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Abstract. Tons in ionic crystals are considered to exist in compressible space-filling
polyhedral cells analogous to the Wigner-Seitz cell in metals. Repulsion arices from
the compression energy of the ions written as a surfacc integral over the ionic cells.
Two adjustable parameters are introduced per ion with the provision that the same
parameters can be used in any crystal of any structure in which the ion occurs. 71he
18 parameters for the 5 alkali and 4 halogen ions have becn determined from FV
data on the 20 alkali halides. The important successes of the theory are: (i) All the
twenty alkali halides are correctly predicted to occur in their obscrved structures
(ii) The thermal transition in CsCl is explained (iii) The pressure transitions in the
alkali halides are predicted well (iv) The calculated values of the variation of transition
pressures with tempjerature agree well with experiment. Tkese results are much
better than those obtained by earlier theories.

Keywords. Ionic crystals; stability of structures; compressibility; phase transitions.

1. Introduction

Most theories of cohesion in ionic crystals concentrate on calculating the repulsive
forces since the attractive interactions in these crystals are well understood. The
pionccring studies in this ficld were by Born (1923) who modelled the repulsion cnergy
in binary ionic crystals by a simple function of the form

Wriep (r) = B/r", ' ¢y

where r is the interionic distance and B and # are adjustable parameters fitted from
expcrimental data on the crystal of intercst. Since then, there have teen many modi-
fications and extensions (Tosi, 1954 gives a rcview) which have attempted to study
families of ionic crystals simultaneously by requiring certain parameters to be common
to more than one crystal. These semi-empirical theories have been successful in
fitting the lattice spacings and compressibilities of ionic crystals, notably in the alkali
halides. However, none of them has so far explained the observed structures of
these crystals. In the well-studied alkali halides, for instance, all semi-empirical
theories have two significant discrepancies:

(i) The crystals CsCl, CsBr and CsI, which are experimentally observed to occur
in the CsCl structure, are wrongly predicted to be in the NaCl structure.
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(i) Further, some of the lithium and sodium halides turn out to be stablest in the
ZuS structure (this was recognised recently and pointed out by Narayan 1979).

To resolve the first discrepancy, it has been suggested (e.g., by May 1937, 1938;
Jain er al 1976; Wallat and Holder 1978) that the van der Waals interaction in the
alkali halides may be stronger than hitherto assumed; however, the van der Waals
coefficients have to be increased almost three-fold, which is far-fetched. Moreover,
this artificial measure does not resolve the second discrepancy (Narayan 1979).

Thus, the problem of the relative stability of the most simple ionic structures still
remains unresolved although it has been recognised and attacked since the first theo-
ries of ionic crystals were proposed. This is one of the pre-eminent problems in the
theory of cohesion of ionic crystals.

In this paper, we present a new theory of ionic crystals which has solved this long-
standing problem in the alkali halides. It is a logical extension of our earlier theory
of compressible ions (Narayan and Ramaseshan 1974, 1976, 1977) which is briefly
recapitulated in § 2. We discuss the modification we have introduced in § 3 and
outline the relevant equations for a binary cubic crystal (much of the theoretical deri-
vation is relegated to appendix A). In § 4 we present the results of applying the modi-
fied theory to the alkali halides. The most interesting results are:

(i) All the twenty alkali halides turn out to be most stable in their observed
structures.
(i) Their pressure and thermal transitions are fairly well explained.

A preliminary account of the present work was recently reported in a letter (Nara-
yan and Ramaseshan 1979).

2. Compressible ion theory

In this approach (Narayan and Ramaseshan 1974, 1976, 1977), we discard the tradi-
tional concept of incompressible spherical ions and instead assume that:

(i) An ion is compressible, with a compression energy which is a function of its size.
The repulsion energy in an ionic crystal arises solely from the compression energies
of the individual ions. The Born expression for the lattice energy per formula unit
in a binary ionic crystal is modified as

Wi(r,r,r) = —aéfr —Clr* — D[r* + W, (r,r,) + W_(r,r), (2
where the first three terms are the electrostatic and van der Waals energies, r, and r_
are the ‘radii ’ of the ions and W, (r, r,) and W_(r, r_) are their compression energies.
Since nearest neighbours are assumed to be in contact, i

r=r_+r. - 3)

Internal equilibrium further requires that

@Wjor), = (oW jor.),. @
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Note that r, and r_ are variables which depend on the compressing force acting on
the ions and so the  radius ’ of an ion varies from crystal to crystal and with pressure
in the same crystal. ,

(i) The compression energy of an ion is taken to be the sum of contributions
A exp (—r,/p) from each contact it makes with its neighbours, where r, is its ‘radius’
in the direction of the contact and 4 and p are parameters associated with the ion.
For the cation, for instance, we write

W, (@ r)=n A, exp(—r.p,) + n, A, exp (—br/p,), &)

where n, and n, are respectively the number of nearest and next nearest neighbours and
2br is the distance between the ion and its next nearest neighbour. According to this
concept, the ion is not spherical, its * radius ’ being r, and br respectively in the direc-
tion of unlike nearest and like next nearest neighbours. This picture is strikingly
borne out by the electron density maps of NaCl given by Witte and Welfel (1958).

The theory has two parameters, 4 and p, associated with each ion, thus requiring
only 18 parameters for all the 20 alkali halides. Moreover, the parameters that have
been determined for an ion from one set of crystal data can be used in any other
crystal in which the ion occurs. This lends predictive power to the theory. For
instance, the same parameters have been used in both the NaCl and high pressure
CsCl phases of alkali halides such as KCl. Moreover, the theory has successfully
explained the lattice spacings and compressibilitics of a number of perovskite-like
crystals (Narayan and Ramaseshan 1978) without introducing any new adjustable
parameters, but using only 4 and p values determined from data on other simpler
crystals. In fact, the capacity for predictions gives the theory a great advantage
over conventional ionic theories which require some of the parameters to be deter-
mined only from the experimental data on the crystal of interest, thus ruling out
predictions on new systems.

3. The new model of compressible ions

Although the theory discussed above has the unique feature of transferability of para-
meters from one crystal to another, it fails to solve the problem of the relative stabi-
lity of different structural modifications of ionic crystals. In a recent paper (Narayan
1979), it has been suggested that a probable reason for these discrepancies is that the
simple formula (equation (5)) where the nearest and next nearest neighbour repulsion
terms are directly scaled by the number of such neighbours (n, and n;) may be too
crude a simplification. One expects that, because of three-body interactions, the
repulsion energy at any contact between two adjacent ions is not a function of their
separation alone, but is, in fact, reduced by an amount depending on the proximity
of other contacts. )

Clearly, such an effect favours structures of higher coordination. One rather
trivial way of incorporating this effect is through the introduction of more adjustable
parameters. However, we present here an alternative physically more pleasing
approach which is just an extension of the compressible ion theory discussed earlier
and which does not require the introduction of any extra parameters.

In the new picture, we associate a face of contact at each point where two ions
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touch. The perpendicular distances to the faces from theionic centres arethe * radii ’
which entered the earlier theory. The faces surrounding an ion form a polyhedron
and the crystal consists of two kinds of polyhedral cells filling space. This is a
natural extension of the Wigner-Seitz cell concept (see e.g. Seitz 1940) to two types of
cells associated with two kinds of ions. In fact, when the * radii’ r, and r_in a binary
crystal are equal, both polyhedra reduce exactly to the corresponding Wigner-Seitz
cell (e.g., the two ionic cells in NaCl reduce to the cell of a simple cubic lattice, CsCl
to bee lattice, ZnS to diamond lattice, etc.). Where two like ions (i.e., next nearest
neighbours) touch, the polyhedral face is required by symmetry to be the mid-plane
between them. However, where two unlike ions (i.e., nearest neighbours) touch,
the position of the plane cannot be fixed a priori, since the ‘radii’ r, and r_ are
variables and not necessarily equal (though relations (2) and (3) fix r, and r_, once r
is given). In fact, the plane would move as a function of pressure and temperature.
A few typical ionic polyhedral cells are shown in figure 1.

We now define the compression energy of an ion in a crystal in terms of the poly-
hedral cell in which it is situated. At each point on the surface of the polyhedron,
we associate a compression energy density (B/2#) exp (—r'/o), where r’ is the distance
of the point from the centre and B and o are parameters. Thus, the compression energy
of the cation, for instance, is the surface integral

W, (r,r,) = (B,/2m) [[ exp (—r'(S)/e,) dS, 6

with a similar expression for the anion (dS is an area element on the surface of the
polyhedron at a distance #'(S) from the centre). The above form of the compression
energy is by no means unique, but it has the following realistic properties:

(i) W, (r, r,) can be written as the sum of compression energies of polyhedral
faces. Hence

W.(r,r,)=n W,_+n, W,,, D

where W,._ and W, are the energies of nearest and next nearest neighbour faces.
Note the similarity to equation (5).

(ii) Each face energy varies approximately exponentially as its ‘ radius ’ because
the maximum contribution comes from the face centre, reducing rapidly towards
the edge. This, in combination with (7), shows that, to a first approximation, (6)
is of the form (5), becoming closer at larger values of r.

(iii) The energy per face is reduced compared to that of an infinite plane at the same
* radius ’ by a quantity which is larger for smaller faces. Thus, the face energy at a
given ‘radius’ is smaller in larger coordination structures. Such an effect is

Na* cl Cs o L' F
(a) (b) (c)

Figure 1. Shapes of some typical ionic cells (8) NaCl (b) CsCl (¢) LiF (in a hypo-
. thetical ZnS structure). P



A new theory of compressible ions 585

expected as a result of three-body interactions and this is the crucial feature of the
modified theory presented here.

Because of (iii), we expect the expression (6) to be closer to physical reality than the
earlier expression (5). We wish to stress that the only modification introduced in this
new extension of the theory is in the form of the compression energy. All the basic
principles of the theory are still retained. We still have only two parameters per ion
(B and o are, in fact, related to the earlier parameters 4 and p). Moreover, we still
retain the transferability of ionic parameters from one crystal to another, which is
the most important feature of the theory.

At any temperature and pressure, the equilibrium interionic distance r in a crystal
is obtained by solving a suitable equation of state. We have employed the equation
of Hildebrand (1931) which leads to

dWyldr = 3% r* (—P + TB/K), ®)

subject to conditions (2) and (3). Here, P is the pressure, T the temperature, B the
coefficient of thermal expansivity, K the isothermal compressibility and xr3 the volume
per ion pair. The second derivative of W, at equilibrium is then related to the com-
pressibility by

B

7((aK/aP)Tg ] :

®

d*W,Jdr* = (2/r)dW,/dr -~ ?7)? [1 + ; {(BK/aT)P +

Equations (8) and (9) require the derivatives of the compression energy (7). Expres-
sions for these can be written down for simple structures with certain approximations
and are discussed in appendix A.

4. Results on the alkali halides

4.1 Refinement of parameters

The twenty alkali halides are built out of the nine ions Li*, Na*, K*, Rb*, Cs*, F-,
Cl, Br-and I~. There are thus 18 adjustable parameters (9 B’s and 9 ¢’s) to describe

Table 1. Compression parameters of the alkali and halogen ions

Ion B (ergs/cm?) a(A)
Li+ 5-131x 10 0-06015
Nat 7-787%x 10° 0-08501
K+ 1-665 x 10 0:09957
Rb+ 5-036x 101 0-08755
Cs* 1-957 x 101 0-10382
F- 1:057x 107 0-17322
ClI- 3-677x 107 0-18735
Br- 4-119%x 107 0-19891

I~ 4582x10° 0-21473
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them. These parameters were determined by least squares fitting the experimental
values of r and d*W/dr* (which is related to K) of the alkali halides. All the avail-

able high pressure data including those available on crystals beyond pressure transi-
tions were included in the calculations. The van der Waals coefficients C and D were
taken from Hajj (1956) and Mayer (1933) respectively while the other thermodynamic
quantities required in (8) and (9) were taken from Tosi (1964). In certain cases
where the small quantities 78/K and T/K [(0K/dT)p + B/K (9K/oP)y] were not
available, certain reasonable approximations were made (see the appendix in
Narayan and Ramaseshan 1978). During the least squares refinement, the weights
were adjusted in such a manner that r was fitted 10 times more accurately than
d*W/dr?, this being our estimate of their relative accuracies. Also, the radius r, of
Na+ in NaCl was constrained at the value of 1-18 A given by experimental electron
density maps (Witte and Wolfel 1958 give 117 A while Schoknecht 1960 gives
1-18 A). This was necessary because unconstrained refinement converged at r,
about 110 A which is not good enough.

The parameters B and o determined by the above procedure are listed in table 1
and the calculated values of r and d2W, /dr* are compared with the experimental values
in table 2. The rms errors in r and 42 WL/dr2 are 0629, and 5-9%; respectively.
This is better than the fit of 0-71 9 and 7-4 % obtained with the simpler theory (Nara-
yan and Ramaseshan 1977) discussed in §2. Since both theories use the same number
of parameters, the better fit we now obtain appears to confirm that the modification
we have introduced is in the right direction.

4.2 Stability of structures

Using the parameters of table 1, the free energies of the 20 alkali halides have been
calculated in the three competing structures viz., NaCl, CsCl and ZnS at zero tempe-
rature and pressure. Apart from the contributions listed in eq. (2) we also included
the zero point energy E,p, which was calculated by means of the Debye theory result

E,,=9kopls, (10)

where k is the Boltzmann constant and 6, is the Debye temperature. The Debye
temperature was approximately calculated from 4*W,/dr* by the method dis-

cussed in appendix B.

When the above calculations are made, all the 20 alkali halides are correctly pre-
dicted to occur in their observed structures, a result which has been eluding theories
of ionic crystals for the last fifty years. For comparison, we show in table 3 the pre-
dictions made by other standard potentials. The improvement obtained with the
present theory is dramatic.

4.3 Thermal transition in CsCl
Using the high temperature expression for the thermal free energy

G, =6k ln (6,,/T), 11
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Table 3. Structures predicted for the alkali halides by different theories.

Predicted structure

Crystal 3?32;::3 Semi-empirical theories mcch?r:}?::lwtrl;leories
HM TF PT LJR CcG
LiF NaCl ZnS x ZnS x NaCl NacCl NaCl
LiCl NacCl ZnS X ZnS X NaCl NaCl NaCl
LiBr NacCl NaCl NacCl NaCl NacCl NaCl
Lil NaCl NaCl ZnS X NaCl Zn0O X NaCl
NaF NacCl ZnS X ZnS x NaCl NaCl NaCl
NaCl NacCl NaCl NacCl NacCl NacCl NaCl
NaBr NaCl NaCl NaCl NaCl NacCl NacCl
Nal NacCl NacCl NaCl NacCl NacCl NacCl
KF NaCl NacCl NaCl NaCl NaCl NacCl
K1 NaCl NaCl NaCl NaCl NaCi NacCl
KBr NaCl NaCl NaCl NaCl NaCl NaCl
KI NaCl NaCl NaCl NaCl NaCl .~  Nadl
RbF NaCl NacCl NacCl NaCl NacCl " NaCl
RbCl1 NaCl NacCl NacCl NaCl NaCl '~ NaCi
RbBr NaCl NaCl NaCl NacCl NaCI’ NaCl
Rbl NaCl NacCl NadCl NaCl NaCl  GsCl x
CsF NaCl NacCl NacCl NaCl NaCl . - ?
CsCl CsCl NaCl x — X CsCl CsCl — 7
CsBr CsCl1 NaCl x — X CsCl CsCl1 - 7
Csl CsCl NaCl x - X CsCl CsCl R {

HM — Huggins and Mayer (1933); TF — Tosi and Fumi (1964); PT — Present theory;
LJR — Lombardi et al (1969); CG — Cohen and Gordon (1975). = Crosses are marked
against wrong predictions.

given by Weston and Granato (1975), calculations have been made for finite tempe-
ratures on the relative stability of structures in the alkali halides. These indicate that
CsCl alone will undergo a phase transformation below its melting point. Our calcu-
lations predict that it will transform to the NaCl structure at 890°K with a heat of
transition of 1:65 kcal/mole. Experimentally also, CsCl is the only alkali halide to
show a thermal transition, the observed transition temperature being 752°K and the
heat of transition being variously estimated from 0-58 to 1-5 kcal/mole (Kaylor et al
1960; Zemczuzney and Rambach 1910; Krogh-Moe 1960; Rao ef al 1966). The
only earlier attempt(Rao et al 1966) to explain the thermal transition in CsCl employs
adjustable parameters fitted to the transformation data itself.

4.4 Pressure transitions

Using the present theory, the relative stabilities of structures in the alkali halides
have been obtained as a function of pressure. The calculated transition pressures
are presented in table 4 along with the experimental values. For comparison, the
pressures predicted by a typical Born-type theory are also listed. The present results
are clearly superior.

.The values in columns 3, 5 and 6 of table 4 were actually calculated at 0°K while
the experimental values are for 300°K. However, it is experimentally known (Daniels
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Table4. Transition pressures in the alkali halides predicted by different theories.

Calculated transition pressures (kbars)

Observed p—" — Qoant P
nsition e irical uantum mechanica
Crystal n;'e:;tu?e Tl;e-e:;igs theories
(kbars)
BMJ PT LIJR CG
LiF >2009 300 380 , 517 2900
LiCl >2004 140 >500 231 980
LiBr >2004 105 >500 189 924
Lil >200e 68 >500 127 184
NaF >2004 200 124 109 326
NaCl <257 74 167 68 107
NaBr >2009 53 197 86 79
Nal >2004 4 460 78 23
KF 20¢ 88 59 141 85
KCl 19-5¢ 74 221 16-9 34
KBr 17-6¢ 59 23-3 186 23
K1 17-8¢ 49 362 16-6 36
RbF 6-2¢ 68 29-5 10:3 65
RbCl 4.9¢ 39 58 43 171
RbBr 4-5¢ 30 . 103 54 97
Rbl 4-0¢ 22 12-1 4-8 <0
CaF >2002 35 >500 20-0 —_—

BMJ—Jacobs (1938) using the paramaters of Born and Mayer (1932); PT-present
theory; LJR—Lombardi et al (1969); Cohen and Gordon (1975)

(@) No transitions have been reported
(b) Ruoff and Chhabildas (1976)
(¢) Vaidya and Kennedy (1971) and Bridgman (1945)

Table 5. Observed and calculated values of dP;/dT in the potassium and rubidium

halides
dP,/dT (kbar/°’K)
Crystal Observed
Petrunina et al Calculated
1972)
KCl — 0-0020
KBr — 0-0013
K1 - —0-0010
RbCl 0-0033 0-0037
RbBr 0-0020 0-0020
RbI 0:0010 0:0010

and Skoultchi 1966; Petrunina et al 1972) that the transition pressures are quite in-
sensitive to temperature. Rather significantly, our theory also predicts a very small
variation of P, (the transition pressure) with temperature. Table 5 compares our
calculated values of dP,/dT with the experimental values. The agreement is again
good. In this connection, the negative value of dP,/dT predicted by our theory for
Kl is interesting. Experimental measurements on this crystal would be welcome.
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5, Conclusion

To summarise, we view an ionic crystal as a collection of compressible ions in poly-
hedral, space-filling cells. Repulsion arises solely from the ionic compression energies
of the ions, written as an integral over the polyhedral surfaces. The 18 adjustable
parameters for the alkali halides have been determined from PV data and these lead

to the following resuits:
(i) They fit the observed lattice spacings and compressibilities of the alkali halides
(including high pressure data) well.
(ii) All the twenty alkali halides are correctly predicted to occur in their observed

structures.

(iii) The thermal transition in CsCl is explained.

(iv) The transition pressures in the alkali halides are predicted quite well.

These results are superior to those obtained by earlier theories of ionic crystals.
We may mention that, in parallel with the semiempirical approaches, quantum mecha-
nical theories have also been occasionally tried. Tables 3 and 4 present the results
obtained by two successful approaches (Lombardi et al 1969 and Cohen and Gordon
1975). Unfortunately, the calculations are quite laborious and have to be carried
out in great detail (often requiring the inclusion of three body interactions) before
good agreement with experiments is obtained. Even then, some of the alkali halides
are predicted to occur in wrong structures and the transition pressures in the sodium
halides invariably come out far too small. The quantum mechanical approach,
because of its complexity, has not often been used, nor has it led to any real advance

in our understanding of ionic crystals.
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Appendix A: Simplified equations of the theory

A.l Compression energy of a face

In the present theory, the compression energy associated with an ionic polyhedral face
is written in the form

Weep = | | 2% exp (—r(S)/o) dS, (A1)

where B and o are the repulsion parameters of the ion, r(S) is the distance of the area
element dS from the ion centre and the integral is over the area of the face. This
integral, in general, cannot be evaluated analytically for the complicated polygonal
faces that arise (see e.g., figure 1). We therefore replace the polygon by a circle of
equivalent area (figure 2). Calling the radius of the equivalent circle as r and the
distance of the circumference from the ion centre as /, we have

P=p4r (A2)
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Figure 2. Simplified geometry assumed to minimise the calculations. Each face of
an ion is replaced by a circle of equal area with radius r. 0 is the centre of the ion
and r, is the ‘radius’ of the ion in the direction of the face.

where r, is the * radius ’ of the ion in the direction of the face, under consideration

(figure 2).
Equation (A1) is now simplified to

r
B
Wiep = 6{ 5, €Xp (—t24r})V3/g) 2 t dt

1
= J B exp (—u/o) udu,

ry
= Bo [(r, +0) exp (—ri/o)—(I+0) exp (—I/7)]. (A3)
A.2 Total compression energy per molecule
Using the expression {(A3) and employing a self-evident notation, the repulsion
energy per molecule in a NaCl or CsCl lattice (ZnS is a little more complicated and
will be considered later) is given by
Wrep r,ro,r ) =W,  +W_ +W,_  +W__, (A4)
where W._ = mB.o: [(r++oy) exp (—r+fos)—(—to,) exp (—li_[os)], (AS)
W_y = mB o_ [(r-+o.) exp (—r_[o_)—(+F0) exp (—I/0])], (A6)
W,y = nyB,o, [(br+o,) exp (—br/o,)—(s+0y) exp (—lifel)], (A7)
W._ = nyB o_ [(br+o_) exp (—br/a)—(- _+o.) exp (—L _[o)]. (A8)

Expressions for the I’s can be worked out in terms of r, r, and r_ using the geometry
of the polyhedra. These are written down below without derivation.

A.2a. NaCl lattice
Q@ ro>r.

I, = (2273240 r2 —2-546479 r,r+1-273240r?)12, (A9)
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I, = 1507727 r_ (A10)
I,, = (0-450158 r,r+0-274921 rey2, (All)
/_ _ immaterial since the anion has no second neighbour faces.
i) r. < r.
Interchange 4+ and — in equations (A9) to (A11). Now, /,, is immaterial.
A.2b. CsCl lattice

@ r.2<r,<2r_

I, = (—0-653987 r? + 1653987 r, r — 0-275664 r2)$, (Al2)
I, = (—0-653987 r% -+ 1653987 r_ r — 0275664 r2)t, ' (A13)
l,, = (1909859 r? — 1-273240 r, r + 0-545540 r2)}, (Al4)
I__ = (1909859 r2 — 1-273240 r_ r 4 0-545540 r)t, (Al5)

For the cases r.<r_/2 and r_<r,/2, a different set of equations are valid. We do
not, however, present them here since, in these cases, the stable lattice is never CsCl.

A.2c. ZnS lattice

The expressions for W, _and W_, are similar to (A5) and (A6). However, for W,
and W__, there are certain additional complications. Figure 3 shows the shape of the
second neighbour face in the ZnS lattice for two different cases. The full lines show
the actual shape of the face. When r, <r_/2 the anion second neighbour face looks
like the polygon ACDFGA in figure 3a (Note that in this case there is no cation
second neighbour face). When r,>r_/2, then the second neighbour faces of both
the cation and the anion look like ABHA in figure 3b. In both figure 3a and 3b, P
is the foot of the perpendicular from the ion centre on the face. The problem that
arises in the cases considered here is that the faces are no longer symmetrical around
P. Thus, it will not be a good approximation to replace the face by an equivalent
circle centred at P. Instead, we have made the following decomposition

Figure 3a: ACDFGA =% (ACEGA + BCDFGHB), (A16)
Figure 3b: A4BHA =} (ACEGA — BCDFGHB). (A17)

Since each of the decomposed polygons is symmetrical around P, each can be re-
placed by an equivalent circle without much error. Calling the distances of the
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A A
PN
[ 6 c< P ’;>G
O~_.-7F \'\‘\;;;’r-:
E E
ta) r,.<r/2 tb) r>r./2

Figure 3. Share of the second neighbour face in the ZnS lattice (a) whenr, <r_/2
and (b) when r, >r_/2.

corresponding circumferences from the ion centre as /,, for BCDFGHB and /.,
for ACEGA, one obtains the following expressions for W, and W__

0, < r_/2
= } ny B, o, [(lpertoy) exp (—hui/oy) — (hpatoy)
exp (—hs/o))s re > 1[2 (A18)

Wes

W__ =4 nyB_o_ [(14-5) (br+o_) exp (—brfo ) —{(h--+0o_) exp(—h__[o)
+ 5 (fy._+0.) exp (—h—[e )},

_+ L2, (A19)

where s= 1 r,>r2.

The expressions for the I’s in the case of the ZnS structures are:
Or<rn2

I = 2075566 r,, (A20)
[_, = (4307973 r® — 6-615947 r_ r + 3-307973 r*)}3, (A2D)

L4+ and ., immaterial,

l__ =0983245r, (A22)

b = (—2:700949 r? 4 5-401898 r_ r — 1734177 r3)t. (A23)
@ ry>r/f2

l,_ = (—5615947 r? + 6:615947 r, r — 1-102658 r?)8, (A24)

I, = (—5'615947 r® + 6:615947 r_ r — 1-102658 r*)}, (A25)
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by, = 0983245 r, (A26)
lyes = (—2:700949 r? 4 1-800633 r, r -+ 0-666667 r)i, (A27)
. = 0983245 r, (A28)
ly__ = (—2:700949 r2 4 1-800633 r_. r -+ 066667 ri)k. (A29)

A.3. Eguations for crystal stability

In terms of the quantities descrited above, the free energy per molccule of a binary
ionic crystal at 0°K is given by

Wr(r,ry,r.) = —aetlr — C/r8 -~ D|r*+4- W,_+ W_,
+ W+ W__+ xPr3 + Ezp. (A30)

For lattice equilibrium, the above expression should be minimized. This leads to the
equations

©W..[or,) + (OW../or,) = (OW_[or.) + (oW_]er-), (A31)
2
e+ D e W e D DV 20
+3x Pr: =0, (A32)
subject to the constraint
r=r,+r. (A33)

These equations are to be solved numerically. Then, d*W /dr® can be obtained either
numerically or by writing an expression for it in terms of second partial derivatives
(we have done both and verified that they check).

There are a few interesting features in the algorithm used by us to solve the equili-
brium equations (A31), (A32) and (A33). We do not discuss these here.

Appendix B: An empirical formula for the Debye temperature

To calculate the zero point energy of the lattice as well as the thermal free energy at
finite temperatures (for which we use the expressions given by Weston and Granato
1975), we need the Debye Temperature of the crystal. Since we were able to trace 6,
for only a few of the alkali halides, for the others we used the approximate formula
discussed here.
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The Debye temperature 6, is related to a suitable crystal frequency », by means
of the relation

hv.=kop, . | (B1)

where 4 is Planck’s constant and k is Boltzmann’s constant. Now, in a simple-
minded argument, v, may be considered to be primarily determined by B, the bulk
modulus of the crystal and M, the mass of the atoms in the lattice. Using dimen-
sional considerations, one can therefore write the following approximate expression

h 2 ’
0p = K (B VIS, - (B2)

where V is the volume per atom and K is a dimensionless constant. Using the data
given by Gschncidner 1964), K has been separately calculated for 62 clements. The
mean value of X so obtained is 0-50 with a r.m.s. scatter of only -£0-12. The rather
low scatter gives one confidence in the formula (B2).

We have taken the same result (B2) with K=0-5 for binary ionic crystals too. Here,
V is the volume per ion and M is a mean mass calculated by

M =2 M, My/(M, + My, (B3)

where M, and M, arc the masses of the individual ions (the particular combination
(B3) was chosen for M because this is the expression that occurs in the lattice dyna-
mics of a diatomic lincar chain).

Using the above formula, we have computed 6, for all the alkali halides. Table 6
compares the calculated valucs for NaCl, KCl and KBr with the available experi-
mental ones (Scitz 1940). The agrcement is scen to be remarkably good (far kctter,
of course, than the formula would warrant!) This suggests that the result (B2) can
be used with some confidence to calculate 8, in crystals where there is no expcri-

mental data available.

Table 6. Exper'mental and calculated Debye temperatures of some alkali halides.

Debye tcm -erature 8p (in °K)

Crystal : Calculated from
Exrerimental e
Seitz (1940) °q;§5‘?§§)(32)
NaCl 281 289
KCl 227 226

KBr 177 179
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