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Abstract. We have applied the Krieger-James approximation to a description of short
range order effects in both ferro- and antiferromagnetism. In this method, a mechanical
consistency condition is imposed on the probability distribution .of a pair of near
neighbours in a cluster of (Z+1) ions. The resulting theory is analytically equivalent
to the familiar constant coupling approximation, thus ensuring thermodynamic
equilibrium of the system.
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1. Introduction

There have been a number of theoretical discussions of (nearest neighbour) short
range order effects in ferro- and antiferromagnets assuming clusters of the Bethe type
(Bethe 1935); each cluster consists of a central ion surrounded by Z nearest neighbour
ions, no two nearest neighbours being nearest neighbours of each other. In the
constant coupling (CC) approximation (Kasteleijn and Kranendonk 1956; Strieb
et al 1963), the effective Hamiltonian (H,) of a pair of coupled ions is written in terms
of the direct exchange interaction between the pair and an effective field acting on
each of them due to the external medium. The effective field, assumed to be a
function of the average magnetization and temperature, is derived by minimizing the
free energy of the system. The other well known methods are those of Weiss (1948)
[i.e., the BPW method (Strieb ef al 1963)] and of Oguchi (1955), which make use of
mechanical consistency conditions, but it has been proved that they do not lead to
thermodynamic equilibrium of the system (Strieb et al 1963). In the present paper
we show that the mechanical consistency condition of Krieger and James (1954),
proposed by them in their treatment of rotational phase transition in solids, when
applied to magnetism results in a theory that is analytically equivalent to the CC
approximation. The KJ solutions fulfil the thermodynamic equilibrium condition
and moreover provide a simple physical picture underlying the CC approximation.
An equivalent result has been derived by Elliot and Marshall (1958) in the case of
ferromagnetism.

2. Krieger-James approximation
In the present context, the KJ consistency condition may be stated as follows: the
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relative probability of a pair of ions ‘0’ and ‘1’ taking the angular coordinates
Q, and Q, respectively should be the same regardless of which of them is considered

as the central one, i.e.,
X (QO’ Ql) =X (le Qo) (1)

where X(Q,, Q,) and X(Q,, Q,) are the probabilities when ‘0’ and ‘1 are respectively
the central ions in the cluster. This is also equivalent to Chang’s (1937) consistency
relation which states that the probability of any ion taking an angular coordinate
Q should be the same, whether it is treated as a central or an outer ion.

Following Krieger and James, we can write

X Qo Q) = 55, x0 [ {V Qo Q) + £ () + 1o (Q9)}]
z
x 1 F(Q, Q) (2)
=2 q,

where F(Qq, Q)=exp[—B{V(Qq Q)+8/(Q)}, V(Qy, Q)) is the potential energy
of the interaction between the ions 0 and j, g,(Q)) is the potential energy due to the
effective field acting on an ion j considered as an outer ion, the field including the
external field and the interactions of j with all the ions in the medium except the
central ion of the cluster, h(Q,) is the potential energy of the ion 0 considered as a
central ion due to the external field, B=1/k,T and P is the normalizing constant
when the central ion has the label 0 and is given by

VA
PO =3 e [y (@] T F (@ ©) ©
Qo =

Using (1), we write

po P TAQ} _ e {Fe@+h@QI}
z - z
)i z F(Qo, Qj) 1 z F(Ql’ QJ)
j=2 Q, =2 q,

3. Antiferromagnetism
3.1. External field parallel to the easy axis

As an illustration of the application of the KJ method to magnetism, we consider first
an antiferromagnet. Assuming only nearest neighbour interactions, the total
Hamiltonian of the system can be expressed as

2uB

H = Z H® =z ZJS( ' S_, - —Z- (Slz+s.lz) (5)
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where 2, ; implies a summation over nearest neighbours only and B is the external
magnetic field acting along z. As usual, we divide the medium into two equivalent
interpenetrating sub-lattices 4 and B such that all the nearest neighbours of an 4-ions
are B-ions and vice versa. The spontaneous magnetization of the A-sublattice say
parallel to z is opposite in direction to that of the B-sublattice. To apply the KJ
approximation, we write

V(Qp Q) =27 S, S,,

8 (Qy) = —2p(A3+A4) Sy,
&1 (9-1) =—2u (Aa;—Ao Slt and
hy (Qj) =—2uBS, (6)

where S, is the vector spin operator in units of 4 of the k-th spin taking only the
allowed values of Q,. Jis the coupling constant due to the exchange interaction and
is positive. We assume that the ions 0 and 1 are in the 4 and B sublattices respectively.
A, and A, are the effective fields acting on an outer ion, 4, being a ‘ staggered ’ field
with reference to 4 and B sublattices as is evident from eq. (6). A arises entirely
because of the external field B, and includes the effect of the induced magnetisation
of the medium due to B. In the spirit of the KJ model, we assume that the coupling
between the central ion and any one of the outer ions is independent of the other
outer ions of the cluster. Then (4) is reduced to

P© exp [2uB {(4;+A4,) — B} Syl

[S expl28{— 7S, S, +ulds—d) S H]° "
Sy

_ P® exp [2p8 {(4;—A4,) — B} Su.] a
[D exp28{— 7SS, + p(4s+4) Sx}1] !
S

J

where the summation is over all possible orientations of the J-th spin,

PO =" exp (2uBBSy:) | D exp [28{—JS; " S+1 (45—A4)S;s)] ]z
S, S

0 J

and

PO=" exp QuBBS,) [ S exp 2B {~IS, S,+u (4 +4) SN ®
Sy Sy

We see from eqs (8) that P P®,  Multiplying the numerator and denominator
of the LHS of eq. (7) by exp [2(Z—1)uf(43+4,)S,,], it can be seen that the deno-
minator can be expressed in terms of an effective Hamiltonian for a coupled pair, viz.,

H,=2JS,* 8;—2p (A3+A4y) So:—2u (45—A) Sjs- ©)
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Similarly, P*0’ as well as the RHS of eq. (7) can be expressed in terms of H,. As

observed by Kasteleijn and Kranendonk H, is a non-diagonal matrix in the H®

representation. The eigen values of H, for spin } particles and the non-vanishing

elements of the density matrix are given by Kasteleijn and Kranendonk (1956).
Using these values in (7-9) we get

U—Zw-—(z—l) Y]1/2
[X-+1/U}%!

[UZwZ-1y—1p2 [
[X++U]Z—l 0y —

((1}]

Zor—(Z—1)y—171/2 —ZgA(Z—-)yqe
_wrw Y=l o 0w Y]/Rm (10)

)=

(X_+ U1 [X,+1/U% !

where
RO — PO =[U—ZW;(Z—1) Y]l/z (X++U)Z
{Tr [exp (—BH)}?

+ [UZwZ-D) y—lll/z (X-+1/U)2=Q,®+Q_© (say),
and
P

Rm={'rr lexp (—BH)}Z Ww=ZwZ-Vypa (x-+0)?
+HUEw=E=D y=lpp (X, +1/U)P =0, 1+ Q@ (say),
X4=} [(1 4sin w) exp {B [J+(2+4u24,21*]}
+(1Fsin w) exp {(B [J—(2+4u24 1]} 1,
sin w=2pAd,/(J2+4u24 )72,

U=exp (2Budy), Y=exp (28uB), W=exp [28nZ AJ(Z—1) ],

and Q. is the probability for a spin on the 4-sublattice to have a positive projection
along the z axis, etc. It turns out that only two of the eqs (10) are independent,
which can be conveniently written in the form

Z-1 Z-1

Y=U KQ”L_UX_-)] —U MX_*‘)] . an
(X:+0) W(X_+U)

The long range order parameter of the spins on the A-sublattice is given b;'

O_p_©
2 Sy =ts= 2

Similarly 2{S,,)={—S represents the order parameter for the spins on the B-sub-
lattice. Using egs (11) and some algebra, we get

txs =t —2 7 S0 s T oL Y] (12)
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where

| _1 (1—L—s) A1—=L+s)
°&s B BJ [%m {(1+c+s) (1+§—s)§ +2M"”]

(1+24+5) A—{+8)) _
(I—{—s) (1+Z—s)} 2P A“]’

P s, =éhm{

Equations (11) and (12) which determine the effective field parameters 4; and A4,
as well as the long range order parameters ({-Ls) are the basic equations of the KJ
model and are identical with the results of the constant coupling approximation
(Kasteleijn and Kranendonk 1956). In fact it can be easily shown that the (nearest
neighbour) short range order parameter 4(S,.S,), the Neel temperature T, etc.
are also exactly identical with the results of the CC theory. As in the latter theory,
we also get the unphysical result of an ¢ anti-Neel > temperature (see, for instance,
the discussion by Smart 1966).

3.2. External field perpendicular to the easy axis

Let B be a vanishingly small external field applied in the direction x. The Hamil-
tonian of the spin system is now given by

H= z H® — Z 27'S,.S, —2%13 (Sie+-S,).
@) ((¥))
The potential energies describing the model are given by
V(Qq Q) = 2JS,.8S,,

go('Q'O) = _2/" (A3S0x+A4Soz);
£(Q,) = —2u (4,5,—A4,S;;) and
hy(Q)) = —2uB S, (13)

The net field, acting on say the A-sublattice, is now inclined at a small angle to
the z axis. S;, and S;; are the projections of the spin i along the x and z directions
respectively. Each of them can take two values S,,*, S;.~ and S,,*, S;.~ correspon-
ding to the spin i being in the +3} or —} states respectively. A, is the staggered
field and A4;, as in the previous case is the field arising from the external field.

Using the potential energies given by eqs (13) in the Krieger-James approxima-
tion, i.e., eq. (4), we can write two independent consistency conditions correspond-
ing to the ions 0 and 1 belonging to 4 and B sublattices as follows:

exp [28u {(As—a)s;; +4,SE }] e [28u { (4,—B) s&+A4so‘z}]
N i

exp [2Bu {(4,—B) 5}, — 4,57 }] _exp [28 {(4—B) S~ 4T}
N A

(14a)

(14b)
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where

W= ST exp [28{—JS, . Stp (4sS—AiSi}]
Sy

W;’_z Z+’_ €Xp [ZB {—JSI . Sj‘*’# (A3S1x+A4SJz)}]
S; '

and Z*~ stand for the summations over all possible quantized states of the outer
spins when the central spin is in the +4 or —} states respectively. The order
parameter [, is defined as {,=(S,,+S;.) where for instance

| 55 exo (28BS (37 e [0 {%0- Syt (S iSu] )

X[W+]Z l+S . €XP (Zﬁ,uBS )[z_ exp [ZB {—JS,. 8,

i (AsS1— A4S} | | [W) ]Z—

(Sox) = exp (2)3#333;‘) [z+ exp [2,3 {—7S,.5,
S

+F’ (A S1x—A4SIz)}] ] [W+ ]Z—l
+ exp (2BuBS,)) [Z exp [28 {—JS, .S

+u (A3S1x 4511)} ] ] [W ]Z—

(15a)
Similarly

;== Sor—S12)- (15b)

Eliminating Wj’— and W;”— from eqs (14) and (15), we get

=2 > (SoxtSy) exp (—BH,) [ 2 > exp (—BH),

So SL 0 S.l

and

=> > (Su—S)exp (—BH) [ Y D exp (—BH,)
1 So

S, S

51

where H,=2J S;. S;—2pA(Sox+S1:)—21A(Sp:—S1), is the effective Hamiltonian
of a pair of ions (0, 1). The eigen values A, of H, in the second order are given
by Kasteleijn and Kronendonk (1956), using which, we get
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o= (4 [ em (0 + o (=1

14cos w

exp (— ma)] S LA (162)
D “exp (—BA,)

4 cos w
.+.
sin

»=0
and

___[eXP (=B %) —exp (B A)]sin w
>% exp (—B A)

v=0

(16b)

In order to eliminate 43 and A4, from eqs (16), it is convenient to rewrite eqs (15)
for {, and s, in a somewhat different form. For this purpose, we use the expres-

sions for W+’_ and W+'— given after eqs (4) and get

S exp (28uBSy) [Wi]” +So, exp (28BS, [W ]|
exp (25”3 Ox) [Wj ] + exp (2/3"3 Ox)[. A]

x —

s} exp (28uBS]) (W3 | +S[, exp (28uBs]) w5 |
exp (ZﬂpBSlx) [W;] + exp (2/3#lex)[ B] .

Using the Krieger-James consistency conditions (14), W,, W can be eliminated to
get :

=2 3 (et em (RHY[ 3 3 exp (~H) (170)
Se Sy S, S
and similarly
Se = z z (SOZ_S;[z) exXp (‘“.BHo) /z Z €xXp ("'BHo) (17b)
So S S S

where

Hy=— Z_z_"_l [(ZA;—B) (Sos+Sp)+ZA, (See—Sp2))

The exact eigen values of H, are given by

0 —_—

0 _ _2uZ4, [ - (ZA,, B)Z]i”

0

A =0,

1

0 —

A = *‘ZA4[1 + (ZA3 B)z]* and

2 Z-1 Z4,

X =0 as
0. s
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Using egs (17) and (18), doing some algebra, we get

z-1) zg In [i_;_g] —2uB[ZA;—B]=0 (198)
% m[=t] =0 | 19
z 1)C1n[1+€] 2uB ZA, (19b)

where 2={2+s,2

Equations (16) and (19) are exactly identical with the results of the CC approxi-
mation. They can be used to eliminate 4,, 4, and s, to get the perpendicular
susceptibility (Kasteleijn and Kranendonk 1956).

The theory of the Heisenberg model of ferromagnetism is obtained by replacing
J by —J and equating 4, to 0 in equation (6). In the Ising case the proof is trivial.
In these cases equivalent results have been obtained by Elliot and Marshall (1958)
and hence will not be discussed here.

Thus the constant coupling approximation implies a simple physically consistent
description of the (nearest neighbour) short range order in the medium; viz., that
the probability for the occurrence of any particular configuration of a near-
neighbour pair should be independent of the choice of the central ion between
them. It also means that unlike the models which employed other conmsistency
conditions for the description of magnetism (Weiss 1948; Oguchi 1955), the KJ
method leads to solutions ensuring thermodynamic equilibrium of the medium
(see also Strieb et al 1963).
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