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1. Introduction

The subject of astrophysics began with the study of the stars. It may be recalled
that the positivist philosophers who were so influential in European thinking had
asserted that it was in the nature of things that one can never know what the stars
are. And yet, with Fraunhofer’s discovery of dark lines in the spectrum of the Sun
and the stars, and their subsequent explanation in terms of atomic absorption lines,
a major scientific revolution had occurred — a question that appeared meaningless
within the premise of science had acquired a meaning. Lane, Kelvin and Helmholtz
laid the foundations for the theory of stars towards the end of the 19th century.
But the credit for constructing a remarkably successful theory of the stability and
equilibrium of stars must go to Sir Arthur Eddington. His book The Internal
Constitution of the Stars published in 1926 is undoubtedly one of the greatest
masterpieces of the 20th century.

It is from this book that young Chandrasekhar learnt about the theory of the
stars. The year was 1928, and he was an undergraduate student in the Presidency
College in Madras. The newly discovered Compton Effect was much in the news,
and was the subject of his first scientific publication entitled Thermodynamics of the
Compton Effect with reference to the Interior of the Stars (Chandrasekhar 1928).
He was 18 years old then. That same year he learnt about the discovery of the
Fermi-Dirac statistics from Arnold Sommerfeld who happened to visit Madras.
Straightaway he applied the new statistics to Compton scattering, and this paper
was communicated to the Royal Society by R.H. Fowler (Chandrasekhar 1929).
During the next ten years he made monumental contributions to the theory of stellar
structure and stellar evolution. Much of it is summarized in his classic book entitled
An Introduction to the Study of Stellar Structure published in 1939. Almost
immediately after writing this book he decided to leave the field, and turned his
attention to problems in Stellar Dynamics. This decision was primarily due to the
fact that his epoch making discoveries, instead of being lauded, stirred up a great
controversy largely on account of Eddington rejecting them. In this article we shall
attempt to recall some of his pioneering contributions to the theory of the stars.
This is undoubtedly a daunting task. Fortunately, Chandrasekhar himself had made
a selection of his most important papers from this period for inclusion in Volume I
of his Selected Papers. We shall choose a few of them, explain their content, and
trace their impact on subsequent developments.
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2. The theory of white dwarfs

Chandrasekhar’s first significant papers were devoted to the theory of white dwarfs.
Following Chandrasekhar’s own style of writing, we shall digress for a moment to
enable one to place his contributions in proper perspective.

The discovery of white dwarfs, such as the companion of Sirius, with mean
densities of the order of 10° — 10® gcm™3, appeared to spell trouble for the

enormously successful theory due to Eddington. As Eddington himself put it in his
book:

I do not see how a star which has once got into this compressed state
is ever going to get out of it. ... It would seem that the star will be in
an awkward predicament when its supply of subatomic energy fails.

The difficulty may be explained as follows. The electrostatic energy E, per
unit volume of an assembly of completely ionized atoms (with nuclear charge 7)
is given by

E, =1.32 x 10" 22p*/3, (1)

where p is the mass density. The kinetic energy Fiiy per unit volume of the free
particles (under the assumption that it is a perfect gas) is given by
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where p is the mean molecular weight. If the external pressure (in this case
gravitational pressure) were removed, the matter can expand and return to its original

state of normal atoms only if
Ekin > Em (3)

or if
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The point underlying Eddington’s remarks is that this inequality is violated under
the conditions that obtain in white dwarfs. This paradox was resolved in 1926 by
Fowler in one of the most prescient papers in the astronomical literature. Fowler
argued that at high densities electrons will be highly degenerate and therefore their
kinetic energy and pressure should be calculated not according to Boyle’s law, but
according to the newly discovered quantum statistics. Accordin g to the Fermi-Dirac
statistics the pressure and kientic energy of a highly degenerate electron gas are

given by
1 3\ 1?2
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where n and p are the number density and mass density, and g is the mean-molecular
weight. Fowler’s point was that the inequality (3) will be easily satisfied if one uses
the quantum statistical expression for the kinetic energy instead of its classical
value.

Chandrasekhar became aware of Fowler’s seminal paper in 1929, and immedi-
ately applied the theory of polytropic gas spheres to the new equation of state and
derived the mass-radius relation for completely degenerate white dwarf configu-
rations. This historic paper was communicated to the Philosophical Magazine by
Fowler. To recall briefly, the Fermi-Dirac pressure of a degenerate electron gas (at
absolute zero of temperature) is given by a polytropic equation of state

P=KpP. (7)

This corresponds to a polytropic index n = 3/2 (where 5/3 = 1 + 1), Using the
theory of equilibrium states of polytropic gas spheres, Chandrasekhar obtained the
following relations between the masses and radii of white dwarfs, as well as their
mean density:
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To quote from this early paper (Chandrasekhar, 1931a):

(i) the radius of a white dwarf is inversely proportional to the cube root of the
mass,

(ii) the density is proportional to the square of the mass,
(iii) the central density would be six times the mean density.

Thus, according to this theory all stars, regardless of their mass, will end their lives
peacefully as white dwarfs.

THE LIMITING MASS: Soon after completing this work Chandrasekhar set out
to Cambridge to continue his research under the guidance of R.H. Fowler. During
the voyage he began to worry about the effects of Special Relativity on the conclu-
sions he had just arrived at. He concluded that at electron densities > 6x10* cm™3
one must use a modified form for the pressure of an electron gas. In the extreme
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relativistic case (when the rest mass of the electrons can be neglected) the pressure
is given by

1/3
P = _1_<,3_> .hc.n4/3
8\

_ Ko, (10)

Once again applying the theory of polytropic gas spheres (this time for an equation
of state with a polytropic index n = 3) he derived the relation

(GM)Z _(4Ky)°

= (11)
M ArG '

where M’ = 2.7176. With an assumed value of 2.5 for the mean molecular weight
(the “canonical value” in 1930) this yielded

M =1.822 x 10** g = 0.91 M. (12)
More generally
3/2 |
M =0.197 (f“f) : 32-} iz =5.76 u;*Mg, (13)
G My | He

where pi, is the mean molecular weight per electron. Thus a fully degenerate star,
in the extreme relativistic limit, has a unigue mass ! Chandrasekhar concluded that
this must represent the maximum mass of an ideal white dwarf (Chandrasekhar,
1931b).

At this stage Chandrasekhar was not aware of the work of W.Anderson (1929)
and E.C.Stoner (1929, 1930) who had independently investigated this problem.
Fowler drew his attention to these papers upon his arrival in Cambridge. Stoner’s
approach was more heuristic. In his 1929 paper Stoner had derived the limiting
density for white dwarfs using the following argument: The number of electrons
with momenta within a definite range cannot exceed a certain maximum. Any
increase in the density involves an increase of energy. In the limiting case, at
absolute zero, the star can contract until the decrease in gravitational energy becomes
insufficient to balance the increase of kinetic energy of electrons. The limiting
density corresponds to the value of n when

d
77 (Biin + Egray) = 0. (14)

This yielded a value of density approximately twice the average density calculated
by Chandrasekhar using the more rigorous approach of hydrostatic equilibrium.
Historically, Anderson (1929) was the first to appreciate that at high densities
special relativistic effects would have to be taken into account. In particular, he
isolated the fundamental result that as the density increases the mass will approach
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a “limiting mass”. Stoner (1930) improved upon this result (but confining himself
to his earlier framework of considering the energetics of homogeneous spheres) and
derived a limiting mass of 2.19 x 103 g. Curiously, neither Anderson nor Stoner
pursued this further!
The credit for elucidating the significance of the limiting mass must go solely
"to Chandrasekhar. Faced with the skepticism of R.H.Fowler and E.A.Milne, he
puzzled over this intriguing result. But by October of that year (1930) it became
clear to him that what was happening was that the relation R o< M ~1/3 given by
the nonrelativistic theory was modified by the inclusion of relativistic effects in
the following way. Consider an approximation in which a white dwarf consists
of a nonrelativistically degenerate ‘envelope’ (in which the pressure o p>/3), and

a ‘core’ (in which the pressure o< pé). . In this approximation Chandrasekhar
showed (1931c) that “the completely relativistic model, considered as a limit of this
composite series is a point mass with p, = oo!”.

Armed with this insight Chandrasekhar proceeded to work out a complete theory
which allowed for the effects of special relativity in an exact manner. For this he
wrote the equation of state in a parametric form

P=Af@®), p=npemy =Bz’ (15)
where is 2
™'c gmrm c hem
— = 16
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fz) =2 (m2 + 1) (2532 - 3) +3sinh~! z. (17)

The above expression for the pressure approximates the relation P = K p°/3 for

low electron densities, and P = K,p*? in the ultrarelativistic limit. A detailed
consideration of equilibrium configurations built on the above (exact) equation of
state led to a mass-radius relation shown in fig. 1. While the exact relation (full
line) approximates the relation obtained (in the nonrelativistic approximation) for
M — 0, it predicted that the radius tends to zero for M — Mjimit. In other words,
finite degenerate equilibrium configurations exist only for M < Mjmi. Given
the chemical composition (or equivalently the mean molecular weight per electron
Lie) this limiting mass is uniquely determined by a combination of fundamental
constants

Miimit
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This mass has rightly come to be known as the Chandrasekhar limit, and plays
a central role in the theory of relativistic stars, and we shall return to it presently.
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Figure 1. The solid line represents the exact mass-radius relation for completely degenerate
configurations. The mass, along the abscissa, is measured in units of the limiting mass
(denoted by M3) and the radius, along the ordinate, is measured in the unit [; = 7.72 X
108 po! cm. The dashed curve represents the relation that follows from the equation
of state given in eq. (7); at the point B along this curve the fermi momentum pp of the
electrons at the centre of the configuration is exactly equal to mc. Along the exact curve, at
the point where a full circle (with no shaded part) is drawn, pr (at the centre) is again equal
to mmc; the shaded part of the other circles represent the regions in these configurations

where the electrons may be considered to be relativistic (pr >> mc). (Reproduced from
Chandrasekhar 1935).

3. Why are the stars as they are?

After completing his investigations of white dwarfs Chandrasekhar turned to a de-
tailed investigation of the internal constitution of stars. He extended and developed
three basic methods. They are

I. The method of integral theorems

II. The method of homologous transformations

HI. The method of stellar envelopes.
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He published the results in a series of very detailed papers, and subsequently
distilled and summarized them in his classic monograph An Introduction to the
Study of Stellar Structure. Here we shall single out one of the integral theorems
because it serves to illustrate his approach to the subject as a whole. The method
of integral theorems consists in finding inequalities for quantities like the central
pressure, mean pressure, the potential energy, the mean value of gravity, etc.. The
particular theorem we shall refer to concerns the central pressure in a star.

But first let us digress a little. As already remarked, Eddington’s standard model
of the stars was enormously successful. Perhaps most importantly it provided an
explanation for the observed masses of stars. It is an extraordinary fact that the
overwhelming majority of stars have masses close to that of the Sun: stars with
masses very much less than, or very much more than, the mass of the Sun are
relatively infrequent. Why is this so? Eddington posed this question to himself
and answered it in his parable of a physicist on a cloud bound planet (The Internal
Constitution of the Stars):

“The outward flowing radiation may be compared to a wind flowing
through the star and helping to distend it against gravity. The formulae
to be developed later enable us to calculate what proportion of the
weight of the material is borne by this wind, the remainder being
supported by the gas pressure. To a first approximation the proportion
is the same at all parts of the star. It does not depend on the density nor
on the opacity of the star. It depends only on the mass and molecular
weight. Moreover, the physical constants employed in the calculation
have all been measured in the laboratory, and no astronomical data
are required. We can imagine a physicist on a clound-bound planet
who has never heard tell of the stars calculating the ratio of radiation
pressure to gas pressure for a series of globes of gas of various sizes,
starting, say, with a globe of mass 10 g, then 100 g, 1000 g and so on,
so that his nth globe contains 10™g. Table I shows the more interesting
part of his results.”

Table I
No. of Radiation Gas No. of Radiation Gas
globe  pressure  pressure globe  pressure  pressure
32 0.0016 0.9984 36 0.951 0.049
33 0.106 0.894 37 '0.984 0.016
34 0.570 0.430 38 0.9951 0.0049
35 0.850 0.150 39 0.9984 0.0016

“The rest of the table would consist mainly of long strings of 9’s and
0’s. Just for the particular range of mass about the 33rd to 35th globes
the table becomes interesting, and then lapses back into 9’s and 0’s
again. Regarded as a tussle between matter and either (gas pressure
and radiation pressure) the contest is overwhelmingly one-sided except
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between numbers 33-35, where we may expect something to happen.”
“What happens is the stars.”

“We draw aside the veil of cloud beneath which our physicist has
been working and let him look up at the sky. There he will find a
thousand million globes of gas nearly all of mass between his 33rd and
35th globe — that is to say, between % and 50 times the Sun’s mass.
The lightest known star is about 3 x 10%? g and the heaviest about
2 x 10% g. The majority are between 103 and 103 g, where the
serious challenge of radiation pressure to compete with gas pressure is
beginning.”

But why is the relative extent to which radiation pressure provides support
against gravity a relevant factor to the “happening” of stars?! A more rational
argument due to Chandrasekhar is the following. To quote him, “Domains of
natural phenomena are often circumscribed by well-defined scales, and theories
concerning them are successful only to the extent that these scales emerge naturally
in them. Thus, to the question ‘why are the atoms as they are?’ the answer ‘because
the Bohr-radius — h?* ] (4m*mee?) ~ 0.5 x 10™8 cm — provides a correct measure
of their dimensions’ is apposite. In a similar vein, we may ask ‘why are the stars
as they are?’, intending by such a question to seek the basic reason why modern
theories of stellar structure and stellar evolution prevail”

The answer may be found along the following lines. According to one of the
integral theorems proved by Chandrasekhar (1936, a; 1936, b) the pressure P, at
the centre of a star of mass M, in hydrostatic equilibrium and in which the density

p(r) at any point  does not exceed the mean density p(r) interior to that point r,
must satisfy the inequality

1 L,
36 (F) it srsio(3) ik st 19)
where p denotes the mean density of the star and p, its density at the centre. The
meaning of this inequality is the following: the pressure at the centre of a star
must be intermediate between those at the centres of two configurations of uniform
density, one at a density equal to the mean density p and the other at a density
equal to the density p. at the centre. If this inequality is violated, then there must
be regions in the star where adverse density gradients prevail, and this will lead to
instabilities. Thus, satisfying this inequality is a necessary condition for the stable
existence of a star. )

Before proceeding further one must eliminate the explicit temperature depen-
dence of the central pressure P,. This is readily done as follows. Let us introduce
the fraction £ defined by

P = Pgas + Prad

T
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We may eliminate T" from these relations and express the total pressure in terms of

p and S. Thus
|
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Let us use this expression for the total pressure in the right-hand part of the
inequality (22), as a necessary condition for the existence of a stable star,

it
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Substituting for Stefan’s constant a and simplifying one gets
4 % h 3
2 c C\ 2 1
M{——] >2019||—=) -—|. 23
# <l“ﬁc) - {(G) mZH} @

We observe that the above inequality has isolated the following combination of
fundamental constants of the dimensions of a mass:

3
<@> Pl o00My, (24)
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and that this mass is of stellar magnitude (Chandrasekhar 1937). This inequality
also provdes an upper limit to (1 — 8.) for a star of a given mass:

1-6.<1- 6, (25)

where (1 — B,) is uniquely determined by the mass M of the star and the mean
molecular weight, u, by the quartic equation

1 - :3*
A
From this equation it follows that for a star of solar mass(and u = 1) the radiation
pressure at the centre cannot exceed 3% of the total pressure. (It also follows that
this fraction increases with increasing mass — a point to which we shall return later.)
What do we conclude from the foregoing calculation? “We conclude that to the
extent eq. (26) is at the base of the equilibrium of actual stars, to that extent the

1
M =548 [ ] " M, (26)

3 -
combination of natural constants (hc/G)?* (1/m3;), providing a mass of proper
magnitude for the measurement of stellar masses, is at the base of a physical theory
of stellar structure.” (Chandrasekhar 1984).
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4. On the evolution of the main sequence of stars

By the end of the 1930s many of the major questions concerning the structure of
the main-sequence stars were settled, and the attention shifted to the evolution of
the stars away from the main-sequence. In their seminal papers Weizsicker (1938)
and Bethe (1939) had established that the source of energy radiated by the main-
sequence stars is the transformation of hydrogen into helium through the ‘C-N-O
cycle’. Gamow was among the first to formulate a picture of stellar evolution on
the basis of the Bethe-Weizsécker theory (1939 a, b). His model was based on
three assumptions: (i) the stars evolve gradually through a sequence of equilibrium
configurations, (ii) successive equilibrium configurations are homologous; and (iii)
nuclear reactions continue to take place till all the hydrogen in the star is exhausted.

Chandrasekhar turned his attention to this problem around 1940 and two of
his papers from that period (Henrich & Chandrasekhar 1941; Schénberg & Chan-
drasekhar 1942) turned out to be landmark papers. In this section we shall briefly
summarize the main conclusions of these two papers, and also attempt to place
them in perspective against our present understanding of stellar evolution. Both
these papers are devoted to a discussion of stellar models with isothermal cores. At
the end of hydrogen burning, the star is left with an inert helium core surrounded
by a hydrogen-rich envelope. Hydrogen contines to burn in a shel/ at the bottom of
the envelope. The helium core must be nearly isothermal, and hence the attempt
to construct stellar models with isothermal cores and radiative envelopes. Henrich
and Chandrasekhar considered the case in which the value of the mean molecular
weight, p1, was the same in both regions. In the subsequent paper, Schénberg and
Chandrasekhar discussed the more general (and more relevant) case of different
molecular weights i, and 4., for the envelope and the core, respectively. The basic
approach was to require that at the interface the values of the pressure, temperature,
and mass of the core should be identical:

P(ri)core = P(74)e; T(ri)eore = T(T)e; M(7i)core = M(7;)e, (27)

where P, T and M denote the total pressure, the temperature, and the mass within
the radius, respectively. The subscript 4 indicates that the values refer to the interface
and the subscript e indicates that the quantities correspond to the envelope solutions
of the equilibrium equations. The above conditions are the only ones to be satisfied,
and so one gets a family of configurations for any given set of M, R and L. To
fit the core and envelope solutions at the interface they introduced the homology
invariants U and V to describe the isothermal core,

o AT e GMO)

M) k rT(r) 28)
The equations of fit in the new variables are
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Figure 2. Plotted along the abscissa is the radius of the isothermal core as a fraction of
the stellar radius (¢ = %), and along the ordinate is the mass of the core as a fraction
of the stellar mass (1/ =M./M ) The circles refer to models with isothermal cores, and
the squares refer to models with convective core. Starting from its minimum value, v
increases rapidly as g grows, reaches its absolute maximum, and starts spiraling. The
absolute maximum is the Schonberg—-Chandrasekhar limiting mass (from Schénberg &
Chandrasekhar 1942).

The method employed in these papers — which then became very widely used
in the literature — was to “fit” the core and envelope solutions in the U-V plane by
finding their intersection. Since the quantities ¢ and v,

= and V—M(”)
=R M

are homology invariants, they could be used to label the different configurations
corresponding to the same stellar mass and the same central temperature. Using this
technique Chandrasekhar and his colleagues were able to derive several properties
of models with isothermal cores and radiative envelopes. Their most important
conclusion — as borne out by subsequent developments — was the following: There
are no equilibrium configurations with the isothermal cores having masses exceed-
ing a critical mass. This upper limit is a decreasing function of tie/ the. In the
case of equal molecular weights the upper limit for the ratio v = M. /M is ~ 0.35.
Schénberg and Chandrasekhar, who considered the more general case, estimated
an upper limit for M,/M ~ 0.1. The dependence of the fractional core mass on
the fractional core radius is reproduced in fig. 2. As may be seen, there are no

(30)
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Figure 3. Models with isothermal cores and radiative envelopes. (a) The pressure P, at the
bottom of the envelope (in dyn cm™*) plotted against the core radius R, for a 2M, star.
The two curves correspond to two values of the core mass (in Mg). Thus the envelope
solution for the interface is nearly independent of M,. (b) The pressure P, at the surface
of the core for different core masses (in Mg). The arrows along the solid curve indicate
the direction of increasing central pressure. The curve spirals around a certain value (the
dotted curve) if degeneracy of the core is neglected. The inclusion of degeneracy unwinds
the spiral, and it rises once again for increasing central pressure. (c) The intersection of
the core and envelope solutions. The filled circles represent stable solutions, and the open
circle represents an unstable solution (from computations by Roth (1973) reproduced from
Kippenhahn & Weigert 1990).

equilibrium configurations with cores containing less than 0.065 or more than 0.1
of the stellar mass. The lower limit is due to the appearance of convective instability
at the interface, while the upper one is due to the impossibility of fitting a core to an
envelope. Starting from its minimum value, v increases rapidly as ¢ grows, reaches
a maximum, and starts spiralling around a certain value (not shown in the figure
reproduced here but discussed in the text). _

This upper limit to the mass of the isothermal core has come to be known
as the Schonberg-Chandrasekhar limit. This limit is certainly exceeded by
helium cores left behind after central hydrogen burning in stars of the upper main
sequence. What, then, is the significance of this limit? This became clear only
after detailed numerical results (which also included the degeneracy of the core)
became available. In view of the fundamental significance of this result, we shall
summarize our present understanding of this problem.

For illustration we show the results of detailed numerical integration by Roth
(1973) which has been reproduced from the excellent modern textbook on the
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subject by Kippenhahn and Weigert (1990). Fig. 3(a) shows the pressure at the
bottom of the envelope as a function of the core radius for two assumed values
for the core mass. As would be expected, the pressure is insensitive to the core
mass. Fig. 3(b) shows the behaviour of the pressure at the surface of the isothermal
core for several values of the core mass. Consider first the solid curve which is for
M. = 0.18Mg and Ty = 2.24 x 107 K. If the degeneracy of the core is neglected
then with increasing central pressure this curve would rise from the lower right hand
part of the diagram and spiral in as indicated by the dotted curve. The inclusion of
degeneracy “unwinds” this spiral and it begins to rise again (degeneracy becomes
more and more important with increasing central pressure). As may be seen, the
minimum is less and less pronounced for smaller core masses. Next let us consider
the intersection of the core and envelope solutions. For very small values of the core
mass the core solution is monotonic and there is only one intersection. When the
mass of the core increases to a critical value — the Schonberg—Chandrasekhar limit
— the core solution develops a pronounced maximum and if the envelope solution
passes between the maximum and minimum there will be three intersections: the
one with the lal'geatﬁ'ii’:c corresponds to the core described by an ideal gas, the
one with intermediate R, corresponds to partial degeneracy, and the one with the
smallest R, corresponds to large degeneracy of the core.

The emerging picture is best summarized by fig. 4 in which linear series of
complete equilibrium solutions are shown for stars with four different masses (in
units of Mg). R istheradiusand M, = g.M is the mass of the isothermal core. The
curves for the more massive stars have three branches; the solid sections represent
thermally stable branches and the dashed section represents unstable models. On
the upper branch the cores are nondegenerate, but they are strongly degenerate in
the lower branch. The turning point with the larger value of core mass (gsc) defines
the Schénberg—Chandrasekhar limit. As we go to smaller stellar masses the two
turning points approach each other, and at M ~ 1.4Mg they merge and disappear.

Let us conclude this discussion of the Schénberg-Chandrasekhar limit with a
brief discussion of its implication for the evolution of the stars in the upper main-
sequence. Tobe specific, let us consider a 3 solar mass star and follow its evolution
with the aid of fig. 5(a). When the mass of the isothermal helium core is still
relatively small the star will settle into an equilibrium state represented by the upper
branch. This corresponds to a dwarf star close to the main sequence (as shown in
fig. 5b). As the mass of the helium core grows due to hydrogen burning in the shell
the star will “move” along this upper branch maintaining equilibrium. This proceeds
continuously till the core mass reaches the Schénberg—Chandrasekhar limit. When
the core mass exceeds this critical value the only equilibrium models are in the
lower branch and the core will have to contract discontinuously. This contraction
of the core will be accompanied by an expansion of the star and the star will move
rapidly in the HR diagram from the main-sequence to the region of the Hayashi
line. This central conclusion, namely that the core will contract and the star will
transform itself into a red-giant, is borne out by detailed evolutionary calculation
such as the one shown in fig. 6. The core contraction (and the expansion of the
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Figure 4. Linear series of complete equilibrium solutions for four different stellar masses
M (in M) having isothermal core of mass M, = goM. Each solution is characterized by
its core radius R, and its relative core mass gy. Branches with thermally stable solutions are
shown by solid lines, and the unstable branches are shown as dashed lines. The turning point
qo = gsc defines the Schénberg-Chandrasekhar limit. (After Roth 1973; from Kippenhahn
and Weigert 1990).

star) occurs roughly on the Kelvin-Helmholtz timescale of the core (~ 3 x 10° yr
for a 5M star). In contemporary literature this consequence of the Schonberg—
Chandrasekhar limit is taken as the explanation for the existence of the well known
Hertzsprung gap in the HR-diagram, a region between the main-sequence and the
red giants where there is a paucity of observed stars.

Such a sudden contraction of the core may also have implications for dramatic
mass loss from the upper main-sequence stars. The discovery of white dwarfs in
some open clusters with main-sequence turn off mass ~ 6Mg, certainly implies such
amass loss. For otherwise, according to our current understanding, the degenerate
carbon cores of stars with mass > 6Mg, will eventually grow to ~ 1.4M¢ and
ignite, resulting in a detonation of the star as a Type I supernova. Whether the
Schonberg-Chandrasekhar limit has anything to do with dramatic mass loss from
the stars of the upper main-sequence or not, we would like to conclude this section
by quoting from the last paragraph of this fundamental paper:

“It therefore appears difficult to escape the conclusion that beyond this
point the star must evolve through nonequilibrium configurations. It is
difficult to visualize what form these nonequilibrium transformations
will take; but, whatever their precise nature, they must depend criti-
cally on whether the mass of the star is greater or less than the upper
limit M3 (= 5.7u2Mg) to the mass of degenerate configurations. For
masses less than M3 the nonequilibrium transformations need not take
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Figure 5. (a) Linear series of equilibrium solutions for a 3 solar mass star. With increasing
core mass the model shifts along the solid lines as indicated by the arrows. When the mass
of the core grows to gsc M — the Schonberg—Chandrasekhar critical mass — the core will
have to contract discontinuously. This results in an expansion of the star, and the star moves
rapidly from near the main-sequence to the red giant branch in the HR diagram. The rapid
transit of the star across the Hertzsprung gap is indicated by the dashed line in (b) (from

Kippenhahn & Weigert 1990).

age in 1O7years —_
0 20 256 258 26 262 264 266

Figure 6. The radial variations of different mass shells characterized by their m /M values
in the post-main-sequence phase of a 7M, star. The rapid contraction of the core and the
expansion of the envelope is clearly seen (from Hofmeister ef al. 1964).
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particularly violent forms, as finite degenerate white-dwarf states exist
for these stars. However, when M > M3, the star must eject the excess
mass first, before it can evolve through a sequence of composite mod-
els consisting of degenerate cores and gaseous envelopes toward the
completely degenerate state. Our present conclusions tend to confirm
a suggestion made by one of us (S.C.) on different occasions that the
supernova phenomenon may result from the inability of a star of mass
greater than M 1o settle down to the final state of complete degeneracy
without getting rid of the excess mass.”

5. The fate of massive stars

Letus now return to the early 1930s once again. The discovery of the limiting mass
for white dwarfs in which the gravitational pressure is balanced by the degeneracy
pressure of the electrons was to play a central role in astrophysics in the second
half of this century. Equally fundamental and far reaching in its significance was
a paper Chandrasekhar published in 1932 entitled Some Remarks on the State of
Matter in the Interior of Stars.

Although the astronomical community was indifferent to the isolation of the
limiting mass of white dwarfs, and its high priests hostile to the idea, Chandrasekhar
took the result seriously enough and attempted to relate it to the life history of
gaseous stars with masses greater than the critical mass. The first question to
be resolved was the condition under which a star, initially gaseous, can develop
a degenerate core. This question could be answered by comparing the electron
pressure as given by the classical perfect gas equation of state with the expression
for the degeneracy pressure (see fig. 7). Since the former is a function of both P
and T', while the latter is independent of temperature, Chandrasekhar expressed the

classical pressure in terms of p and Be where the fraction of 3, is defined through
the relation

Pyt =é (Me;HpT> = 1—1ﬁe (%CLT4> : (31)

E N3 1-6]7
o= (—2) .2, 1. 32
b [<ﬂemH> a Be :I P (32)

If degeneracy sets in at all in the core it will do so under conditions in which special
relativistic corrections would be important. Hence the above expression should be
compared with the relativistic degeneracy pressure

One gets

1
4 1 /3\3 he
Paeg = Ko, K2=§(—) _he (33)
& (NemH)3

Sy
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Figure 7. This plot of logp vs. logp illustrates the onset of degeneracy for increasing
density at constant 3. The straight line ABK represents the equation of state p = K, p'% and
BC the equation of state p = K3 p§ . ABC gives roughly the equation of state of a degenerate
gas. DE represents the classical equation of state (eq. (32) with u = 2, and 8 = 0.98). It
intersects the degenerate equation of state (AB, C) at E. Thus for a star with 3 = 0.98 there
are two surfaces of demarcation: a perfect gas envelope, a degenerate zone EB, and then a
relativistically degenerate zone. If 8 = 0.9079, then GB represents the perfect gas equation
of state and the degenerate zone reduces to a single layer, and the relativistically degenerate
zone is described equally well by the perfect gas equation. Now if 8 < 0.9079 perfect
gas equation of state has no intersections with ABC and this means that however high the
density may become the temperature rises sufficiently rapidly to prevent the matter from
becoming degenerate (from Chandrasekhar 1932).

As Chandrasekhar pointed out, in this connection it will have to be remembered
that considerations of relativity do not affect the equation of state of a perfect gas.
p = NKT is true independent of relativity ! Thus, if

[( k )4.5.1'56}%>K2, (34)

LeM B o Be

then the pressure p. given by the classical equation of state will be greater than
the degeneracy pressure, not only for the prescribed p and T, but for all p and T
having the same (3. Inserting the value for Stefan’s constant a, the above inequality



70 G. Srinivasan

reduces to
960 1 — [,

™ B

> 1 (35)

or, equivalently
1 -3 >0.0921=1-0, (say). (36)

Thus, the criterion for a star to develop degeneracy is that the radiation pressure
be less than 9.2% of the total pressure. This exact result is of singular importance
in all the contemporary schemes of stellar evolution.

It is an important result of the standard model due to Eddington that radiation
pressure must play a more dominant role as the mass of a star increases. Chan-
drasekhar proceeded to calculate the mass of a star (in the standard model) in which
radiation pressure is precisely equal to 9.2% of the total pressure. It may be recalled
that in the standard model the fraction /3 is assumed to be constant throughout the

star. Under this assumption, stars are polytropes of index 3 since the total pressure
can be written as

Wl

pmgr

E\* 3 l—ﬁ% 4

For such a star the mass is uniquely determined by the constant of proportionality
in the polytropic equation of state:

3
M =4z (ﬂ@) " % 6.89. | (38)
e
For 8 = 3, = 0.908 this gives
M =665 p~*Mg. (39)

Thus, in the standard model, stars with masses exceeding 6.65u~2 Mg, will have
radiation pressure that will exceed 9.2% of the total pressure, and consequently they
cannot, during the course of their evolution, develop degeneracy in their interiors,
and, accordingly, an eventual white-dwarf state is impossible for them without a
substantial ejection of mass. Although this remarkable conclusion was soundly
rejected by Eddington and Milne — two of the most distinguished and influential
astrophysicists of that time — Chandrasekhar himself was so convinced of his result
that he asserted with supreme confidence:

“For all stars of mass greater than 6.6 =2 My, the perfect gas equa-
tion of state does not break down, however high the density may be-
come, and the matter does not become degenerate. An appeal to Fermi-
Dirac statistics to avoid the central singularity cannot be made.”

Although convinced of it, Chandrasekhar was nevertheless uneasy about the
above conclusion. Since infinite density cannot be entertained, and since no other
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equation of state was available at that stage, he invoked the assumption that there
must exist a maximum density pmax Which matter is capable of. Accordingly he
constructed models with gaseous envelopes and homogeneous cores at the maxi-
mum density of matter (at the density of nuclear matter). But he concluded this
remarkable paper on a cautious note:

“Great progress in the analysis of stellar structure is not possible before
we can answer the following fundamental question: Given an enclo-
sure containing electrons and atomic nuclei (total charge zero) what
happens if we go on compressing the material indefinitely?”.

It should be remarked that in 1932 (when the paper discussed above was published)
he had not yet convinced himself of the significance of the maximum mass of white
dwarfs. However, after working out the exact theory of white dwarfs, he concluded
(Chandrasekhar 1934a):

“Finally, it is necessary to emphasize one major result of the whole
investigation, namely, that it must be taken as well established that the
life-history of a star of small mass must be essentially different from
the life-history of a star of large mass. For a star of small mass the
natural white-dwarf stage is an initial step towards complete extinction.
A star of large mass cannot pass into the white-dwarf stage, and one is
left speculating on other possibilities.”

Uncharacteristically, he even speculated (Chandrasekhar 1934b):

“It is conceivable, for instance, that at very high critical density the
atomic nuclei come so near one another that the nature of the interac-
tion might suddenly change and be followed subsequently by a sharp
alteration in the equation of state in the sense of giving a maximum
density of which matter is capable. However, we are now entering a
region of pure speculation, and it is best to conclude the discussion at
this stage.”

But in a paper published around the same time Baade and Zwicky (1934) were less
cautious:

«With all reserve we advance the view that supernovae represent the
transitions from ordinary stars into neutron stars, which in their final
stages consist of extremely closely packed neutrons.”

In a prescient paper published in 1939 Oppenheimer and Volkoff pointed out that as
one approached the limiting mass of white dwarfs along the sequence of the com-
pletely degenerate configurations, the central density will become high enough for
the electrons at the fermi level to combine with the protons to form neutrons. Thus
beyond a critical density neutrons will be the more stable particles. Oppenheimer
and Volkoff studied the mass-radius relation of neutron stars with the aid of general
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relativistic equation for hydrostatic equilibrium. Based on this work Chandrasekhar
(1939a) concluded the following regarding the fate of stars more massive than the
limiting mass of white dwarfs, but less massive than 6.65 . ~2My, (in the standard
model):

“If the degenerate cores attain sufficiently high densities (as is pos-
sible for these stars) the protons and electrons will combine to form
neutrons. This would cause a sudden diminution of pressure resulting
in the collapse of the star onto a neutron core giving rise to an enor-
mous liberation of gravitational energy. This may be the origin of the
supernova phenomenon.”

These, then, were the predictions made nearly sixty years ago. Have they been
confirmed by observations, as well as detailed computations? Yes! As may be
seen in fig. 8, a star of, say, 15M, does not develop degeneracy in the core during
successive stages of nuclear burning. The fusion reactions proceed in a controlled
fashion till an iron core forms. And degeneracy finally sets in in the iron core for
the following reason. In stars with masses > 10M(,, radiation pressure always
remains in excess of 9.2% of the total pressure (i.e., 1 — B, > 1 — 3,,). However,
when the carbon core finally ignites there will be a copious emission of neutrinos
resulting in a cooling of the core, thus lowering (1 — (3,); but it will still be in excess
of (I — f3,). The increase in density and temperature will eventually result in neon
ignition. The resultant neutrino emission will further lower (1 — ;). It is important
to appreciate that the emission of neutrinos occurs selectively in the central region.
This succession of nuclear ignitions followed by a lowering of (1 — f3,) will continue
till (1 — B,) becomes less than (1 — £,,), and a relativistically degenerate iron core
will form. The mass of this core will quickly grow to ~ 1.4M. Soon instability
of some sort will set in resulting in the collapse of the core.

Let us examine this more closely. In the framework of the Newtonian theory
of gravitation for the spherical core to be stable against radial perturbations the
pressure-averaged value of the adiabatic index T must be greater than %. That is

M M

I_“=' | I'(r) P(r) dM(r) + P(r)dM(r) > g, 40)

0

where AP/P
= ——. 41
Ap/p (1

IfT" < 4/3, dynamical instability of a global character will set in with a characteristic
timescale given by the sound travel time across the core. Fig. 9 schematically
shows the behaviour of I" as a function of density. As the density approaches
~ 10° g em™2, I'will tend to 4/3 and matter will become marginally stable. When
the density reaches ~ 10 gcm™3 inverse B-decay will set in resulting in the
neutronization of matter. The decrease in the number density of electrons will cause
a diminution of the pressure resulting in the collapse of the core. Initially the number

T e
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Figure 8. The evolution of the central temperature T. (in K) and central density p. (in

g cm™?) for stars of different masses. The conditions for the ignition of hydrogen, helium
and carbon are indicated by dot-dashed-lines. In the region to the left of the sloping (dashed)
straight line the core of the star is described by the classical perfect gas equation of state.
As may be seen, the core of a 15M(, star remains nondegenerate through successive stages
of nuclear ignition. This is because in such massive stars the radiation pressure exceeds
9.2% of the total pressure. Beyond the carbon burning phase the large neutrino luminosity
lowers radiation pressure selectively in the central region, and eventually it becomes less
than 9.2% of the total pressure. Consequently relativistic degeneracy sets inin the iron core
(from Iben 1974).

of free neutrons will be small, and consequently they will not contribute significantly
to the pressure. Eventually, when the density increases to ~ 7 % 102 gcm™3 the
degeneracy pressure of the free neutrons will become significant and the matter will
become stable once again. The mean-density of the collapsed core (corresponding
to T > 4/3) will be ~ 10" g cm™>. The resultant configuration will be a neutron
star of mass ~ 1.4Mg,.

As already mentioned, the above considerations were within the framework of
the Newtonian theory of gravitation. As we saw, in this picture, neutronization of
matter played a central role in the instability setting in. The situation is qualitatively
different when one examines the same problem in the framework of the general
theory of relativity. This discovery was made by Chandrasekhar in 1964 (and is
discussed by J.Friedman in this volume). Chandrasekhar showed that in the post-
Newtonian approximation to the general theory of relativity, the instability for radial
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Figure 9. The adiabatic index as a function of the mass density. In Newtonian physics
this index has to be greater than 4/3 for stability. Inclusion of general relativistic effects
increases the critical value to above 4 /3.

perturbations will set in for all stars with

K 2GM

r-4 2’
3

R< (42)
where K is a constant. Chandrasekhar and Tooper (1964) applied this result for
degenerate configurations near the limiting mass. Since the electrons in these highly
relativistic configurations have velocities close to that of light, the effective value
of I" will be close to 4/3. Thus the post-Newtonian instability will set in for a mass
slightly less than the limiting mass because the modified stability criterion requires

4 2GM
I > §+K R

The radius of the configuration when this global instability sets in will be ~ 5 x
100 Rg where Rg = 2GM/c.

(43)

6. Epilogue

The burst of neutrinos from the 1987a supernova in the Large Magellanic Cloud,
the discovery of pulsars in the Crab Nebula and other supernova remnants, and
the fact that the measured masses of neutron stars are almost equal to 1.4M, are
spectacular confirmations of the remarkable predictions made by Chandrasekhar in
the 1930s.

Will all massive stars find peace as neutron stars? Since there is a maximum
mass for neutron stars (in analogy with the Chandrasekhar mass limit for white
dwarfs) the answer must be ‘no’. Thus in sufficiently massive stars “an appeal to the
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Fermi-Dirac statistics to avoid the central singularity cannot be made”. Eddington
clearly recognized the significance of this result. He thus stated (Eddington 1935):

“The star apparently has to go on radiating and radiating and contracting
and contracting until, I suppose, it gets down to a few kilometres radius
when gravity becomes strong enough to hold the radiation and the star
can at last find peace.”.

But he denied the existence of an upper limit to mass of completely degenerate
configurations (white dwarfs and neutron stars), and consequently rejected the
above possibility. In a paper published in 1939 Oppenheimer and Snyder were
unequivocal about the fate of sufficiently massive stars:

“When all thermonuclear sources of energy are exhausted a sufficiently
heavy star will collapse. This contraction will continue indefinitely till
the radius of the star approaches asymptotically its gravitational radius.
Light from the surface of the star will be progressively reddened and
can escape over a progressively narrower range of angles till eventually
the star tends to close itself off from any communication with a distant
observer. Only its gravitational field persists.”

In modern terminology, it will become a black hole.

Chandrasekhar began his research with a detailed study of white dwarfs. The
results he obtained in the 1930s are at the base of much of relativistic astrophysics.
In particular, his study led inescapably to the conclusion that sufficiently massive
stars will ultimately find peace as black holes. He returned to this subject in 1964,
and devoted the next thirty years to a detailed study of black holes and singularities.

Chandrasekhar credited Eddington with the founding of modern theoretical
astrophysics, and creating the discipline of the structure, the constitution, and the
evolution of the stars. The second half of this century will be remembered as the
golden age of relativistic astrophysics. This is the era of Neutron Stars and Black
Holes. Chandrasekhar said the first words on these, and went on to erect major
pillars on which the superstructure of contemporary astrophysics rests.
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