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Steady low shear rate cholesteric flow normal to the helical axis
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Abstract. Steady cholesteric flow at low shear rate normal to the helical axis is
studied analytically for shear flow and plane Poiseuille flow on the basis of Leslie’s
continuum theory. For general asymmetric solutions the angle made by the director
at the sample centre with the primary flow is found to profoundly affect the oscilla-
tions of the apparent viscosity with pitch for pitches of the order of the sample thick-
ness. The velocity and orientation profiles are also found to change drastically.
These considerations may be important in flow experiments on long pitch cholesterics.
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1. Introduction

The steady shear flow of cholesterics normal to the helical axis was first studied by
Leslie (1969) on the basis of the continuum theory (Leslie 1968). He derived
the differential equations for homogeneous deformations and showed that the ap-
parent viscosity 7 is a function of gap width and shear rate. These theoretical pre-
dictions were found to be in qualitative agreement with the experiment of Candau
et al (1973) on Poiseuille flow of a twisted nematic. Leslie’s equations were solved
(Kini 1977, 1979a, b) analytically at low shear rates and numerically at general
shear rates. At low shear rates 7 is independent of shear rate but depends on pitch
and sample thickness, exhibiting oscillations with pitch variation. This has been
verified qualitatively by Bhattacharya er al (1978) in their flat capillary shear experi-
ments on a compensated cholesteric mixture.

In the absence of decisive experimental observations two types of boundary condi-
tions have been proposed for the cholesteric twist angle ¢. According to the one
proposed by Leslie (1969) the pitch is fixed at the boundaries and the director can
slip (BC1). But in flows involving twisted nematics it may be more meaningful to
fix ¢ at suitable values at the boundaries (Kini 1979a). This is the second type of
boundary condition (BC2). Both the boundary conditions are found to yield identi-
‘cal results at low shear rates. In the earlier paper (Kini 1979a) a simple subset of
solutions for which ¢ is antisymmetric (with reference to the sample centre) was
_treated. The antisymmetry of ¢ can be ensured provided that the director can be
firmly anchored at the boundaries at suitable angles (BC2). On the other hand if
the material obeys BC1, ¢ need not be antisymmetric; it can be asymmetric with a
non-zero value ¢, at the centre of the sample.

In the present paper the Leslie equations have been analyticaly solved at low
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shear rates for simple shear flow and plane Poiseuille flow of cholesterics for asym-
metric boundary conditions of ¢ ignoring thermo-mechanical coupling. The oscilla-
tions of 4 with pitch are found to be profoundly affected by ¢, for pitches of the order
of the sample thickness. Complexities that can arise in the theoretical treatment of
plane Poiseuille flow are described. The relevance of this study to flow experiments
involving long pitch cholesterics is discussed.

2. Shear flow

The cholesteric of pitch P is assumed to be sheared between a pair of parallel infinite
plates z = 4 h/2, with the plate z = + h/2 moving with respect to the other with
a constant velocity ¥ along x. The cholesteric helical axis is assumed to be along z
before flow is induced. Following Leslie (1969) solutions are sought for the director
and velocity fields in the form

n, = cos 8(z) cos §(z), n, = cos &(z) sin é(z), n, = sin 6(2),

vy = u(2), v, = v(2), v. = 0. )]

On ignoring thermo-mechanical coupling one gets the following differential
equations:

20" + (Odfy/d8 — @Vdfyldd — 4K;SyCot

+ (O + A cos 26) (W Cy + v'Sp) =0, o @
2d” + 20'¢'dfy|d0 + 4K,SyCy8' + (A — M) SyCotf Sy —'CY=0.  (3)
(Hy + Hy) (' Cy + v'Syp) = AaCy + bS), , @)
H'Sy — v'Cy) = 2aSy — bCy, ©)

where 8 = db/dz etc., Sy ==sin 6, C; = cos ¢, f; = Ky C§ + KSp
fo= Cé(KzzCS + Ksass ) AL = Py — M3 Ay = ps — W

Hy=py+(p5—po)S3 Hy=Qpy S§+pst+1e)Ch i being the viscosity coefficients and
K., K, the elastic constants of a cholesteric. The constants a and b are the constant’
shear stresses in the zx and zy planes respectively. The primary shear stress a can
bring into existence the secondary shear stress b under certain conditions as shall
be seen later. The boundary conditions to be imposed are

0(£h/2) = o( £h[2) = u(— h|2) = 0; u(+-h2) =V (6)
For general asymmetric boundary conditions for é one can put as per BCl

(db)dz) (z = £ h2) = g = 2u[P = Kof Kop, )
' Or,

$(z = Fh/2) = +qh/2 + $o : @®
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as per BC2 for general asymmetric boundary conditions. From equations (2)—(5)
it can be shown (Leslie 1969) that if ¢, = O the equations support the mode (Mode 1)
in which ¢ and u—3}u are antisymmetric and 0 and » are symmetric. For low shear
rates both the boundary conditions lead to identical results for this mode (Kini
1979a). In the case of general asymmetric solutions at low shear rates one can
write

¢ = (9z + $o) + $1(2),

where ¢, is assumed to be small. Similarly 6, u, v, a and b are also assumed to be of
first order. Linearising (2)—(5)

Ki18” — Kyq%0 + (A + A (aC + bS)/(H, + Hp) =0, ®
Ky$; =0, (10)
v = [2b(H, + H,C?) — 2aH,SC/[Hy(H, + Hyp)}, (11)
W = [2a(H, + H,S? — 2bSCH,))/[H\(H; + H)], (12)

with Hy = py, Hy = py -+ g, S == sin (qz -+ ¢o), C = cos (g2 + b).

From (10) and (7) or (10) and (8) one finds that ¢; = 0. Thus at low shear rates,
to first order the cholesteric can be assumed to have no change in the twist. From
(11) and (6)

b = aH, sin 24, sin o/[a2H, + H,) + H, cos 24, sin a], (13)

with « =gh.
From (6) and (12)

H,(H, + H,)V =: a[h(2H, + H,) — H cos 28, sin a] b sin 2¢, sin a.
‘ q q
Using (13) the apparent viscosity

_ah _ _ H,(H, + H))
— i —

14 2H, + H, — H, cos 24, sina (H, sin 24, sin a) .
a*(2H, -+ Hy) + aH, cos 24, sin o

(14

Thus 7 is independent of shear rate and handedness of twist but is a function of pitch,
sample thickness, material constants and ¢,. From (13) for a giveng, b=0 if =0
or m/2. For ¢,=0 one gets Mode 1 which was discussed earlier. For ¢o=m/2
‘Mode 2 can exist for which 8, u—}V and ¢ are antisymmetric and v is symmetric.
One can also observe from (13) that for a given ¢, #0, /2, b =0 if sin $ =0 or A=mP/2
where m is integral. Thus when there are integral or half integral number of pitches
in the sample b vanishes. When b is non zero, in order to get mathematically con-
sistent solutions, all quantities have to be assumed to be asymmetric. This is clear
from (11) and (12) where the contributions from stresses a and b are always opposite
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in nature. For simple consideration let us start with an antisymmetric ¢ and as-
sume that stresses a and b are applied. From (11) we find that a contributes an anti-
symmetric part whereas b contributes a symmetric part. Thus if a and b act toge-
ther v/ would be asymmetric even if ¢ were antisymmetric. One can again consider
another simple picture to drive home this point. Consider a cholesteric director
aligned at an angle ¢, to the x axis in the xy plane. If we now apply the stresses a
and b in the yx and zy planes, along any direction, say along the director the con-
tribution of a will be a cos ¢, but that of b, bsin ¢,. Since a and b are perpendicular
to one another, if b also exists then the total effect of a and b will be asymmetric.

From (14) if a— oo (bighly twisted cholesteric) then b— 0 and n—> H, (H,+H,)/
(2H,+ H,) which is independent of ¢,. Thus for a highly twisted cholesteric at low
shear rates there will at best be a weak dependence of n on ¢,. Equivalently a
measurement of % at low shear rates will not yield any information about ¢,. On
the other hand if a« -0 (untwisted cholesteric or nematic) 7—->7(0, ¢,) - (H,+H,
cos? $g)/2. For ¢, =0 and =/2 two of the’Miesowicsz coefficients are recovered. At
this stage it is instructive to study the case a—0 in greater detail. For a0, b—>a H,
sin 2¢,/[(2H,+ H,)+ H, cos 2¢,]. Thus as long as sin 2¢,#0, even in the absence
of a permanent twist a stress b will exist when a stress a is applied in the zx plane.
Equations (11) and (12) now become

v = [2b(H, + H,C?) — 2aH,SC]/[H,(H, + Hy)], 1y
u' = [2a(H, + H,S*) — 2bH,SC]/[H\(H, + H,)]. azy

From (6) and (11)’ v=0. Thus there is no secondary flow in the sample even though
there is a stress b in the yz plane. Using (6) and (12),

V = 2ah/(H, + H,C?,
1s = ah/V = } (Hy + H,C?).

Figure 1 contains plots of some relevant quantities for different values of ¢, with
MBBA parameters [K;, = 6 X 10-7 dynes, K3 =7 X 107 dynes, H, = 0-832 poise,
H, =—0-336 poise] for a sample thickness of 200 um. The effect of ¢, on the ratio
7(e, #9)/ (0, o) is quite striking especially for pitches which are of the order of the
sample thickness. From (14), n(a, ¢) =7(e, ¢o + =) in accordance with the funda-
mental propsrty of a nonpolar director. However 7(a, ¢o) # 7(a, #9 +7/2) in general.
Thus if ¢ is increased beyond =/2 the plot for ¢, will not in general coincide with that
for ¢, + m/2. Still the extrema become higher as ¢, is increased until for ¢o=7
one gets back the plot corresponding to ¢y =0.

For a given ¢, the position of the extrema of 7(a, ¢p) with e can be shown
to satisfy the condition

© (sin @y, — ap 08 ay,) [cos 24y {(H, sin ay,)?

+ ai, (2H, + Hy*} + 20y, @H, + Hy) H, sin ap,] = 0.
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Figure 1. Shear flow (a) 7 (o, 0)/7 (0, #o) vs 8=P/h for go=(1) 0 (2) /8 (3) m/4
(4) 37/8 (5) =/2 radians. (b) v/a vs B=2z/h and (c) 6/a vs B with P=280 um. $o=(1)0
Q) /8 (3) /4 () 3n/8 (5) /2. (@) (u—V/[2)/a vs f with P=280 um and go=(1) 0
(2) #/4 (3) #/2. h=200 pm in all cases.
There are thus two possibiliﬁes:
() tan ap, = a,,, 15

(ii) sin? a,, (HZ cos 24,) + 2ay sin ay {QH, + Hy) Hy)
+ a2 2H, + Hy)* cos 24, = 0. (16)

Equation (15) is independent of ¢, and the material parameters, but the smallest

root other than the trivial root zero is ay, = 4-49. The roots of (16) are restricted

by the fact that

sin a,, (QH, + Hy) (& sin 2¢, — 1) <l a7
H, cos 24,

M

For MBBA parameters only the root
sinay, (H, + Hy) (sin 24, — 1)

; (18)
apr H, cos 24,

can be found, that too in the restricted interval 31° < ¢, < 59°. (For ¢, = m/4 the
function is undefined. But one can take the limit as ¢~>=/4.) In this interval
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of ¢, one can find extrema with « but for a<<4-49. These extrema are quite shallow
as can be seen from figure 2a. Thus in the region of a>>4-49 for all the values of
o> the extrema of n with « are determined by (15) and are independent of ¢,. For
a restricted range of ¢,, (16) can determine shallow extrema in the long pitch region,
The ratio (figure 1a) at the primary extremum varies by as much as 309 as $o
increases from 0 to #/2. However the value of 7 varies by about 10%.

The effect of changing ¢, is seen in the profiles of u, § and ». From (12)

H, (H, + H)) (u—;) =a [(2H1 + Hy)z —f—f—; {sin 24, cos a—sin C}]
bH, ‘
+ 20 [cos { — cos 24, cos a] where { = 2gz + 24,.
q

For ¢9=0 and =/2, w— V/2 is antisymmetri¢, though numerically different
(figure 1d). For other values of ¢, u — V/2 is asymmetric which is c'early a con-
sequence of the symmetric contribution toward u’ arising from b. The profiles of »
and @ are more interesting

n(a,$)/110, ¢,)

n(a, ) /7(0,4,)

H, (H, + H,) v=a2—H§[cosC——cos e
q
B\ | H,,. .
+b[Q H, + Hy (z+§) + 32 in £ —sin 9, (19)
(a) (b)
1
2 —11
10— 3
4
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Figure 2. Plot of n(a, ¢0)/n(0, $s) vs §=P/h; h=200 um (a) shear flow for do=(1)
30 (2) 31 (3) 35 (4) 40 (5) 45 (6) 48 (7) 55 degrees. (b) Plane Poiseuille flow for ¢,=
(1) 35 (2) 40 (3) 45 (4) 50 degrees. _
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=, [cos v sinh w + cosgsinh ¥ — coszé sinh kh]
+ As [sin v sinh w + sin § sinh ¢ — sin gsinh kh], (20)

with Ay, = A afsinh kh, A, = A b/sinh kh, k* = K q%/Kq,
A = — (A + D)/[(H;, + Hy) Ky (kK + q%), € =24 — a,

v=2¢, | a/2, w:kz+kh/2,¢=k7h—kz.

From (19) vis.found to be symmetric for ¢, = 0 and ¢, = /2 (figure 1b) and further
vz, do =0) = — v (2, ¢y = =/2) at all points z. Thus the v profiles for ¢, = 0 and
w/2 are exactly opposite to one another, which is also true for the net secondary
flow. However for any general ¢, v is asymmetric. The net secondary flow per
unit width of the flow cell

hf2
Fs — f vdz — aH,[(2H, + H,)a cos 2¢, + H, sin a][(sin ¢ — a cos a)]
' i 2q*[a(2H, + H,) + H, cos 24, sin a] '

Observe that on reversing the sign of twist, Fg changes sign in the sample.
Fs =0 for any ¢, if sin a = a cos a.

Thus at the extrema given by (15) there will be no net secondary flow. Alternatively
for a given « (or pitch)

Fs = 0if cos 26 ™ — — H, sin o/[(2H, + Hy)a].

¢SM)= 46° for MBBA parameters for P = 280 pm which is the reason why for

¢, = 45°, v is almost antisymmetric. Using (20) the 6 profile is found to be
symmetric for ¢, = 0 (figure lc) corresponding to Mode 1 and antisymmetric for
¢o = m/2 in Mode 2. For intermediate values of ¢, 6 is asymmetric. Figure 5a
is a plot of the ratio b/a as a function of pitch for different values of ¢,. As can
be expected from (13), b exhibits oscillations with pitch similar to those of 7.

The difficulty in solving the shear flow problem at general shear rates for asym-
metric boundary conditions should be quite clear., When Mode 1 or Mode 2 is
treated b =0 and a can be uniquely related to ¥ as follows: Starting with a, equations
(2) and (3) are solved and the 8, ¢ profiles obtained. Now (4) and (5) are solved to
obtain v and u as functions of z, with u(z=h{2)=V¥. On the other hand when we
‘have an asymmetric case, both aand b figure as independent constants in the begin-
ing and determine the 6 and ¢ profiles, using which the u and v profiiles have to be
obtained. An iterative procedure has to be used, keeping a fixed and varying b
till v(4=A4/2) =0 and using a and b to calculate u(+#4/2)=¥. When this is done there
may be more than one set of (a, b) values which give rise to the same ¥ in which
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case b may have to be studied as a function of a and that set of (a, b) values taken
which satisfy some extremum condition. Thus a solution of the shear flow problem
for asymmetric boundary conditions is not a simple task even by numerical means,

3. Plane Poiscuille flow

If flow is taking place under the action of a constant pressure gradient p,, = a, ap-
plied along the x axis, equations (4) and (5) have to be modified to read

[Hy+H,] [u' Cy +v'Sg] = 2[(aCy + bSy) + z(a;Cy + by Sg)], 02}
H[u'Sy — v'Cg) = 2[(aSy — bCy) + z(a,Sp — b, Cy)), 22
where b,=p,, a constant pressure gradient along p. Since a, is the motive force
behind the flow, as in the case of shear flow the other constants like a, b or b, which

result either due to secondary flow or due to lack of symmetry in director orientation
or both, have to be related to a,. The boundary conditions to be imposed are

u( £ hj2) = v( £ h/2) = 6( £ h/2) = 0. (23)

For a unique solution of (21) and (22) in terms of a,, one of the constants a, b or b,
has to be equated to zero, the other two getting determined by (23) in terms of a,.
Thus we have three cases

(i) al’ a’ b; b1=0a
(ii) a,, b, b;; a =0,
(iii) a,, a, by; b =0.

Apart from the difficulty in understanding physically how a pressure gradient p,, = a,
along x can give rise to a pressure gradient p,, = b, along y, one finds that cases (ii)
and (iii) lead to unphysical results for %, making 7 zero and even negative for certain
ranges of pitches and ¢,, a situation that is totally divorced from reality so far as
liquid crystals are concerned. Because of this reason only case (i) is studied which
corresponds to a situation in which the pressure gradient a; along x gives rise to
constant shear stresses in the xz and yz planes. Assuming low shear rates (a,, a,
b are small) and putting

¢ =gz + ¢, + ¢, one gets by linearisation the following set of equations:
K0 — K20 + (0, + Ay [(@C + bS) + a,zC)/(H, + Hy) =0, (24)
Ky$! =0, ' (25)
u = [2(a + a,2) (H, + H,S?) — 2bH,SC] | [H\(H, + Hp), (26)
v = [2b(H, + HyC?) — 2H,SC(a + a,2)] | [Hy(H, + Hp]. @7
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Arguing out as Before ¢ is found to be zero. Using the boundary conditions for u
and v

a— a,hH, sin 2¢, 2H, + H,) (a cos @ — sin a)
2[«*(2H, + H,)* — HZ, sin? a] ’

(28

b= — a,hHy(e cos a—sin &) [a(2H,--H),) cos 2¢,—H, sin a] .

. (29)
2a{a*(2H,+ H,)® — H? sin? a]

The profiles for u, v and 6 are:

Hy(H, + Hyu = a[CH, + H,) ( z 4 f’) + H2 (Gin e—sin 0]
2 2q

+81[(2_Fﬁ_;—112) ( z? —’;) +‘%:(cos e—a sin e—2gz sin {—cos {)].
b

+2q

[cos {— cos €], (30)

H,(H, + Hy)y = 82_1‘:2 [cos { — cos €]

+ a,H, [29z cos { — sin { + a cos & + sin €]
442
h H,, . .
+b ]:(ZH1 +H,) (z + i) + 2_q (sin { —sin €)], 31

0/a, = [(Bzg —B, ) cosg — By sin ;] sinh ¢ [ sinh kA
— [(-Bz—zh + Bl) cos v+By sin v] sinh w/sinh kh

+ (B, + By2) cosg + By sin g , (32)

with A'=—A (k3: -+ 72), B1 =A'a /.[31 (ka + qz)]’
- , b 2q
B, =A'f(k2+¢q?), B, =|2 —__“1__|p.
e A/‘ + 4%, B, [al (k2+q2)]32
To find 4,

hj2

4, = j u(z) dz
h2



472 U D Kini

the volume of fluid flowing per unit width of the sample is calculated whence 7 is
given by

a, B

H, (H, + H,)

124, [(2H1+H2> +

3H, cos 2¢, @ sin a
ad

—a COoS @)

3H, . .
—=2(cos e—asin ) + — sin o

a a, h

) _6H,b
5 a®a, h

6a ( H, sin 24,
41.2

— Ez sin e — (2H, + H,) (cos 24, sin a—a cos s)] .
a

Thus 7 is independent of a, and handedness of twist but is a funtion of a and ¢,
alone. For a— oo (highly twisted cholesterics) a—0, b—>0 and 7—>H; (H, + H,)/
(2H, + H,) the same limit as in shear flow, which is independent of ¢,. Thus for
small pitches the effect of ¢, will not be significant. However for a—0 (untwisted
cholesteric or nematic with the director aligned in the xy plane making an angle
¢y with x) a—>0, b0 and > 1p = H; (H, + H,)/2(H, + H; S*) which is different
from ng. Thus for general values of ¢y, 7 for the two flows will not coincide for
nematics. But for ¢, =0 or =/2, 5 and 5p have the same value. The reason for

this discrepancy appears to be due to the vanishing of both a and b with the twist in
the structure. The driving force (viz., a,) is responsible for both the primary velocity
u=a, (H,+ H, S? (22— h*/4)|[(H, + H,) H,] and the secondary velocity v =a; H,
SC (22 — h?*/4)/[(H, + H,) H,] which are fully decoupled. There will be no secondary
flow, for ¢, =0 or 7/2. Thus the flow situations in the two cases of shear and plane

0-41- /[ \
[\
l/ \\
2 / \
8 / \
< / \
) 12 \
S ] \
03— / \
/ \
/ \
4 | \
(o] /4 /2
¢, (radians)

Figure 3. (0, 4,) as a function of ¢, for (1) Plane Poiseuille flow (1) (2) shear flow
(ng)
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Figure 4. Plane Poiseuille flow

@) 7(a, $0)/7(0, by) vs & for do=(1) 0 (2) 25 (3) 40 (4) 55 (5) 90 degrees. (b) —u/a,
vs B for ¢, =(1) 0 (2) 25 (3) 40 (4) 55 (5) 90 degrees. (c) v/a, vs B for $,=(1) 0 (2) 90
(3) 12:5 (4) 25 (5) 40 degrees. (d) 6/a, vs B for dy=(1) 0 (2) 12-5 (3) 25 (4) 40 (5) 90
degrees. P=339 um in (b), (c) and (d). h=200 pm in all cases.

Pgiseuille flow are entirely different. Figure 3 contains plots of 7 s and 7p with &,
For MBBA parameters 7 is greater than 7 ¢ €xcept at ¢, =0, 7/4 and =/2. Figure 4

contains the plots of a few relevant quantities for different value of ¢,. The oscilla-
tions of » are more pronounced (figure 4a) as compared to those in shear flow. The
primary extremum of the ratio can vary by nearly 70%, though 7 varies by 30% as
¢ goes from 0 to /2. From dn/da =0 the extrema of 7 with « are found to depend
on material parameters and ¢, in general, there being a marked change in the primary
extremum for some values of ¢, (figure 2b). The « profile is symmetric for ¢, =0
and =/2 and is asymmetric for general #, (figure 4b). But v is antisymmetric for
$o="0 and =/2 though the profiles in the two cases have opposite signs (figure 4c).
For general ¢,, v is asymmetric. The 6 profile is antisymmetric for ¢, =0 (figure 4d)
but is symmetric for ¢, — /2 and asymmetric for general values of ¢,. Thus in plane
Poiseuille flow there are two distinct modes for a=0: For ¢y =0, Mode 1 can exist
with 6, ¢ and » antisymmetric and u symmetric; for ¢, ==/2 there is Mode 2 with &,
v antisymmetric and 6, ¥ symmetric. Figure 5 contains plots of a/a, and b/a, func-
tions of pitch for different values of ¢, (figures 5b, 5¢). As can be seen from (28)
and (29), a and b also exhibit oscillations with pitch. The net secondary flow F, is
given by

P—4



474 U D Kini

o

b/a x 10%gs

&
o) >
R 2
. g
8 u
(=]
0.5 25 5 e w3
3 &, (radians)

Figure 5. Shear flow (a) b/a vs 8 for ¢o=(1) 38 (2) 16 (3) 8 degrees.

Plane Poiseuille flow. (b) b/a, vs 8 for ¢o=(1) 0 (2) /8 (3) 7/4 (4) 3n/8 (5) /2 radian,
(c) a/a, vs & for ¢o=(1) n/12 (2) /6 (3) =/4 radian. (d) F; (net secondary flow)/a
vs ¢, for P=(1) 240 (2) 265 (3) 320 (4) 536 (5) 610 (6) 700 (7) 810 (8) 1010 (9) 1360
pm.

B UH) Fs_(b

) [H, sin 2¢, sin a+ o {a (2H,+ H;) — H, sin €}]
a, a

24

+ (1) A, [cos 2¢, sin a —a cOs €]
a, 2¢?
Hz - . .
+ H"'[a sin € 4 a? cos € +-sin 2¢, (a cos a—2 sin a)].

For ¢y=nm or (2n+1) =[2 (n =integer), Fs =0, the secondary velocity becoming
antisymmetric. Figure 5d is a plot of Fg with ¢, for different pitches. For a given
¢, Fs oscillates with pitch. But for a given pitch Fg is maximum for ¢, ==/4 (or
odd integral multiples of =/4).

For reasons similar to those discussed in § 2 a numerical treatment of plane
Poiseuille flow is difficult at general shear rates. For Modes 1 and 2 there are two
* constants a; and b which have to be determined uniquely, while for general asym-
metric cases there are three constants a,, a and b to be determined uniquely using
equation (23).
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