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A SIMPLE THEORY OF THERMAL EFFECTS IN IONIC CRYSTALS

RAMESH NARAYAN anD S. RAMASESHAN
Raman Research Institute, Bangalore 560 080, India

ABSTRACT
An equation of state is obtained for ionic crystals based on the Born theory by assuming
that the thermal motions of ions are uncorrelated and that the mean vibration energy of each ion
is kT. The important feature of the theory is that the ° thermal pressure * term is written entirely

in terms of the interaction potentials.

of state which require a knowledge of the experimental coefficient of thermal expansion,

This is an advance over current Born theory equations

The

calculatcd volume thermal expansivities of the alkali halides at room temperature and atmospheric

pressure are in good agreement with experiment (r.m.s. error 12-5%).

* For many purposes, the

present theory appears to be an adequate approximation for ionic crystals at finite temperatures.

lN the Born theory of ionic crystals'>?, the free energy
per molecule of a crystal in the NaCl, CsClor ZnS
structures at 0°K is written as
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where r is the nearest neighbour distance, ae?/r is the
electrostatic interaction, C and D are the van der
Waals dipole-dipole and dipole-quadrupole coeffi-
cients, W, (r) is the repulsion energy, P is the pressure
and xr® is the volume per molecule, The repulsion
energy is usually written in the form?

rep
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where n, and n, are the numbers of first and
second neighbours around an ion and R (=2br) is
the distance between second neighbours, A, _, h, ..
and j._ are parametrised functions modelled diffe-
rently in various approaches**, The -equilibrium
condition is given by
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where the primes denote derivatives with respect to r.

The Béfn theory is quite adequate to describe a
number of static properties of ionic crystals and has
many successes to its credit?®,
is that calculations are relatively easy, making it both
convenient and practical, Moreover, the present
authors have developed in the recent past a formula-
tion of the Born theory*'¢ which enables one to make
predictions on the crystal properties of new com-

] .attempts to do this.
Its chief advantage -

pounds or new phases of existing compounds.
Unfortunately, none of the versions of the Born theory
developed so far can be used to compute thermul
expansion coefficients or other related properties.

There are rigorous theories available to describe
the anharmonic properties of crystals’!, The calcula-
tions are however quite formidable and therefore not
in the spirit of the Born theory, The usual approach
is through the spectrum of lattice vibrations calculated
by means of harmonic crystal dynamics. To calcu-
late thermal expansion and other anharmonic proper-
ties, one either makes the quasi-harmonic approxi-
mation and calculates the variation of lattica
frequencies with volume or carries through the full
anharmonic theory, Neither approach lends itself
to quick calculations,

Currently, Born theory calculations at finite tempe-
ratures are carried out by means of hybrid equations
of state? such as those of Hildebrand!'® or Mie and
Griineisen!®, In these approaches, the thermal effects.
are taken into account through a * thermal pressure ™
term which is written in terms of the experimental
coefficients of thermal expansion. Such schemes
which develop a theoretical description of a crystal
only after experimental data are available are highly
unsatisfactory. In principle, once the various crystal
interactions are given, all crystal properties including.
the anharmonic thermal effects are implicitly des~
cribed by them. One should therefore be able to
calcufate the * thermal pressure” term directly in
terms of the interaction potentials. In this paper
We prasent an extension of the Born theory whieh
To make the theory as simple
as possible, we make certain approximations which
are discussed below. At first sight these may appear
to be rather drastic. A closer investigation however
shows that the theory is physically quite well founded.
This will be discussed in a later paper by Nityananda.
and Narayan's,



In the present theory, we make the following simpli-
fying approximations:

(@) We. assume that the thermal motions of ions
are totally uncorrelated. As we show below, this is
equivalent to assuming that the ions vibrate in inde-
pendent potential wells, Thus, in effect, we are
replacing the complicated lattice spectrum by just
two frequencies—one for each type of ion. In a later
paper't, an alternative simple theory is developed
which seeks to include correlations also in an approxi-
mate way.

(b) The energy per mode of vibration is taken to be
'kT. We are thus working in the classical high
temperature regime and also limiting ourselves to the
quasiharmonic approximation. One could extend the
theory to low temperatures in the quantum regime
by developing an Einstein-like theory's for the two
oscillators, This would be adequate at all except
very low temperatures.

We begin by determining the average potential
energy required to displace say a cation by a small
amount (x,, vy, z4). Taylor expansion of the
various interactions retaining terms upto the second
order shows that in general this dzpends on the dis-
placéments of the other ions also. However, because
of the present approximation that ths motions of ions
are uncorrelated, all the cross-terms drop out on
averaging and we can write the average potential
energy of a displaced cation in the form
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where we have neglected the van der Waals inter-
.actions. The Coulomb term vanishes because v 2(1/r)
is identically equal to zero. Thus, in the present
.approximation, we see that the ion moves in a poten-
tial well whose shane is independent of ths displace-
ments of ths other ions. The spherically symmetric
nature of the well is a consejuence of the high symmetry
.of the structures which we are considering. By (4),
.all cations vibrate with a single frequsncy v,. So
too the anions have one frequsney v_ Thus, ‘the
-present theory, models - the full lamce spectrum . by
‘means of Just two frequencleg G T e

From (4) equatmg tn. mean potentlal Ienergy for

A similar expression can be written for the mean
square displacements of the anions,

To obtain the equilibrium condition in the pre-
sence of thermal vibrations, we begin by rewriting
the static equilibrium condition (3) in the following
form
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The terms dh.._(r)/dr,dh, ,(R)/dR, etc., can be inter-
preted as repulsive forces dirccted along the correspond-
ing bonds and equation (7) gives the condition for the
overall equilibrium. of all the forces of interaction.
At finite temperatures, the various bond lengths
fluctuate because of thermal vibrations of the ions.
Thus, the repulsive force along a bond also fluctuates
and this leads to an additional * rectified” compo-
nent in the average repulsion per bond, proportional
to the mean square fluctuation of the bond length.
Including this effect, the equilibrium condition at

finite temperatures becomes
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Equation (8) is an equation of state for simple ionic
crystals,. The extra ternis over those in (7) are the
contributions from *thermal pressure”. As in the
0° K case, (8) requires solving only one transcendental
equation.

Using equation (8) we have calculated the volume
thermal expansivities f of the alkali halides at room
temperature and atmospheric pressure. For k. _(r),
h:(R) and A__(R), we have employed our com-
pressible ion potentials®»**. "The rms error in the
‘calcilated values of g (Table I) is, only 12-5%. A
‘mobre detailed mvestlgatlon“ seems . 0" -suggest that
:most of the errors arise: from the use of madequate

' P

* HOWever 1t sho.lld be noted that the tb eoxy deve—
- loped here can te used wuh any version -of the Bom
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TABLE I

Experimental and theoretical thermal expansivities B (in 10~* per ° K) of the alkali halides

Crystal Bexo Beato Error (%) Crystal Besn Beate Error (%)
LiF 0-92 0-90 - 18 KBr 1-10 1-24 12-3
LiCl 1-22 1-15 — 6-1 KI 1-25 1-33 61
LiBr 1-40 1-25 —10-7 RbF 0-95 1-06 11-6
Lil 1-67 1-44 —13-8 RbCl 0-99 1-21 23-2
NaF 0-98 1-01 2-7 RbBr 1-04 1-28 23-1
"NacCl 1-10 1-15 4-8 Rbl 1-19 1-28 7-8
NaBr 1-19 1-18 - 0-8 CsF 0:95 0-98 31
‘Nal 1-35 1-35 0-1 CsCl 1-37 1-18 —13-5
KF 1-00 1- 10 10-2 CsBr 1-39 1-19 —14-4
KCl 1-01 1-22 20-6 Csl 1-46 1-18 —19-4

r.m.s. error = 12- 5%,

interaction potentials rather than from oversimpli-
fications in the theoretical model. We therefore
believe that the present theory is adequate for many
purposes.

There are many situations where one would like to
have estimates of the properties of real or hypothetical
crystals without having to do the experiments. The
present theory could be used to calculate approxi-
mate thermal expansion coefficients of cubic ionic
crystals within an r.m.s. error of about 15%,. However,
although we have discussed only thermal expansion
in this paper, the theory has a wider applicability.
We have in (8) an equation of state for simple
ionic crystals. This has already been of use in a
theory’® which we have developed to explain the
electronic transitions in the samarium chalcogenides.
Moreover, we can write an approximate free energy
for the crystal at finite temperatures in terms of the
Einstein oscillators of frequencies v, and v_. This
‘would be of use in calculating specific heats and also
in studying phase boundaries at finite temperatures.

-The authors thank Dr. R. Nityananda for many
useful discussions.
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