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Semi-quantitative theory of the structures of simple ionic crystals
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Abstract. A simple theory is developed which shows that the regions of stability of
the CsCl, NaCl and ZnS structures can be demarcated in a two-dimensional plot of
the radius ratio versus the strength of the van der Waals interaction. There is good
agreement with experiment. The effect of pressure on these structures is explained
qualitatively. The increased occurrence of the ZnS structure and the decreased
stability of the CsCl structure in the A%~ B*- crystals compared to the A+B- crystals
is also explained. Finally it is shown that the radius ratio and the polarizabilities
of the ions are the important factors that determine the structures of AB, crystals.

Keywords. Ionic crystals; crystal structures; repulsion potential; van der Waals
interactions.

1. Introduction

A very interesting problem in solid state physics is to understand from first principles
the underlying reasons for the various observed crystal structures. One tries to explain
why a compound exists in one structure and not in any one of the numerous other
structures it could have taken. Among the various types of crystals e.g., ionic, cova-
lent, metallic, molecular, etc., the problem appears to be most tractable in the case of
the ionic crystals since the major interactions in these systems are fairly well under-
stood. The binding energy per molecule of a simple AB type ionic crystal can be
written in the form
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where r is the interionic distance between nearest neighbours, a is a lattice sum called
the Madelung constant, + Ze are the charges on the ions, C and D are the van der
Waals dipole-dipole and dipole-quadrupole interaction coefficients and W, ()
is the repulsion potential. The Coulomb interaction term —aZ?%?/r, which is about
ten times larger than the other terms in (1), can be calculated with great precision.
Despite this favourable circumstance, theories of ionic crystals have had very little
success in explaining their crystal structures. The most successful theory to date is
that of Narayan and Ramaseshan (1979) which has provided a complete explanation
for the structures and structural transformations of the alkali halides. No detailed
theories are available for any of the other crystals* though there have been many

*There are more than five hundred crystals which are more or less ionic and which have simple
crystal structures (Wyckoff 1971).
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semiquantitative attempts at understanding crystal structures (e.g., Kjekshus and
Pearson 1964; Phillips and Van Vechten 1969; Simons and Bloch 1973; St. John
and Bloch 1974).

At a qualitative level, an elegant picture, called the radius ratio approach
(reviewed by Evans 1964), has been very popular. This method makes the follow-
ing extreme approximations in an attempt to simplify the problem.

(a) Only the Madelung energy is considered when comparing different possible
structures for a given compound.

(b) The van der Waals interactions are completely neglected.

(c) The repulsion energy is also neglected. However, the presence of repulsion
is recognized by treating ions to be impenetrable hard spheres of characteristic
radii (ry for the cation and r_ for the anion). Under normal circumstances (see
(d) below for exceptions), the interionic distance is given by ry, the sum of the radii,

ie., r=ry=1ry+r_, ' (¥))

Thus, the lattice energy is approximated by —aZZ%?/(r.+r_), suggesting that the
structure with the largest « (e.g., the CsCl structure among AB compounds)
should be most stable.

(d) A study of the packing of ions in the various crystal lattices shows that some-
times, when the two ions are very dissimilar in size, next nearest neighbours may come
into contact, resulting in r being greater than r,

ie., r>r.tr. 3)

Because of this effect, it can be shown that, when the radius ratio r,/r_ (for which we
use the symbol r,,_) is smaller than 0-73 or greater than 1-37, the NaCl structure is
more stable than the CaCl structure. There is similarly a crossover from the NaCl
to the ZnS structure at ry;_ = 0-41.

The radius ratio method is based on a pleasing geometrical picture and makes appa-
rently reasonable approximations. Unfortunately, the results are not very encourag-
ing. Table 1 compares the observed structures (Wyckoff 1971) of 24 monovalent
A*B- crystals and 64 divalent 4*+B?- crystals* with those predicted by the radius
ratio method using the radii of Narayan (1979). (If we use the ionic radii given by
others, the details change but the agreement continues to be poor). The theory seems

Table 1. Comparison of the number of compounds observed in the three simple AB
structures with the predictions of the radius ratio method.

A+B- Crystals A*B*- Crystals

Structure Experiment Radius ratio theory Experiment Radius ratio theory
CsCl 6 16 1 49
NacCl 18 6 57 12
ZnS 0 2 6 3

*Crystals such as ZnS, which are believed to have a high degree of covalency, have been left out.
No distinction has been drawn between the ZnS and ZnO structures. Also, crystals with ionic
radicals have not been included.
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to grossly overestimate the stability of the CsCl structure. It is also unable to account
for the curious reduction in the number of CsCl structures from the monovalent
crystals (6 CsCl structures in 24 crystals) to the divalent crystals (1 CsCl structure in
64 crystals.)

In short, the simple radius ratio method is incapable of reliably predicting the
structures of ionic crystals whereas the detailed theories, though adequate in prin-
ciple, have not yet been developed to the stage where they can be routinely applied.
There is therefore a need for intermediate theories which, while being more sophisti-
cated than the radius ratio method, are still sufficiently simple and straightforward.
We present such a theory in this paper. The main emphasis here is on AB type crystals.
We show that the structure adopted by an 4B compound depends on its location
in a two-dimensional plot (figures 2 and 3). We further explain the differences bet-
ween monovalent and divalent crystals and also the effect of pressure on these crys-
tals. The present theory shows that the van der Waals interactions are very import-
ant in determining the crystal structure. This explains partly why the radius ratio
method is inadequate. At the end of the paper it is argued that the polarization
energy associated with permanent electric dipoles is an important factor in 45,
crystals (Bertaut 1978). This leads to an empirical two-dimensional plot (figurc 4)
which seems to efficiently separate the structures of 4B, crystals.

2. Theory
2.1 Reference lattice

We introduce a series of approximations to simplify the theory without losing any
of the essential physics. We first introduce the ‘ reference lattice * which we take to
be the NaCl structure with no van der Waals interactions and where each ion expe-
riences repulsion only with six nearest neighbours (i.e., no second neighbour repul-
sion). Ifthe radii of the ions are ;. and r_ in this ideal lattice, then the lattice energy

18
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where o, is the Madelung constant of the NaCl lattice and we have adopted the com-
mon exponential form of repulsion (see (10) below). The equilibrium condition on

the lattice gives
aZ*e* 64

"¢ — 22 exp (—rolp) =0. ©
ro P
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Equation (4) therefore simplifies to
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o ro



16 Ramesh Narayan

In the actual crystal of interest, « might be different from a, there would be van der
Waals interactions and the repulsion would be different from that in (4). Conse-
quently, the equilibrium nearest neighbour distance r, would be different from r,.

The lattice energy at equilibrium of such a crystal is

aZ?e?

Wy (reg =— — Woaw € eq) + Wiep @ eq)' ®

eq

As shown in (ii) below, the repulsion energy can be written in the form n g A exp (—r/p),
where ng is the effective number of ‘nearest’ neighbours. Moreover, in general, 7oq
is not very different from r,. Hence, since re, is a true minimum of W (r), we see
that W (ro) and W, (req) differ only in second order term:s, which we neglect. The
lattice energy of a real crystal can then be written in the approximate form

72 g2 n o a, Z% e*
Wy (e = W, () = — 225 — W, (0 F (ol ©)
0 0

where the last term is obtained through .
2.2 Repulsion and effective number of nearest neighbours

The commonly adopted Born and Mayer (1932) repulsion potential can be written
in the form*

Wep (1) = iy ¢ exp [(ry + 7= — Dlp] -+ 4 my ¢ [exp 2r4/)

+ exp (2r_/p)] exp (—2br/p), (10)

where n; and. n, are the numbers of nearest and next nearest neighbours around an
jon, ¢ is a constant and 2br is the distance between next nearest neighbours. The
second term in (10), which is the repulsion arising from next nearest neighbour con-
tacts, is in general significant only between the larger ions. Hence, if 7_ > ry, then
we can drop the + + term (viz., exp (2r/p) in (10) and vice versa. Identifying
c exp [(r+ + r-)/p] as 4, we can then write the repulsion energy at r, in the form

(compare with (4))

Weep (ro) = g A exp (— rolp)s (11)
Mege =1y + 4 7y €3 [(r+,_l < b)z-;s] )

where ry, is the radius ratio rJr- and we have assumed 7— <ry. For the case
ry > r_, ry- should be replaced by 1/ry,~ in (12). Apart from the obvious depend-
ence of n.q on the structural constants ny, 7 and b, we note that it also depends on

*We have omitted the g factors of Pauling (1928).
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r+,- and rop (which we call the hardness parameter). The dependence of neg on ry/—
is a more quantitative version of the basic radius ratio theory. However, the depend-
ence on the hardness parameter is new and interesting. The value of ry/p varies
from one crystal to the other. However, one can broadly divide the 4B crystals into
two classes—the monovalent 4+ B- crystals with an average value of ryfp = 9-7
and the divalent 4%+B2- crystals with an average r,/p = 6-8 (from Narayan 1979).
One sees that, unlike in the radius ratio method, in the present theory, monovalent
and divalent crystals may be expected to behave differently. This is further discussed
in § 3.

Figure 1 shows the variation of n g with r,, for monovalent and divalent crystals
in the CsCl, NaCl and ZnS lattices. It is reassuring that ng in the CsCl lattice
increases rapidly for r,,_ in the region of 0-73, the critical value in the radius ratio
method. This shows that we have made the rigid radius ratio approach more
quantitative without losing any of the physics. In the process, we have also
introduced some new effects through the dependence of n.g on 7,/p.

For convenience we have used the Born-Mayer form of the repulsion potential
for the discussion in this paper. However, the results do not change qualitatively
even if we use any of the other standard forms e.g., the improved potentials of Nara-
yan and Ramaseshan (1976, 1977, 1979).

2.3 Van der Waals interactions

In this theory, we entirely drop the van der Waals dipole-quadrupole term since this

0.4 0.6 0.8 1-0

r
/-

Figure 1. Variation of the effective number of neighbours with the radius ratio in the
CsCl, NaCl and ZnS structures. The solid lines correspond to monovalent crystals
gAs*B—) with ro/p = 9.7 and the dashed lines to divalent crystals (42+B%~) with ry/p =
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is invariably much smaller than the dipole-dipole term. The dipole-dipole coefficient Cc
in (1) can be written in the form

C = Bey — + vl +c-2), (13)
where B and y are lattice sums and ¢, _, ¢,4, c— — are pair-wise van der Waals inter-
actions between cations and anions, cations and cations, etc. Since g is usually much

larger than y, we make the further approximation of dropping the second term in
(13). Thus, we take the van der Waals interaction term in the form

WvdW(rO) = Bc,. —/rg’ (14)

2.4 Relative stability of structures

We are now in a position to approximately calculate the lattice energies W (ro) and
Wy, (ro) of a compound in two competing structures. Using (9) and (14), the
marginal case of equal stability of the two structures leads to the equation

A ﬂlc+—+"eﬂl ao Z* ez(P/,.o _ w2
ro rg 6r, ro
Cu _ n ag VAN
~Paceo T 0 iy, (s)
rg 6r,

ie., [(az —a) + 2 (’—,—) (neggy — "eﬂ'z)] Zret = (B — ﬂz)ci;- (16)
6 \rq To

We notice that, for a given value of ryfp, the left side of (16) is a function of only the
radius ratio r,,_ while the right side depends only on ¢, _/r}. Hence, the solution to
(16) is a line in the (r,-) vs (c; —[r) plane. This line would separate the regions of
stability of structures 1 and 2. Figures 2 and 3 show the theoretically predicted
regions of stability of the CsCl, NaCl and ZaS structures for the monovalent
(ro/p = 9-7) and divalent (ry/p = 6-8) crystals.

3. Discussion of the results

The values of r,,_ and ¢, _/r§ of a number of AB type crystals are plotted in figures
2 and 3. The radii 7, and r_ of many ions have been tabulated by Narayan (1979).
These were used to compute r,,_. For some divalent cations, radii were not available
and were therefore estimated from observed nearest neighbour distances using the
known radii of the divalent anions. - - The van der Waals coefficient c,. . was computed
for each crystal by means of the following variational formula due to Slater and

Kirkwood (1931)

3eh. aya- . an
3 il {ay NP + (V) |
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Figure 2. Areas of stability of the CsCl, NaCl and ZnS structures among monovalent
AB crystals in the (r,,.) vs (ci_/r§) plane. The solid lines are given by theory
while the dashed lines have been empirically drawn for perfect separation of the

observed structures.
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Figure 3. Areas of stability of the CsCl, NaCl and Zn$ structures among divalent
AB crystals in the (r,,.) vs (c;_/r5) plane. The solid lines are given by theory while
t{)& dashed lines have been empirically drawn for perfect separation of the observed
structures.
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Here o, and a_ are the polarizabilities of the two ions, N, and N_ are the effective
numbers of electrons participating in the interaction, e is the electronic charge, A
is Planck’s constant and m is the electronic mass. The polarizabilities are available
for many ions and were estimated for the rest using the empirical trends in the varia-
tion of «, along the periodic table of elements. The effective numbers of electrons
were obtained for closed shell ions from Pitzer (1959) and were estimated for the
others by interpolation.

Figures 2 and 3 show that the observed structures closely follow the demarcations
obtained from theory. There are, of course, a few exceptions which are to be expected
after making so many approximations. The general trend is however very clear. In
fact, the empirical dashed lines in figures 2 and 3 separate the three structures
perfectly.

The present theory shows that the van der Waals interaction has a profound influ-
ence on the crystal structure of a compound. This is one of the major defects of the
radius ratio method which neglects the van der Waals interaction and therefore pre-
dicts structure crossovers at fixed critical radius ratios. Now we see that the critical
radius ratio varies as a function of the van der Waals interaction. The present two-
dimensional picture of areas of stability of various structures is thus a natural gene-
ralisation of the one-dimensional radius ratio approach. The second point to be noted
is the sensitivity of the results to the hardness parameter ro/p. The radius ratio
approach is obviously making an oversimplification by taking all ions to have
infinite hardness.

Figures 2 and 3 show that the most common structure to be expected is the NacCl
lattice. This is in agreement with observation. Further, these figures explain some
interesting differences observed between monovalent and divalent 4B crystals. Six
out of 24 monovalent crystals occur in the CsCl structure while only 1 out 64 divalent
crystals does so. This is explained by noting that the area of stability of the CsCl
structure is much smaller for divalent crystals compared to monovalent crystals.
Similarly, the area of stability of the Zn$ structure is larger in figure 3 than in figure 2
explaining the larger number of ZnS structures observed among divalent crystals.

The effect of pressure on crystal structures is also qualitatively explained by figures
2and 3. One expects the following changes as a function of increasing pressure.

(a) Since anions are more compressible than cations (Narayan 1979), the radius
ratio r,,_ will increase with pressure. Also, since r, decreases with pressure, ¢,/ 1}
will increase. The net result of these two effects is that the points in figures 2 and 3
will move towards the upper right hand corner.

(b) The free energy will have a PV term of the form

PV = xPr3, (18)

where x is a structure dependent number. We see from table 2 that this term is
smallest for the CsCl structure and hence it tends to stabilise the CsCl structure
relative to the NaCl structure. Similarly, the stability of the ZnS structure is expected
to decrease at high pressures. Hence the lines in figures 2 and 3 will open out ie.,
the CsCl area will increase while that of ZnS will decrease.

With the above background, we can now qualitatively understand the pressure
transitions in the alkali halides. It is experimentally observed that RbCl, RbBr and
RbI transform from the NaCl to the CsCl structure around 6 kbars pressure while
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Table 2. Relative volumes per ion pau' in common 4B structures at the same nearest

neighbour distance
Structure x
CsCl 1-54
NacCl 2:00
ZnS 3-08

the corresponding potassium halides transform around 19 kbars. The sodium halides
transform only at very high pressures. The explanation on the basis of figure 2 is
obvious since the rubidium halides are nearest to the phase boundary followed by the
potassium and sodium halides. The locations of the points in figure 2 further show
that the chloride, bromide and iodide of a given cation would all transform at
approximately the same pressure while the fluoride would ‘be expected to behave
quite differently. This is also in accord with experimental results.

Figure 3 suggests that, with the application of pressure, ThSe, BiTe and UTe may
transform to the CsCl structure, while MgTe and MnTe may transform to the NaCl
structure. We are not aware of any pressure studies on these systems, and strongly
urge that these be carried out.

4. Structures of AB, crystals

When we consider 4B, and more complicated structures, there are new interactions
to be considered which do not occur in the simple 4B structures. Here the ions often
occur in low symmetry sites. Consequently, there will be crystal electric fields which
would polarize the ions, leading to permanent dipoles on the ions. Thus, even the
electrostatic energy of the crystal becomes more complicated and takes the form

aZ?e?

ro

— 3 [ay E? + a_ Y, (19)

Wel (rﬂ) =

where a,. and «_ are the polarizabilities of the two ions and E, and E_ are the electric
fields at their sites. Bertaut (1978) has shown that the dipole energy is quite signi-
ficant and has suggested that it might be the main reason for the occurrence of many
. AB, halides in the layered CdCl, and CdlI, structures. Figure 4 is a striking confirma-
tion of this. Motivated by (19), we have plotted the 4B, halides in a two-dimensional
plot of the radius ratio 4, versus the sum of the ionic polarizabilities (a.+a_).
We note that the four structures CaF,, PbCl,, SnO, and CdI,* are clearly separated
into different areas of the plane. The lines are empirically drawn. Although we have
plotted (a4 -+ a_), it will be noticed that E, = 0 in the CaF,, SnO, and CdlI, struc-
tures and is non-zero only in the PbCl, structure. It might appear that a_ alone is the
relevant quantity for the first three structures. However, it is significant that in the
majority of these structures, a, is much smaller than o_ and it is only in the PbCl,
structure compounds that both «, and «. are large.

*We do not distingﬁisli between the CdI, and CdCl, structures.
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Figure 4. Areas of stability of the CaF,, PbCl,, SnO, and Cdl; (CdCl,) structures
among A42+B; halides. The separating lines have been drawn empirically.

It is easy to qualitatively understand the positions of the four structures in figure 4.
The SnO, and CdI, structures are six coordinated i.e., there are six nearest anions
around each cation. The CaF, structure is eight coordinated and has a higher Made-
lung constant. The orthorhombic PbCl, structure is hard to describe in simple terms
but can be said to have an effective coordination greater than six. Consequently,
the CaF, and PbCl, structures occur at higher values of r,, while the SnO, and CdI,
structures occur at lower values. It should be noted that 4B, structures do not have
any symmetry between cations and anions and therefore there is no symmetry about
r+,~=1 as seen in figures 2 and 3. The right-left separation of structures in figure 4
is also understandable. In the CaF, structure, all ions occur in high symmetry points
so that there is no dipole energy. On the other hand, in the PbCl, structure, all the
jons develop dipoles. Hence, when the ionic polarizabilities are large, the dipole
energy in this structure could compensate for the loss in the Madelung energy. Simi-
larly, the CdI, structure has higher dipole energy than the SnO, structure (Bertaut
1978) but lower Madelung energy. Therefore, the SnO, structure occurs at low values
of (a,-+a_) and the Cdl, structure at higher values.

In figure 4, ZnF, is seen to be close to the border between the SnO, and CaF,
structures. This explains why this crystal transforms under pressure to the CaF,
structure. -€dCl,, YbI, and Pbl, are other good candidates for pressure studies.
CdCl, would be particularly interesting since there is likely to be a three-way competi-
tion between the CdI,, CaF, and PbCl, structures. It is hoped that a high pressure
structural study of this compound will be taken up soon. :
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