poincaré sphere can be physically realized as the aberration of
light from the sky by Lorentz transformations.

The action of + on the Poincaré sphere is easy to visualize. By explicit computation,
one sees that if = 0,0" = — 1 and so, if &¢* = a1 + fo?,

& =do* — Bt

1)

z
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Since ' is clearly orthogonal to &, we see that T sends a point on the Poincaré sphere to
its antipode. The subgroup of SL(2, C) which preserves antipodality of points is S U(2),
which acts on the Poincaré sphere by rotations. With these preliminaries, we begin our
discussion of three state systems.

3. Three state systems

For two state systems, the Poincaré sphere provides a representation of the ray space
with the following properties:

P1. All rays of the system are represented exactly once.
P2. Neighboring rays are represented as neighboring points on the Poincareé sphere.

We would like to have a similar representation of the ray space of a three state system.

Since we are only interested in the geometry of the ray space (i.e., kinematic features
of the Hilbert space, not dynamical ones like the Hamiltonian), we are free to make any
convenient choice of system. The most convenient choice is a spin 1 system (s = 1). The
physical idea underlying the following discussion is that a spin one (s = 1) particle can
be thought of as a composite of two spin half (s = 1/2) particles. The antisymmetric
tensor product of the states of a spin half system is (see p. 204 of ref. [23]) a singlet (s =0)
state and need not be further considered. We look at the symmetrized tensor product of
spin half states and show how one represents these on the Poincaré sphere.

Let W42 be a symmetric spinor. # = V®,V is a three-dimensional complex vector
space, whose elements we write in Dirac notation as ['¥'). Let us define

Y =PATG,  Gppe.
We write elements W1, of #* as (¥| and ¥/, ¥*® as ('¥|¥). The elements

(le; Dsle, D les ), where efB: = 1418, 4% = 1/\/5(1”‘08 +120%) and e,: = 0# 0 form an
orthonormal set in 3. Any element Y42 of # can be expanded in this basis

WA = YlodB 4 W2odB 4 pigls
The inner product of |'¥ ) with itself is
(PP =W, P48 =PIP + 292+ Y392,

Thus # is a three dimensional complex vector space with a positive definite inner
product and can be identified with the Hilbert space of any three state quantum system.

Let us now represent rays in 5 on the Poincaré sphere. Let W48 be an (unnorm-
alized, nonzero) symmetric spinor. Consider the quadratic polynomial

f(Z) = \PABKAKB: (2)

where x, = z1, + 0. f(2) has exactly two roots z, and z, on the extended complex
plane and can be factorized as '

f@)=Cz—z,)(z—2z,),
where C is a nonzero constant. Defining [21] (fori=1,2)

Kia=2Zily+ 0y » @)
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Figure 1. A general state of a three Figure2. The basis vector |e; ).
state system represented on the Poin-
caré sphere.

we see that
z—2z;=K; k%
It follows that
f(@)=Clx{x3)x kg
for any x ,. Therefore ¥## admits the decomposition
WAB = C(kfih + k3K3). )

(This is the decomposition used in the Petrov classification of gravitational fields
[21].) The ray ¥ to which the vector W48 belongs uniquely determines a pair of rays
K, , k,, which can be represented on the Poincaré sphere by points p,, p,. Interchanging
p, and p, does not affect '¥'. Soaray of a three state system is represented (figure 1) by an
unordered pair (p,, p,) (identified with (p,, p,)) of points on the Poincaré sphere. The
ray space of a three state system is the same as the configuration space of two
indistinguishable particles on the surface of a sphere. This is the main observation that
we wish to make here. :

Note that all rays of the three state system can be thus represented. Neighboring rays
are represented by neighboring pairs of points on the Poincaré sphere. This representa-
tion correctly captures the global structure of CP? and is quite easy to visualize.

We now give a few examples of the general considerations above to gain familiarity
with the use of the Poincaré sphere. Let us start with the rays containing the basis
vectors: |e, > = e#Z = 1*1% is represented by two points at the north pole of the sphere.
(see figure 2, which shows the points slightly separated for reasons of visibility).
Similarly |e, > = €48 = 04 0% is represented by two points at the south pole of the sphere

(figure 3). le,> = 1/(\/5)(1"0B + 180o4) is represented by a point at each of the poles
(figure 4). One also sees that a general linear combination 1/(\/5)(\/§z|e1> +]e,») of
le,> and |e, ) is :

14(z1% + 0%) + 18 (211 + o).
The ray containing this state is shown in figure 5. The ray containing the state
04(z1% + 0%) + 0®(z11 + 04) = 2(e5% + \/Eze‘z“’
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Figure 3. The basis vector |e, ). Figure 4. The basis vector |e; ).

Figure 5. A general vector in the 1-2  Figure 6. A general vector in the 2-3
plane. plane.

which is in the 2-3 plane is shown in figure 6. Finally, the ray containing a state
2(—z2ef® + efB) = (211 + 0%)(— 21® + 0B) + (21 + OB)(— 214 + 0*)

in the 1-3 plane is represented by a pair of points (shown in figure 7) with the same
lattitude but opposite longitudes.

4. Orthogonal rays

Let(p,.p,) and (p,, p,) be pairs of points representing two rays of a three state system.
When are these rays orthogonal? The condition for orthogonality is

Kl xkap(K{g +Kxd) =0, : 5
which can be written in Dirac notation as
(31K )cqlrey) + (163] 1, )i |y ) = 0. (©)

To extract the geometrical interpretation of (6) multiply by (x,|x;)(x, |k,) to rewrite
(6) as

(1110 Dicq 13 ) e ) K 1, ) = = G i) s ) 1 ) ). U]

The phase of such a chain of inner products is the geometric phase acquired by a system
traversing the path 13241 on the Poincaré sphere. From Pancharatnam’s rule [16] this
is equal to the solid angle subtended by the broken geodesic curve 13241. The value of
say |<x,li, ] is cos((x,,k,)/2), where 5(k,,x,) is the angle between rays 1 and 4.
Geometrically, |{x, |k, )| is the length of the perpendicular bisector dropped from the
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£5— =3
S,

S S
Figure 7. A general vector in the 1-3  Figure 8. The figure shows the points
plane. (py,Ps, P2, D) on the Poincaré sphere.

when (p,,p.) and (ps,p4) represent or-
thogonal rays. (p;,p,) are represented
by dots and (§3,5,) by crosses.

center of the Poincaré sphere to the chord 1-4. Separately equatir_lg the phases and
amplitudes of these two complex numbers we find:

O1. The curve with geodesic segments connecting (p;, P3,P,,P4»P,) ON the Poincaré
sphere must enclose a solid angle of 2. ‘

02. The products of the lengths of the perpendicular bisectors from the origin of the
Poincaré sphere to the opposite sides of the rectangle (p,,P3,P2s P> P1) (joined by
chords, not along the surface of the sphere) must be equal.

These are necessary and sufficient conditions for the orthogonality of the rays of the
three state system. (O1 is irrelevant (and also ambiguous, since there is no unique
geodesic in this case) if any of the lengths of the perpendicular bisectors vanish; i.e. the
successive vertices are antipodal.)

An alternative characterization of orthogonal rays obtained are as follows. Let us
replace (p,, p,) by their antipodes (5, p,). Equation (6) implies

it oc (1l gre) i + (el pre )3, (8 .
ki o (i gK3) K7 + (KhpK7 K3, . ©)

where oc means equal but for an unimportant (but nonzero) constant.

From (6), (8), (9) it follows that x1, x, are linear combinations of x, and k, with the
same relative amplitude and opposite relative phase. From this one may conclude (see
below) that

O’1. The points (p,, P, P;,P,) lie on a small circle and (see figure 8) therefore form
a rectangle in a plane passing through this circle.

0’2. The products of the lengths (measured along the chord, not along the surface of
the sphere) of the opposite sides of this rectangle are equal to each other.

Clearly, any three points of such a set determine the fourth. The space of rays
orthogonal to a given ray is two-dimensional.

To see how condition O'1 emerges, recall that the locus of points (r) on the Poincare
sphere traced by the states x(r)* = x? + rx4, where r is real, is a small circle passing
through the rays p, and p,. This is proved in ref. [2] (see their figure on page 9). An easy
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way to see this result is to notice that it is true if p, and p, are antipodal (in fact, in this
case, x(r) traces out a great circle through p, and p,). One deduces the result by
performing an SL(2, C) transformation, which in general maps antipodal points to non
antipodal points and great circles to small circles. As r increases from 0 to infinity, the
ray x(r) goes along one arc of the circle from p, to p,. Asr decreases to minus infinity,
x(r) traces the other arc of the circle. O'2 is an elementary consequence of condition
2 above and replacing (p5, p,) by their antipodes (55, p, ). Thus, either set of conditions
(01, 02) or (0’1, O'2) above provides a characterization of orthogonal states.

The condition for orthogonality (6) has a simple interpretation in terms of spinors.
Givenfourrays(x,,k,; K5, k,) one can form an SL(2, C) invariant, their cross ratio [ 20]

(Ka'Kl)(K‘;'Kz)

Ky, Ky} Kq,Ky): = ———Z 20 10
XKy g Ks, k) (57, ) (0, K,) (10)
where k are representative elements from « and k- k, = k3 k1. Clearly, (10) depends
only on the rays (k,,k,; k;,%,) and not on the representatives chosen. By SL(2,C)
transformations, one can make any set of four rays coincide with any other set if and
only if the two sets have the same cross ratio. The condition (6) states that the rays
(x;,K,; k%, k}) have cross ratio — 1. In particular, they can be brought to the vertices of
a square on the equatorial plane of the Poincaré sphere by SL(2,C) transformations.
Such a set of rays with cross ratio — 1 is called harmonic [20]. Conversely, boosting
four points in the sky equally spaced on a great circle will generate all sets of points
(p,»Pp,» D3, Ps) Which describe orthogonal rays of a three state system.

5. Conclusion

It is easy to generalize the Poincaré sphere representation above to N state systems.
A is then the space of symmetric spinors of rank N — 1. Such a spinor determines
N — 1 principal spinors (k,,k,,...,ky_,). These determine N — 1 indistinguishable
points on the Poincaré sphere. As N gets larger, the value of such a visualizable
representation of the ray space diminishes because of its complexity. It may be simpler
to work directly on the Hilbert space by picking representative elements as in [18] and
ensuring gauge invariance explicitly.

Notice that the representation above captures the global properties of the ray space.
It represents each ray exactly once and maps neighboring rays to neighboring points.
Thus it satisfies (P1, P2) just like the Poincaré sphere. One could introduce a local chart
as done for example in ref. [ 14] on the ray space to label its points. One drawback with
this is that neighboring points on the ray space are sometimes widely separated in the
representation. Some rays are left out entirely. In other words, a local chart misses some
important global information. If one is following the evolution of a system in a local
chart, it could happen that the ray ‘falls off the edge™of the chart. The main point of this
article is that there exists an easily visualizable, globally faithful representation of the
rays of a three state system.

The Poincaré sphere representation for three state systems does have a drawback: it
does not reflect the full symmetry of the ray space. For two state systems, the Poincaré
sphere representation has the desirable feature that the representation displays the full
SU(2) symmetry of the ray space. (Recally that unitary transformations of the Hilbert
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space are represented as rotations of the Poincaré sphere). The SU(3) symmetry of the
three state problem is obscured in the Poincaré sphere representation. Note that some
rays are represented by coincident points on the Poincaré sphere. These might appear
to be ‘different’ from other states, which are represented by two distinct points. The
difference is illusory. By SU(3) transformations any state can be mapped to any other
state. The coincidence of points is not an SU(3) invariant notion. A representation in
which SU (3) invariance is manifest is given in [ 14]. The ray space then appears as a four
dimensional subset of S”. This however has the drawback of not being easy to visualize.

It is very important to remember that the two points (p,,p,) are indistinguishable.
Else one might think that there is an apparent loss of differentiability at coincidence
points. For example, if p, and p, pass through each other, one could see a ‘kink’ in their
trajectories if one ignored their indistinguishability. Mathematically, one sees that
z, and z, are roots of a quadratic equation, whose coefficients vary smoothly over the
ray space. Smooth symmetric functions of (z,,z,) (ie. those which satisfy
flz,,2,) = f(z;,2,)) are smooth functions on CP?. Examples of symmetric functions
are(z, + z,) and(z, z,), both of which can be expressed in terms of the coefficients of the
quadratic polynomial (2), and are therefore smooth: Notice that antisymmetric func-
tions like z, — z, involve the square root of the coefficients and are therefore not
differentiable at coincidence points.

It would have been entirely possible to make do with SU(2) spinors rather than the
more general SL(2,C) ones used in relativity. Our reason for using SL(2, C) spinors is
that the extra power of SL(2,C) transformations is sometimes handy for deducing
results even about SU(2) spinors! See also the interesting remarks due to Nityananda
quoted in [25].

There is another route to the Poincaré sphere representation for N state systems,
which does not make use of spinors. One associates the polynomial

f(z)=ZFzdwrzr) /nl (11)

to the state | ¥ with components (¥, ¥2,..., %" 1, '¥°). The roots of this polynomial
(which depend only on the ray to which |'¥' ) belongs) are N — 1 points on C*, which are
stereographically mapped to the Poincaré sphere. It is amusing to note that in the
Bargmann representation [24] for the simple harmonic oscillator, the Hilbert space of
coherent superpositions of the first N energy levels is the set of polynomials (11).
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