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The application of CLEAN to crystallographic problems
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Abstract. It is suggested that the radio astronomical technique of image reconstruc-
tion called CLEaN could be profitably used in crystallography to improve sharpened
Patterson maps and E-maps. The method is here generalized to handle the symmetries
which arise in crystallographic maps. Simulations on model one and two dimen-
sional structure are presented to illustrate the power of the method.
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1. Introduction

In radio astronomy, the two-dimensional sky brightness distribution is often
measured by interferometric techniques. These experiments measure the Fourier
transform of the required function, but only over a finite region of reciprocal space.
Moreover, the experimental data are often not even simply connected but have ‘holes’
and ‘sectors’ of missing information in reciprocal space. The 2-D radio maps con-
structed from such data are difficult to interpret, both due to the lack of resolution as
well as due to the termination ripple which can swamp many of the weaker features.
In recent years, a method called cLEan (Hogbom 1974) has been widely used
to improve the interpretability of radio maps. CLEAN is remarkably successful in
removing ripples and side-lobes. It can also be used to increase the resolution
within reasonable limits. One of the reasons for the success of CLEAN is that radio
maps are as a rule ‘essentially empty’ i.e. the real space function one seeks (the true
map) is zero or nearly zero over large areas and has significant non-zero values in small
isolated regions. This appears to be a requirement for the successful implementation
of CLEAN.

In this paper, it is suggested that there are many situations in crystallography
where CLEAN can be profitably used. We may mention in particular the following
two cases (see for instance Stout and Jensen 1968):

(a) Sharpened Patterson maps, and
(b) E-maps computed from phases obtained through the direct methods.

In both the above cases, the peaks in the truec map are sharp and well separated
with essentially zero density in between. However, in practice, termination ripple is a
problem. Consequently, fully sharpened Patterson maps are often quite useless and
E-maps sometimes have false peaks. We expect CLEAN to reduce ripple significantly
in both maps, thus increasing their usefulness. It may even be possible to enhance
the resolution (by as much as a factor of two).
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We begin this paper with a brief description in § 2 of the CLEAN algorithm. We
then describe in § 3 the elegant viewpoint of Schwarz (1978) who has interpreted
CLEAN as a form of least squares fitting. Section 4 discusses the problem of adapt-
ing CLEAN to the symmetries which arise in crystallography (there is no symmetry
in radio astronomy). We show that the approach of Schwarz can be used to suitably
generalize CLEAN. Finally, we present one and two dimensional simulations in §5
which serve to bring out the potential of CLEAN in crystallographic applications.

2. The CLEAN algorithm

The following is a brief description of the CLEAN algorithm (Hogbom 1974):

(a) Compute the ‘dirty map’ d(r) using the incomplete set of Fourier coefficients
F(h;). d(r) is called the ‘image’ in optical terminology. Although d(r) is a continuous
function of the variable r, in practice it will generally be computed on a grid of points.
Hence, we will deal with the sampled dirty map d(r,) with the provision that the
sampling is sufficiently fine to handle any resolution which we might aim at.

(b) Compute p(r,), the ‘point spread function’ (PSF) (this is called the ‘dirty beam’
in radio astronomy).  p(r,) is obtained by setting F(4,) to the value 1 at all measured
points in the reciprocal space and zero elsewhere. We note that p(r) is just the dirty
map corresponding to the case when the true map consists of a single delta function
of unit weight at the origin.

(c) Locate the grid point r, at which the current dirty map attains its maximum
value, say d .. Postulate in the true map a S-function at r, of strength gd_ .. /p (0)
(where g is a number, called the gain factor, which is to be set by the user and is
usually given a value in the range 0 to 1). Subtract from d(r,) a copy of the psF of
strengthgd_ . ./ p (0) centred at r, to obtain the new dirty map

d
b, [ new = )01 — Z2p (1 — 1- M
p(0)
Simultaneously, add a 8-function of strength gd_ . /p (0) located at r, to the ‘compo-
nents map’ ¢ (r;), which accumulates the S-functions corresponding to the subtracted
peaks.

(d) If the new dirty map still retains sufficient structure (which can be checked by
testing if d(r,) is anywhere greater than some specified cut-off value), go to (c). If
not, go to (e).

(¢) Compute a ‘clean peak’ A(r;) (called the ‘clean beam’ in radio astroncmy)
which is centred at r =0, has unit weight, has no or negligible ripple and has a half-
width corresponding to the resolution required in the final map. A convenient
choice for A(r;) is a Gaussian.

(f) Convolve the components map #(r,) with the clean peak A(r;) to get the ‘clean
map’ ¢(r;). An option (generally exercised in radio astronomy) is to add the residual
dirty map to ¢(r;).

The following general features of CLEAN should be kept in mind to appreciate
and understand the method.

(a) CLEAN models the true map as a sum of &-functions. Since the problem of
solving for the 8-functions does not have a unique answer, a sequential scheme is
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used. The method is obviously best suited to those problems where the true map is
nearly a sum of &-functions. Hence the expectation of success with sharpened
Patterson maps and E-maps.

(b) Step (c) above, where the maximum in the dirty map is located, is intuitively
appealing but may appear to be arbitrary. Schwarz (1978) has shown that this step
can be given an elegant least squares interpretation, which we discuss in § 2.

(c) Because of the choice of the clean peak A(r,), the clean map has no termination
ripple. There is moreover the option to choose # (r;) so as to increase the resolution
of the map (within reasonable limits). This is likely to be useful in crystallographic
applications.

(d) CLEAN extrapolates the Fourier data. This follows from the fact that the
Fourier transform of the 8-components map #(r;) extends upto infinity without decay-
ing. The role of the clean peak is to reduce the extent of Fourier extrapolation to
reasonable limits without introducing ripple.

3. Least squares interpretation of CLEAN

Schwarz (1978) has shown that CLEAN can be rationalized as a sequential least
squares scheme. The argument described here (which is slightly different from that
used by Schwarz) will be generalized in the next section for crystallographic appli-
cations.

It was mentioned in § 2 that CLEAN iteratively accumulates -functions in the
components map by locating at each iteration the maximum in the dirty map. Let
us investigate the following ‘alternative’ least squares strategy for selecting the 8-func-
tions: Select the strength S and position r, of the §-function such that the residual
dirty map after subtracting the corresponding PSF is minimized in a least squares
sense. In other words, optimize S and r, such that the following quantity R’ is a

minimum
R =) [d(r) — Sp(ri — 11" @

We will show that the solution to (2) corresponds to the CLEAN choice discussed in
step (¢) in § 2.
Let F(h,) be the Fourier transform of d(ry), i.e.

1 .
d(e) =5 > Fll) oxp (— 2 il 1o ©)
j
where 7 is the total number of grid points and the prime indicates that the sum
includes only those reciprocal points where measurements are available. The PsF

p(r, — r) is clearly expressible as

1 ‘ .
pri—r) =a§ exp [— 2m i b; - (ry — 1]
j
-1 z exp (2m i by 1) exp (— 2w ihy-r). )

n Py
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Thus, the Fourier transform of p(r; — r is exp (2=i h; - r). Now, by Parseval’s
theorem, minimizing R’ in (2) is equivalent to minimizing R below.

R=Y'|F(h)— SexpQuih - r)" )

J

where once again S and r, are the parameters at our disposal. For a given r,, the
optimization of R with respect to S gives

?’F(’_’j) €Xp (—‘zﬂiﬂj'rk)"*‘ 2, F* (hj) exp (27Tihj'rk)
- 7 - = A

221
= d(rJ/p (0), (6)

S =

where we have used the well-known relation
F*(h) = F(— h). M

Substituting the expression for S given by (6) back in (5), we obtain the minimum
value of R that can be attained for a fixed 7, to be

——— ! — n 2
Ryin () = 2 [Pt — 5 e ®
]

The optimization of R . (r) with respect to r, is now trivial. Equation (8) obviously
leads to a choice of that grid point r, where the dirty map achieves its maximum
value. Thus, the least squares scheme which we have just studied leads to the CLEAN
prescription given earlier, except for the absence of the gain factor g, which is here
equal to 1. The use of smaller values of g is a practical detail to avoid the danger of
oversubtracting peaks (which is a problem whenever there is significant interference
from neighbouring peaks).

4. CLEAN in the presence of symmetries

Crystallographic maps usually have symmetries (for instance, the Patterson is always
centrosymmetric). Consequently, in crystallographic applications, it is not correct to
sequentially remove single 8-functions. Peaks come in symmetry sets and one should
therefore sequentially remove sets of symmetry related 8-functions. We therefore
suitably generalize the CLEAN algorithm. To do this, we employ the least squares
approach discussed in § 3.

For simplicity, let us assume that the only symmetry in the map is one of inversion
at the origin. Then, for every peak at r,, there is an identical one at —r,. Conse-
quently, in each iteration of CLEAN, we should select a pair of inversion-related
s-functions. The quantity R to be optimized now (corresponding to the expression
(5) in the earlier case) is

R=>"[F(h) — SlexpQmihy-p) +exp(—2miky-p[. O
j
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As before, for a given r;, we obtain the optimum value of S to be

22 Fh)exp(—2mihy-r) + 22’F * () exp(2mihy - 1)

S =
23 2+ exp Qmihy; - 2r) —l— exp (— 2mih; - 2r)]
J

p©0) + p(2r)

where we have used the symmetry of the dirty map and the psr
ie., d(r) = d(—r); pry = p(— 2ry). (11)

Equation (8) is now generalized to

’ [d(r)?
R (r) = E Fh) | —n— 2 12
min (£ ) 4 , (_-’) | np(o) p(sz) ( )
J

Now we see that it is not the maximum in the dirty map itself which is important,
but rather the maximum in the modified map [d(r;)]*/[p(0) + p(2r)]. Thus, when
there is an inversion symmetry, this modified dirty map should be computed, and the
new components should be placed at its symmetric maxima. The strength of the
components is given by (10), except for the optional use of the gain factor g.

The generalization to other symmetries is quite simple. In the general case, for
every peak at r;, let there be symmetry related peaks at r;, r{, etc. Then, the new
components should be placed at the maxima ry, 7, Iy, €tc., of the map

[d(l'l)]2 , (13)
pO) + p(ry — r) +p(ry — i) + ...

and the strength of the cbmponent should be

£4(w) 14
p(O) + p(rk —r)+pre—r)+ ..

5. Some illustrative simulations

We have carried out calculations on simple one and two dimensional models to test
the efficiency of CLEAN in crystallographic problems. We present here some
results to illustrate the potential of the method.

Figure 1(a) shows a one-dimensional ‘crystal’ having three ‘atoms’ per unit cell.
_ The electron density in the unit cell is of the form

o(n) = 0-3 exp [—(58—n)?/196] + exp [—(118 — n)?/144]

+ 0-4 exp [— (198 — m)2[225]; n =0, 1,2, ..., 256. - (15)
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(a)

Figure 1. (a) Assumed electron density in a one-dimensional model structure with
three atoms (b) Origin-removed sharpened Patterson of this structure.

Figure 1(b) shows the origin-removed sharpened Patterson (the sharpening function
used was exp (n2/321)). The structure can be easily solved from this Patterson.

To test CLEAN, we took the above structure and assumed that we have measured
only the first eight Fourier coefficients viz. F(0) to F(7). When we sharpen this highly
truncated data and calculate the origin-removed Patterson, we obtain the map shown
in figure 2(a). It is quite clear that the structure cannot be directly solved from this,
because of the termination ripple and the loss of resolution. The psF for the case we
are considering is shown in figure 2(b).

Using the dirty map 2(a) and the psF 2(b), we implemented CLEAN using a gain
of 0-5. We then convolved the components with clean peaks of various half-widths.
Figures 3(a) to (d) show the results for Gaussians clean peaks of the form exp (—n?%/o%)
with o = 11, 8, 6 and 4.8. Since the resolution (full width at half maximum) of the
data is 20-6 units, these correspond to resolution enhancements of 1-03, 1-55, 2:06
and 2-58 respectively. The cLEaN-ed Pattersons of figure 3 are seen to be much
superior to the dirty Patterson of figure 2(a).

Figure 4 shows a more complicated two-dimensional simulation. Figure 4(a)
gives the positions of seven equal atoms in a two-dimensional structure while figure
4(b) shows the peaks in the origin-removed Patterson of this structure (the origin is
at the centre of the map). Taking only a restricted set of E’s with (%, k) limited to the
range — 6 to + 6, one computes the sharpened Patterson shown in figure 4(c).
The true positions of the Patterson peaks are also indicated for reference. It will be
noticed that clusters of nearby peaks have become merged into single peaks and the
isolated peaks cannot be located. There are also many negative regions. Figure 4(d)
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Figure 2. (a) Origin-removed sharpened Patterson of the structure in figure 1 (a)
calculated using the first eight structure factors viz. F(0), F (1), ..., F(7). (b) The
point spread function (psF) for the case when F(0), (F (1), ..., F(7) alone are included.

(a) (b)
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Figure 3. cLeEan-ed Patterson maps obtained from figure 2 (a) using the PSF in
figure 2 (b) with a gain factor of 0'5. Clean peaks exp (— n?/o®) were used with
@ oc=12(M) c =8() c =6and (d) 0 =4.38.

shows the CLEAN map obtained from figure 3(b) with a gain of 0-5 and a resolution
enhancement of 1-70. The improvement is obvious. The negative regions have dis-
appeared and all the single peaks can be clearly identified. Some of the merged peaks
have also been separated. Even in those cases where the peaks continue to be merged,
the resultant peaks are elongated along the line of separation. It would clearly be
much easier to interpret figure 4(d) than 4(c).
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Figure 4. (a) Model two-dimensional structure with seven equal atoms. (b) Peaks

in the origin removed Patterson. The origin is at the centre. Of the 42 peaks in the
unit cell, two pairs of peaks overlap to form double peaks. These are indicated by
solid squares. (c) Origin removed sharpened Patterson calculated with ] E (&, K%,

h|,1 k| < 6. Negative and positive regions are shown by dashed and sohd contours
respectively. The negative contours are at — 0-05 while successive positive contours
are at 0-05, 0-15, 0-25, etc. On this scale, the single peaks in (b) have height 1 and
double peaks height 2. (d) cLEaN-ed Patterson map obtained from (c) with g=05
and a Gaussian clean beam corresponding to a resolution improvement of 1-70.

The above simulations show that CLEAN can be very profitably used both to
remove ripple as well as to increase resolution. The method therefore seems to be

suitable for many crystallographic applications.
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