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General background

The phase of a wave, treated as a physical variable, has
properties that have always intrigued physicists,
particularly so in quantum mechanics. A common situa-
tion where the phase appears as an important variable
arises in eigenfunction problems both in classical and
quantum physics where the phase being equal to an
integral multiple of 2n provides the eigenmode
condition. For the past decade or so, physicists have
been excited about situations where the total phase
change in a process contains a piece which is not
intuitively very obvious. This is the piece that has come
to be known by the name ‘geometric phase’ or more
popularly as the ‘Berry’s phase’.

The roots of this concept go back to a piece of work
by S. Pancharatnam on interference of polarized light
propagating through birefringent crystals' during the
course of which he arrived at two extremely important
results. The first of these has to do with the question:
How does one define a phase difference between two
light waves which are in different polarization states?
Pancharatnam concluded that the most reasonable
definition would be phase of the complex number
{y2| y1), where |y;) and |y») stand for the two-
component complex vectors defining the two
polarization states. With this definition, the two waves
are in phase when the intensity resulting from their
superposition is maximum and it represents the quantity
naturally measured as the phase difference in an
interference experiment. The second important result of
Pancharatnam had to do with the anholonomy or the
nonintegrable nature of the phase associated with a light
wave when it is cycled through a circuit in the
polarization space, namely the Poincaré sphere (PS).
The latter is a very powerful geometrical representation
for any two-state system and was used extensively by
Pancharatnam in his studies'. In the context of light
polarization, this has been reviewed by Ramachandran
and Ramaseshan®. Pancharatnam’s second result can be
stated as: if a beam of light is taken along a closed
circuit on the PS formed by joining » points on the PS
by means of geodesic arcs, the beam acquires an extra
phase equal to half the solid angle subtended by the
closed circuit on the PS at the centre of the sphere. Both
these insights of Pancharatnam went totally unnoticed
both at home and abroad. See for example ref. 3, a paper
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dealing with the same issues and written from the same
institute!

One way to see the counterintuitive nature of the
geometric phase is to ask the following, somewhat
intriguing sounding question: ‘Can one rotate a pencil
about itself without ever rotating it about itself?” A less
intriguing way of asking the same question would be
‘Can one, with the help of a sequence of rotations
applied to the pencil, none of which have a component
of rotation along the axis defined by the instantaneous
direction of the pencil (considered as a vector in space),
bring the pencil back to its original direction in space,
but rotated about itself (Figure 1 a)?, The answer is yes.
This can be demonstrated with the help of a simple
gadget shown in Figure 1 5. The successive segments of
the strip represent the successive orientations of the
pencil and transport of the plate along the three bends 1,
2 and 3 represents a sequence of three rotations applied
to the pencil. Notice that the structure of the strip and
the slit ensures that at each bend, the transport is
equivalent to a rotation about an axis perpendicular to
the plane defined by the two segments that meet at the
bend. Such a transport is called ‘Fermi-Walker
transport’. With this transport, the constraint that the
pencil never rotates about itself is satisfied. It is easy to
see that at the end of the transport through the three
bends, the plate rotates about its normal, i.e. about the
original direction of the pencil represented by the
segments A and A’ through 90°.

To see the result as a geometric phase, let us represent
the instantaneous direction of the pencil (i.e. the
instantaneous direction of the tangent vector to the
spacecurve formed by squashing the width of the strip to
zero) by a point on the sphere of directions in space as
shown in Figure 1 ¢. The transport is then represented by
the three geodesic arcs 1, 2 and 3; the arcs being
geodesic as a result of the constraint of Fermi—Walker
transport. Under these conditions, the net angle of
rotation of the plate P is given by the solid angle
subtended by the area ABCA at the centre of the sphere.
If one now replaces the ‘rotations’ in the above
illustrations with unitary transformations and the state
space with the projective Hilbert space of quantum
mechanics, one gets the equivalent formulation of the
geometric phase in quantum mechanics, since the
‘rotation’ of a state about itself is equivalent to its
multiplication by’a phase factor.
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Figure 1. g, The initial and the final states of the pencil: b, “The
Fermi-Walker transporter’, a gadget to demonstrate the geometric
‘phase’ acquired through Fermi~-Walker transport; ¢, The “sphere of
directions’. The tangent to the space curve in Figure 14 at each
point is represented by a point on the sphere. Transport around a
bend is represented by a geodesic arc when the Fermi-Walker
constraint is satisfied.

The above demonstration yields yet another useful
insight. In general relativity, the Fermi-Walker
transported frame of reference is often called the ‘non-
rotating frame’*. The present demonstration shows that
this frame (the plate P) in fact rotates. It is also worth
pointing out that in the geometric phase literature
‘Fermi—Walker transport’ is almost always referred to as
‘parallel transport’, a practice also followed in the rest
of this article.

This memorial issue on Pancharatnam would perhaps
be nonexistent if it were not for an extremely insightful
piece of work by Michael Berry’ nearly a decade ago in
which he discovered a similar anholonomy of phase in
quantum adiabatic evolution. Pancharatnam’s work was
then recalled by Ramaseshan and Nityananda® and by
Berry’ who identified the Pancharatnam phase with the
phase in adiabatic evolution found by Berry Soon after
Berry’s paper, Aharonov and Anandan® showed that a
geometric phase is associated with any cyclic quantum
evolution, not necessarily satisfying the adiabatic
constraint. From this it follows, and is particularly easy
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to see in the case of a two-state system, that the
adiabatic phase found by Berry and the phase found by
Pancharatnam are, in a sense, the two opposite limits- of
the nonadiabatic geometric phase defined by Aharonov
and Anandan®. Berry’s geometric phase is associated
with a large dynamical phase, while Pancharatnam’s
geometric phase has zero dynamical phase associated
with it since the situation considered by Pancharatnam
naturally results in pure parallel transport (geodesic
evolution) on the PS.

The relevance of Pancharatnam’s two observations to
an arbitrary quantum evolution, which could also be
noncyclic and nonumtary was shown in a paper by
Samuel and Bhandari’. A counterpart of Berry’ s phase
in classical dynamics was found by Hannay An
instructive way of deriving the classical ‘Hannay angle’
from Berry’s phase via the coherent states of a uantum
system was shown by Ghosh and Dutta Roy'!. This
proof provides the basic ingredients for understanding
the nonadiabatic geometric phase seen in classical optics
experiments.

Berry’s paper was followed by an intense activity in
experiments to demonstrate the existence of the geo-
metric phase. The ear]y experiments, e.g. the experiment
of Bitter and Dubbers'? with neutrons, tried to reproduce
the adiabatic situation. However, as pointed out recently
by Wagh and Rakhecha'?, going to the adiabatic limit to
see the geometric phase is counter-productive. It is like
deliberately adding a large noise in the experiment
(dynamical phase) to mask the small effect one is after,
namely the geometric phase. Moreover, these experi-
ments measure the rotation of the neutron polarization
caused by the equal and opposite phases acquired by the
two orthogonal eigenstates of hamiltonian and not the
phase acquired by the neutron waves directly. The first
optics experiment of Tomita and Chiao'® which mea-
sured the geometric phase, again as an angle of rotation
of the linear polarization of a light wave traversing a
coiled optical fibre, had the beautiful feature that the
absence of the dynamical phase accompanying the
evolution of the polarization (geodesic evolution on the
sphere of directions) was ensured by the natural law of
propagation of light along single mode optical fibres,
namely that of Fermi—Walker transport. As often
happens in science, precisely such a rotation of the
plane of polarization of a light ray travelling along a
curved path in an mhomogeneous medium had been
predicted earlier by Vladxmursky using essentially the
idea of parallel transport.

The first experiment that directly demonstrated a geo-
metric phase (as opposed to a rotation) in an inter-
ferometric experiment was reported by Bhandari and
Samuel'®. This was in fact the phase predicted by
Pancharatnam. This was followed by a number of
experiments by different groups' ™19 to observe various
aspects of the geometric phase in polarization transfor-
mations. A useful byproduct of these experiments where
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mirror reflections were involved in an essential way,
was a method for analysis of mixed propagation of light
beams in polarization and direction®.

The instrument used in our experiments was a Hewlett
Packard laser interferometer system, a custom built
instrument designed for accurate measurement of large
lengths in terms of wavelength of light. This system,
used at RRI for the fabrication of a radiotelescope
antenna, was adapted for situations where the phase
shifts between the two beams of the interferometer is
caused by a sequence of polarization transformations in
one or both beams resulting from their passage through
polarization transforming elements like quarterwave
plates (QWPs), halfwave plates (HWPs), polarizers, etc.
The main advantage of this instrument is the quick and
accurate measurement of fringe shifts made possible by
a heterodyne technique that transfers the optical phase
shift on to a microwave which is then measured, along
with its sign, to an accuracy of A/20, recorded by an on-
line desktop calculator and plotted by an on-line plotter.
These features not only made possible the measurement
of several curious and counterintuitive features of such
phase changes but also helped focus on features of
the phase change which are normally missed when
interference effects are studied by means of a fringe
pattern which looks identical after a shift of 2m. An
important feature introduced in the modified inter-
ferometer in the later experiments is the absence of the
polarizer that brings both interfering beams to the same
state of polarization before superposition.

The unbounded geometric phase

The first curious feature of spinor phases was revealed
in an experiment in which the phase change between
two beams of the interferometer was monitored as a
function of the rotation angle of an HWP sand-
wiched between two fixed, identically oriented QWPs,
the incident light being linearly polarized at 45° to
the fast axis of the QWPsz‘. The result of this
measurement is shown in Figure 2. The interesting
feature is the fact that the phase shift does not come to
zero after a full rotation of the HWP but continues
to increase linearly. Such a behaviour of the phase shift
as a function of pure rotation of an optical element
cannot be reproduced by the usual kind of optical phase
shifts that do not distinguish between the two polari-
zations.

The other interesting feature of such phase changes is
that the average slope of the phase curve like the one in
Figure 2 can only take discrete values. This has to do
with the fact that the net phase change resulting from a
rotation through 2»am must be equal to an integral
muitiple of 2r. This is a signature of the topological
nature of the phases.
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Figure 2, Observed variation of the phase of the measurement beam
as a function of the angle of rotation of the HWP in a single,
unbroken phase measurement. Theoretically predicted curves are the
straight lines LM and MN. The first half of the curve represents
rotation of the HWP in one sense and the second half, a rotation in
the opposite sense.

Phase jumps

The fact that phase changes arising from spinor
transformations can show a highly nonlinear and
discontinuous behaviour was discovered? by asking the
following simple qucstion”: ‘What is the observed
phase change resulting from rotation of a fullwave plate
through 90° in front of x-polarized light starting with its
fast axis being aligned with the x-direction and ending
with its being aligned with the y-direction, the reference
beam being in the x-polarized state?” The nearly
universal first answer to this question is 2n. The true
answer, however, is very different. The expected phase
change in such an experiment can be computed using
Pancharatnam’s criterion for the phase difference
between two different polarization states. Figure 3
shows the computed phase change resulting from
rotation of a waveplate with retardation 6. One sees that
the phase change becomes highly nonlinear and
discontinuous in the region near § = &, changing sign at
& = n. For a fullwave plate, the expected phase change is
zero. For a multi-order waveplate whose retardation is
several times 2w, one should not therefore expect to see
a large phase change. It was shown in ref. 22 that the
origin of these effects lies in the geometric phase which
dominates the phase change near the singularity.

An experimental observation of a phase jump of this
type in an interference experiment was reported by
Schmitzer et al?. Independently, the present author
reported an observation of such phase jumps, along with
the change in the sign of the phase shift and an explicit
demonstration of. the associated singularity, thus
demonstrating the full complexity of the geometric
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Figure 3. The computed variation of the phase difference between
the two beams as a function of the angle of rotation of the &-plate for
a few values of the retardation & For § =0° and & = 360°, the phase
change is zero for all § and is not shown. Note the flip in the sign of
the phase curve in going from §=179.99° to & = 180.01°.
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phase in a two-state systemzs. Figure 4 shows the

computed (solid line) and the observed (dots) phase
shifts in this experiment.

Singularities

There are several branches of physics in which one
encounters singular structures. Black holes, strings,
etc. are examples in astrophysics. Defects like point
defects, line defects and domain walls constitute
examples in condensed matter physics and are
extensively studied in liquid crystal physics?. Closer to
the subject of this paper, singular structures have been
studied both theoretically and experimentally in the
polarization structure of electromagnetic waves by
Hajnal”.

The phase jumps described in the previous section
also imply the existence of singularities in the parameter
space describing the interference experiment which
occur whenever the modulus of the complex amplitude
whose phase is being measured goes through zero. The
experiments described above provide a very simple and
convenient arena for the experimental realization of
such singularities through a direct phase measurement.
In addition, the isomorphism between the light
polarization and the two-state quantum system make it
possible to carry the results of such experiments over to
quantum mechanics trivially. A typical experiment of
this kind consists of a configuration of QWPs and
HWPs in one or both arms of an interferometer, the
orientation angles of which constitute the parameter
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Figure 4. The computed (solid line) and the experimentally observed (dots) phase shifts in an interference experiment as a function of the
rotation angle 7 of a linear polarizer for different values of a parameter 6 that represents the orientation of a QWP. Both interfering beams in
this experiment traverse the same path in space, eliminating practically all important sources of error.
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space. Two angles are chosen as a parameter space in
the experiments reported in ref. 28. The singularities are
identified by the condition that the two interfering states
become orthogonal at which point the phase difference
between the waves must become indeterminate. It is
found that the measured phase change equals 2 times
the algebraic sum of the strength of the singularities if
one follows the phase change continuously along a
closed circuit encircling one or more such singularities
in the parameter space by means of a sequence of
rotations applied the waveplates. A similar, neighbour-
ing circuit not encircling a singularity is found to yield a
zero phase change.

4r Spinor symmetry

It is a well-known property of odd half integer spin
particles that a rotation about an axis in space through
an integral number of 2r applied to such a particle
results in a change in the sign of its wavefunction,
implying a phase change equal to an odd multiple of w.
In particular, for a spin-1/2 particle, one expects a phase
change equal in magnitude to m. Such effects have been
experimentally demonstrated in neutron interferometer
experiments of Rauch er al.?”’ and Werner et al.*°. These
experiments, conducted with unpolarized neutrons,
establish the & phase shift up to a sign.

It is also well known®' that the quantum mechanics of
any two-state system, hence that of the two-state system
of polarization of light is isomorphic to that of the spin-
1/2 system. It follows therefore that the analogue of the
47 spinor symmetry of the spin-1/2 particles must exist
for the light polarization system. Such an analogue was
pointed by Byrne®? who suggested an experiment to
observe such a phase shift in an interferometer where
one rotates the polarization state of a light wave on the
PS through 2% by passing it through a fullwave plate and
placing a compensating waveplate with zero retardation
in the other arm of the interferometer. While possible in
principle, such an experiment has the practical difficulty
of isolating the resulting phase shift from a possible
error in the compensation which could result from a
variety of sources. Recently, such an analogue of 4n
spinor symmetry in the polarization system has been
experimentally demonstrated by us in a series of
experiments in which the rotation of the state on the PS
can be accomplished about an arbitrarily chosen axis on
the PS by means of rotation of a HWP in a suitably
chosen combination of QWPs and HWPs®®. The
computation of the phase change of an arbitrary spin-1/2
state as a function of rotation on the state sphere using
the Pancharatnam’s criterion, using a fixed reference
state adds another dimension to the problem. One sees
that if one chooses the unrotated state as the reference
state, while the net phase change for a 2= rotation on the
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PS always equals T in magnitude, the phase change is
highly nonlinear when the rotating state lies near the
equator and changes sign as it crosses the equator. This
flip of sign was demonstrated experimentally in ref. 34.
More recently, using the technique described in ref. 25,
the nonlinear behaviour of the phase change near the
equator was also mapped accurately and was found to
agree with the calculated curves®. It is hoped that these
new effects will soon be seen in neutron experiments
sensitive to the sign of the phase shift.

Spinor phase with unpolarized light

The result of a spinor phase experiment with unpola-
rized neutrons or with unpolarized light may be looked
upon as a superposition of two experiments with ortho-
gonal spin or polarization states. Since the two states get
phase shifts of the opposite sign under rotation, the
resulting variation of intensity in an experiment can be
looked upon as a superposition of two fringe patterns
moving in the opposite directions. When the maxima of
the two coincide, one sees a pattern with high contrast
and when the maximum of one coincides with the
minimum of the other, one sees a low contrast. This
effect was verified by Jayadev Rajagopal in an optics
experiment®® using a simple interferometer set-up
suggested by Hariharan and Narayana Rao*”. When right
circularly polarized light was used, we saw a fringe
pattern moving towards one side as a function of rotat-
ion of an HWP and when left circularly polarized light was
used the fringe pattern was seen to move in the opposite
direction for the same sense of rotation of the HWP. For
unpolarized light a stationary fringe pattern with the
fringe contrast modulated as a function of the rotation of
the HWP with the expected frequency was seen.

Non-dispersivity of spinor phases

In a medium whose refractive index is independent of
wavelength, the phase shifts introduced are inversely
proportional to the wavelength. The spinor phases,
which are of topological origin, are independent of
wavelength. For example, the phase change to be
expected for a full rotation of a waveplate in any
experiment is equal to 2n1 and this does not change with
a small change in the wavelength of the radiation. This
property has received attention recently in connection
with neutron interferometer experiments of Badurek
et al.® where it is shown that the fringe contrast is
unaffected even for very large phase shifts equal to
several times 2n. The phase shifts observed in the optics
spinor experiments also share this property in that
practically unlimited magnitude of phase shift can be
seen without loss, of fringe contrast as a function of
rotation of a waveplate.
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Figure 5. A new version of Einstein’s gedanken experiment.
Photons from a monochromatic source pass through a circular
polarizer C and then have a choice of two classical paths to the
screen, i.e. via H;~S or H; - S, where H;, H; are HWPs and S;, Sy
are slits. D;, Dy are angular momentum detectors that can detect any
angular momentum transfer to a HWP by a passing circularly
polarized photon.

The geometric phase in quantum measurement

The potential of the geometric phase to provide new
insights into fundamental problems in physics is
nowhere more obvious than in the following example
where it turns out that the presence of a geometric phase
can be deduced purely from requirements of consistency
of quantum mechanics and from the validity of the
uncertainty principle. Consider the recently proposed
version®® of the famous two-slit gedanken experiment
originally debated by Einstein and Bohr*® where one
seeks to determine the path of the particle, a circularly
polarized photon in this case, by detecting the angular
momentum 2/ imparted by the photon to an HWP
placed in front of each of the slits (Figure 5). Such
angular momentum transfers have in fact been measured
experimentally long ago®'. Following Bohr’s argument,
an unambiguous detection of such an angular momentum
transfer would require that the HWP be prepared in
nearly an angular momentum eigenstate. The angular
momentum—angular position uncertainty relation would
then require that the angular orientation of the HWP be
completely uncertain. The question that arises is, why
should that destroy the interference pattern? Where does
the required random phase come from? The answer is,
the angular orientation of the HWP is associated with a
geometric phase which is precisely of the kind predicted
by Pancharatnam and demonstrated in the experiments
described earlier in this article.- A random orientation of
the two HWPs therefore implies a random phase dif-
ference between the two interfering paths of the photon
and leads to the destruction of the interference pattern.
The geometric phase can thus be deduced from the
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requirement that an unambiguous determination of the
path of the particle in a two-slit experiment must result
in the destruction of the interference pattern. Let us
recall that this principle has been used earlier by Furry
and Ramsey42 to show that the Aharonov—Bohm phase,
i.e. the phase picked up by a charged particle in
going around a closed path that encloses a magnetic
flux, can be deduced from similar gedanken experi-
ments.

New theoretical insights

I shall next make a brief mention of some interesting
theoretical insights obtained during the course of the
geometric phase studies.

Decomposition of mixed evolution of light beams

The interpretation of several geometric phase experi-
ments in optics became simple when it was shown that
when a light beam propagates along an optical circuit
such that it undergoes changes in its direction of
propagation as well as in its polarization state, the
mixed evolution can be decomposed into two separate,
successive evolutions, one in the polarization space,
followed by an evolution in the space of directions in
real space2 . This simplifies the analysis of polarization
behaviour of optical circuits, some examples of which
are discussed in ref. 20. The Fermi—-Walker transporter
shown in Figure 1 a played an essential part in arriving
at this decomposition scheme.

A method for decomposition of rotations

Another interesting question dealt with in a series of
papers starting with a paper by Simon et al.*® and ending
with ref. 33 was that of the synthesis of gadgets capable
of making an arbitrary SU(2) transformation on a
polarized light wave by means of sequences of QWPs
and HWPs which are easily available optical elements.
A convenient and practical sequence for doing this was
reported in ref. 33. The method of analysis“ used in this
paper offers a new approach to problems in which an
element of the rotation group needs to be decomposed
into a product of elements of a given type. For example,
Pancharatnam’s elegant result® that the sequence QHQ
acts as a variable linear retarder with retardation propor-
tional to the orientation angle of H with respect to
the Q’s, becomes extremely transparent with this
method®. In a sense, the geometric phase is used as a
tool in this method. Another example of such
problems is the turning of cats in free fall or ‘zero
angular momentum turns’. A simple explanation for
such effects using the above method was proposed in
ref. 46.
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Cyclic state spaces

An attempt to simulate on the polarization system time
varying magnetic fields acting on spin-1/2 particles led
to a very interesting condition on the parameters of a
rotating magnetic field under which all states undergo
cyclic evolution®”. This is the condition under which the
unitary time evolution operator governing the evolution
becomes equal to 1 and this happens when the Larmor
frequency in a frame corotating with the magnetic field
becomes equal to an integer times the frequency of
rotation of the field.

Eigensolutions of SU(2) matrices

A detailed study of the eigensolutions of the SU(2)
matrix corresponding to a QHQ retarder first studied by
Pancharatnam® reveals some very interesting features
involving discontinuous jumps in the location of the
principal axis of the resultant linear retarder and in the
slope of the eigenvalue vs parameter curves at critical
values of the parameters“. At these values, the matrix
becomes ‘degenerate’, the condition for which is the
same as the condition for the occurrence of cyclic state
spaces mentioned earlier.

Concluding remarks

To summarize, while it was adequately emphasized by
Berry that the phase is non-integrable, the studies
described above bring out the additional fact that phase
changes of 2nm are real, physical and measurable, some-
thing that is often ignored. For example, our experi-
ments make it obvious that the difference between +m
and — = or the difference between n and 3w is measur-
able and that it is unnatural to restrict the value of the
phase that is being continuously monitored to lie between 0
and 2n. The need to incorporate this unbounded nature of
the phase in theoretical treatments of the phase variable
presents a promising programme for the future.
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