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Impossibility of a continuous phase convention for polarised light
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Abstract. The possibility of extending the well known Poincare sphete representa-
tion of polarised light to include phase is considered. Any attempt to define the zero
of phase for each vibration represented on the Poincare sphere runs into discontinuities
at at least one point. These are shown to be inevitable using a topological argument.
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1. Introduction

The state of polarisation of a completely polarised beam of light can be characterised
by the ratio b/a of the minor and major axes of the ellipse, the sense with which the
ellipse is traversed by the electric vector, and the angle A made by the major axis with
some fixed line (figure 1a). It is convenient to replace the axial ratio and sense by an
angle w running from —n/4 to 4/4, so chosen that | tan  [=b/a. Positive and nega-,
tive values of w are used to distinguish the two possible senses of rotation for elliptic
vibrations. The coordinates 2A and 2w run from 0 to 27 and —=/2 to +m/2 res-
pectively and are used as longitude and latitude to represent the state of polarisation
on the Poincare sphere, reviewed by Ramachandran and Ramaseshan (1961). As
shown in figure 1b, the poles of this sphere correspond to the two opposite circular
vibrations and the equator to linear vibrations with varying azimuth.

The problem considered in this paper is whether one can define an initial phase for
each of these states of vibration, chosen in such a way that there is no discontinuity
anywhere on the Poincare sphere. For example, one might decide to define the zero
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Figure 1. a. A general elliptic vibration showing the definitions of azimuth and elli-
pticity. b. The Poincare sphere representation of a general elliptic vibration.
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of phase at one of the extremities of the major axis of each elliptic vibration. Figure
2a represents the result on a projection in which 22 and 2w are used as cartesian co-
ordinates. One sees that this attempt runs into two types of discontinuities. First of
all, the zero of phase for the circular vibration at the pole of the sphere is indeter-
minate and indeed, we get a different answer for each meridian along which we
approach the pole. Secondly, on traversing a small circle at a fixed latitude, we
find that the dot representing the zero of phase has shifted to the opposite end of the
major axis. A second attempt at establishing a phase convention over the whole of
the Poincare sphere is shown in figure 2b. Here there is no discontinuity at the north
pole or along any meridian but there is a clear discontinuity at the south pole.

Considering a few such examples leads to the belief that a continuous convention
for the phase zero is impossible. A more precise statement and proof of this result
form the rest of this paper.

2. A faithful three dimensional geometric representation of polarisation and phase

If we consider the collection of all states of (in general elliptic) vibration and all pos-
sible phases for each, we clearly need three numbers for a full specification, since the
phase adds one degree of freedom to the already two dimensional surface of the Poin-
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Figure 2. a. An attempt to define a phase convention on the Poincare sphere. 2A
and 2 are plotted as rectangular coordinates. The dot represents the point chosen
as the zero of phase. Linear polarisation is represented by a double line to distin-
guish between the two directions of travel at the same point. b. A second attempt,
based on resolving a given state into opposite circular components and using the
phase zero of one of them.
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care sphere. For example, we could represent the elliptic vibration at one instant
of time by giving its x and y coordinates.

x = r cos 8 cos (¢, + wt), (1a)

y = r sin 0 cos (¢, + wt). (1b)

Here r determines the intensity of the light which is not of interest here. 6 (range
0 to m/2) determines the relative strength of the linear vibrations along y and x which
combine to give the elliptic vibration. ¢,—¢, determines the relative phase of the two
linear vibrations along x and y and hence the state of polarisation of the resultant.
¢, itself can be regarded as the phase, varying over 0 to 2=.

It is tempting to represent 6, ¢, and ¢, as rectangular coordinates as in figuie 3.
Every point in the region shown corresponds to a state of polarisation or phase and
every such state is represented. Values of 6 beyond the range 0 to /2 are not needed
as we can change the sign of (1a) or (1b) by adding = to ¢, or ¢,. Lines of constant
¢, —¢s are drawn in the figure. Along one such line only the phase varies, and each line
corresponds to a given state of polarisation, i.e. a point on the Poincare sphere. Really
each line is closed because the values 0 and 2= for either ¢, or ¢, should be regarded
as equivalent. This is done by identifying pairs of points on opposite vertical faces of
the rectangular solid in figure 3. A further property of this representation is that for
§=0, we have a linear vibration along x; ¢, is the phase while ¢, is then irrelevant and
thus all points with different ¢,’s must be identified, as seen from (1b). Similarly, for
@=m/2, all points with different coordinates ¢, are identified while ¢, represents the
phase. After we make these identifications, the three dimensional region in figure 3
is a faithful representation of all distinct phase and polarisation states, with neighbour-
ing states going into neighbouring points of this region. Here neighbouring states are
defined as those for which the corresponding values of x and y, the two components
of the electric field defined in (1a) and (1b), differ only slightly for all values of z.

The problem of defining the initial phase of each state on the Poincare sphere can
now be recast. In the three dimensional region of figure 3, draw a continuous surface
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Figure 3. A three-dimensional space for representing polarisation and phase. Oppo-
site points on the vertical faces whose ¢, or é, coordinates differ by 2« are to be iden-
tified. On the bottom face, §=0, all points with different ¢,’s along a line ¢,=con-
stant are identified. On the top face, #=m=/2, all points with different ¢,’s are to be
identified. A family of lines ¢,—¢,—constant is shown in the interior of the region.
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intersecting each line of constant ¢,—¢, once and only once. This point of inter-
section is the phase z¢ro. Because of the numerous (four!) identification rules, it is not
convenient to solve the problem using the representation in figure 3. In the next
section, an alternative representation in which the identification rules are naturally
taken into account is given.

3. Representation of polarisation and phase by two toroids and impossibility proof

Two coordinates ¢, and ¢,, each running from 0 to 2= with 0 and 27 identified are
most naturally represented on the surface of a torus. Here ¢, increases from O to 2=
along the * horizontal ’ circle C; while ¢, increases from 0 to 2= along a vertical circle
C, (Figure 4a). Since we have a third coordinate 6, it is natural to consider a nested
family of tori labelled by the parameter 6. Further, when =0, we want points labelled
by different values of ¢, to coalesce. This is achieved by shrinking the torus to a
circular ring when 6=0, as shown in figure 4a by using the * core’ of the solid toroid
for 6=0. Only the fourth identification rule, viz. that for =m/2 all points with
different ¢,’s must coalesce, cannot easily be represented with a single toroid. We over-
come this by using a single toroid to represent all values of 6 from 0 to =/4, say. A
second toroid is used to represent values of 8 from =/4 to =/2. In this we interchange
the roles of ¢, and ¢, so that ¢, now varies as we move along the ‘ length’ of the torus
ob a * horizontal ’ circle, while ¢, varies as we traverse a ‘ vertical* circular section.
Figure 4b should make the choice of coordinates in the second toroid clear. The
advantage is now that when 6=m/2, all points with different ¢,’s coalesce as required.
Finally, our representation consists of two solid toroids, one each for 8<n/4 and
9>=/4. The surfaces of the two toroids are made to correspond by identifying
‘ horizontal * circles on one with ¢ vertical > ones on the other. Such a correspondence
between the surface of one torus and another is continuous and quite permissible.
Topologists recognise that the distinction between the two types of circles is not
intrinsic to the torus regarded as a surface, but only appears when we embed it in a
three-dimensional space.

In this representation by two toroids, the lines of constant ¢;—¢, for a given value
of 8 not equal to 0 or =2 form closed curves, winding on the surfece of a torus such
that the coordinates ¢, and ¢, both increase by 2 on traversing the curve once. Each
line corresponds to a state of polarisation and each point on it to a given phase, as
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Figure 4. An alternative representation for polarisation and phase. a. A toroid
representing all states between 6=0 and 0==/4. It has been cut away to show the
special line §=0 and the trajectories ¢,—¢,=constant on a torus with a nonzero
value of 8. b. The toroid representing 8=/4 to =/2. Note the interchange of the
¢, and ¢, axes with respect to a.
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explained earlier. The two circles 4,(6=0, ¢, varying from 0 to 2x) and Ay(6=n/2,
$, varying from 0 to 2w) represent vibrations along x and y respectively, and lie at the
‘cores’ of the two toroids. We require a continuous surface intersecting each
member of this family of lines oncc and once only.

Let us assume that such a surface has been constructed. Studying the vicinity of
its intersection with the circle 4,, we see that its intersection with a torus correspond-
ing to some value of 6 slightly greater than zero is a closed curve which shrinks to a
point as 8-> 0. By continuity, this curve, for small 6, is topologically equivalent to a
circle of the ¢ vertical * family for which ¢, increases by 2= while ¢, returns to its ori-
ginal value. It is useful here to recall that a general closed curve on the torus can be
described by two integers n, and n, which give the multiples of 2= by which ¢, and ¢,
increase as we tiaverse it. Curves with different (ny, n,) pairs cannot be continu-
ously deformed into one another as integers like n, and n, cannot change disconti-
nuously. (n;, n,) and (—n,;, —n,) are however equivalent descriptions of the same
closed curve traversed in opposite senses. We thus conclude, by increasing 6 from 0
to =/4, that the surface under study intersects the outermost torus, §==/4, in a curve
B, of the family (0, 1), which is topologically equivalent to a vertical circle. This is
depicted in figure 4a.

Similarly, starting from an element of the surface meeting the circle 4, in the core
of the second toroid, we conclude that the surface will meet the torus §==/4 in a
curve B, topologically equivalent to a  vertical ’ circle. Remembering the different
choice of the coordinates ¢,, ¢, in the second toroid, this means that the intersection
is a curve B, of the family (1, 0). But if we are to have a single continuous surface,
then we should be able to deform the curve B, to the curve B,. Since these two curves,
lying in the same torus have distinct * quantum numbers * (0, 1) and (1, 0) the proof
that such a continuous surface cannot be constructed is complete.

4. Orbit interpretation

One can regard the ellipses traced out by the electric vector of a single monochromatic
wave as the paths traced by a two-dimensional harmonic oscillator with equal
restoring forces along the x and y directions. The Hamiltonian for such a system
reads

H =pipi+qi+ql, (2)

with a suitable choice of units for the coordinates g;, g, and momenta p,, p,. Since
we are not interested in the total energy, we can fix its value to be unity. The four
parameters p;, gy, P2, 9 €an now be replaced by three polar angles 6;, 6,, and ¢ which
specify position on the (three dimensional) surface of a four dimensional unit sphere,
using the relations

Py = cos 8,, g;=sin 6; cos 0,,

Dpp==sin 6, sin 6, cos ¢, g,=sin b, sin b, sin ¢. €)]
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It can be verified that the orbits in this representation behave in the same way as
in the alternative representation by two toroids, as of course they should.

5. Discussion

Bacry et al (1975) have remarked that one obtains the Poincare sphere representation
starting from a two dimensional harmonic oscillator and ‘ projecting out ’ both the
energy and phase variables as in § 4. They do not seem to have considered the struc-
ture of the three-dimensional manifold obtained by projecting out only the energy,
which is the subject of the present paper.

When we consider the quantum description of polarisation for single photons, the
Stokes parameters, and hence the Poincare sphere representation, remain valid (Fano
1954). However, the concept of phase is meaningless for single photon states, while
it reappears for states with many (but not a definite number!) of photons. While
this is qualitatively expressed by the number-phase uncertainty relation, a careful dis-
cussion is needed to define phase precisely (Carruthers and Nieto 1968). The entire
discussion in the present paper is concerned with the choice of a coordinate system
when one wishes to talk of all polarisations at once. Such a coordinate system is
needed both for classical and quantum mechanics.

The question of a phase convention for polarised light arises naturally when one
considers interference between two beams of different polarisation. In the context
of radio astronomy, Morris et al (1964) have described the theory and application of
an interferometer in which the two aerials respond to different, arbitrary, polari-
sations. The result of an observation with such an instrument is the amplitude and
phase of the spatial coherence function (visibility function), and needs a convention
for the phase difference between two vibrations of different polarisations. A study
of this work motivated, though by no means compelled, the study of phase conven-
tions and in particular of whether a global one could be found.
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