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Tonic compressibilities and ionic radii — systematic trends
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Abstract. Ionic radii and compressibilities have been calculated for a. numter of
monovalent and divalent ions and radicals on the basis of the compressible ion theory.
In this theory, the compression energy of an ion is given as a two-parameter function
of its radius, 4 exp (—r/p), the radius and compressibility of the ion teing monotoni-
cally decreasing functions of the compressing force acting on it. Choosing a standard
force reflecting the average environment in the alkali halides, univalent radii and
compressibilities have teen calculated. This is the first theory to estimate ionic com-
pressibilities. The values show systematic trends among groups of related ions.
Anions are found to be significantly more compressible than cations (e.g., the ccm-
pressibilities of Ca*+, K+, Cl-and S~ - are respectively 0-8530, 1-342, 2:952 and 5-150
X 102 cm?/ dyne). Multivalent or  crystal’ radii and compressibilities have also
been calculated by scaling the standard force by the square of the ionic charge. The
calculated ionic radii are closer to experimental values than the classical empirical

radii.
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1. Introduction

Ion-dependent properties like ionic radius and ionic polarisability have in the past
been used with success to describe the bulk properties of ionic crystals. We have
recently extended this idea by introducing the concept of ionic compressibility (Nara-
yan and Ramaseshan 1974; Ramaseshan and Narayan 1976). We consider an ion
to be a soft sphere whose size is a function of the compressing force acting on it, so
that the ion has an internal energy which is a function of its radius. The repulsion
between ions arises purely from the increase in their internal energies when com-
pressed together. In this picture, the interionic repulsion energy per molecule
in a binary (4*B-) cubic ionic crystal is written in the form

me (f, ry, r—) = W+ (I', r+) + W-—(r’ r—)a (l)

where W, (r, r,) and W_ (r, r-) are the compression energies of a pair of neighbouring
positive and negative ions, r, and r_ are their ‘ radii ’ (which are variables) and r is the
interionic distance. The ions are assumed to be in contact and so

r=r,+r-. )]

The requirement of equilibrium at the point of contact of the two ions then leads to
oW, (r, rolor, = oW_r, r-)for-. )
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Because of the two auxiliary conditions, (2) and (3), Wiep is ultimately a function of

only the interionic distance r.

We also assume that the energy of compression of an ion is local to the points of
contact with its neighbours and so the compression energy of the ion at any radius
is directly proportional to the number of its neighbours. Thus equation (1) is modi-
fied to

Wiep (s Fao 1) = nlhy (ry) + h(r)]+n" [hu(br) + h_(br)], 4)

where n and »n’ are the number of nearest and next nearest neighbours, A.(r,) and
h_(r_) are the compression energies per contact of the two ions and 2br is the
distance between next nearest neighbours.

It is clear that (4) can be generalised to any ionic crystal of any crystal symmetry
containing any number of ions per molecule. The basic feature of the present approach
is that each ion has a particular function A(r)* which is unique to it and independent
of the crystal environment in which the ion is placed. The crystal structure enters the
theory only through the numbers n, n’ and b.

For quantitative work, the compression energy functions A(r,) have to be modelled
by some simple analytical expression. From various considerations, the form chosen
was (Narayan and Ramaseshan 1976)

h(r)= A exp (—r//p) )

where 4 and p are repulsion parameters associated with the individual ions. These
parameters have been refined for a number of ions and radicals (Narayan and Rama-
seshan 1976, 1977, 1978) using experimental data (lattice constants and compressibi-
lities at different pressures) of simple ionic crystals containing these ions. It should
be reiterated that, in our theory, the parameters 4 and p of an ion are unique to it and
completely independent of the crystal environment. Due to this, the present approach
has many features not present in the earlier theories of ionic repulsion (Tosi 1964
gives a review). Some of the advantages of the present theory are:

(i) A relatively small number of parameters are sufficient to describe the pro-
perties of a large number of crystals. For instance, with only 18 parameters,
the lattice spacings and compressibilities of all the alkali halides, including
their variation with pressure, have been satisfactorily fitted.

(i) The same parameters of an ion can be used in any crystal of any structure
in which the ion occurs. For instance, the parameters of Cl- ion have been
used unchanged in a large number of crystals belonging to five structure types
viz., NaCl, CsCl, ZnS, CaF, and perovskite.

(iii) The theory has been successfully extended without any alterations to ionic
radicals (Narayan and Ramaseshan 1978).

(iv) The lattice spacings and compressibilities of a number of perovskite-like
crystals have been satisfactorily calculated (Narayan and Ramaseshan 1978)
without introducing any adjustable parameters. In fact, in the case of four

*Whereas we use r, or r- for the radius of a cation or an amon, we will use the symbol r; to res
present the jonic radius when the discussion is for a general ion,
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crystals, the theory unequivocally predicts an inverse perovskite structure
with an interchange of the cations.

(v) The theory directly gives the radii of the constituent ions in a crystal and
consequently predicts the variation of the radius of an ion from one crystal
to another and with pressure in the same crystal.

(vi) The bulk modulus has been calculated for a large number of crystals for which
this information is not available experimentally. These values could be
used, where necessary, as a first approximation.

The results of our studies so far seem to indicate that the present theory could be
quite useful in crystal physics and chemistry, primarily because of its capacity to make
predictions. However, we are not in a position to exploit this fully because the re-
pulsion parameters of many important ions, notably trivalent and tetravalent cations,
are not available, nor can they be easily determined since there is not enough useful
crystal data. One possible approach is to extrapolate and obtain the parameters of
the new ions from the properties of the ions already studied. In this paper, we make a
beginning by studying the regular trends in the parameters of related ions.

2. Ionic radius and compressibility

We shall concentrate on four families of ions which have been studied fairly well by
us viz., the alkaline earth, the alkali, the halogen and the chalcogen ions. This sample
should be representative enough to deduce trends in the parameters of ions, both row-
wise and column-wise in the periodic table. The parameters 4 and p, themselves,
are clearly not the best candidates for the type of systematic studies we contemplate
because they do not individually have much physical significance. In the theory, they
are always coupled together as in 4 exp (—r,/p) (the compression energy of the ion)
or (A/p) exp (—r/p) (the compressing force acting on the surface of the ion) or
(A/p%) exp (—r;/p) (which occurs in the expression for the compressibility of the
crystal). In fact, these are the quantities that are fitted to the experimental data in
refining the parameters. It would not, therefore, be surprising if 4 and p themselves
do not vary systematically. Indeed, this is so as seen in figures 1 and 2, where the
A and p values of the four families of ions are plotted. It appeared to us that it may
be more fruitful to transform 4 and p to two other parameters viz., an ionic radius
and an ionic compressibility, and seek out systematic relationships in families of
ions in terms of these.

In our approach, there is really no unique radius or compressibility associated with
an ion since these quantities vary greatly with the crystal environment of the ion.
Both the radius and compressibility of an ion decrease with increase in the com-
pressing force acting on its surface. For instance, the radius and compressibility
of Cl~ ion would be greater in NaCl than in SrCl,. In fact, even the change in
coordination number say, from 6-fold to 8-fold, is likely to alter the properties of an
ion. This has been recognised by those working with the Born theory of ionic
crystals (Tosi 1964). When they try to determine parameters such as ‘crystal radii’,
they find an arbitrariness which is usually removed by some extra condition such as
requiring the ‘crystal radii’ of the alkali and the halogen ions to conform as closely
as possible to the interionic distances in the alkali halides,
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Figure 1. The repulsion parameter A plotted against the number of electrons for
some families of ions.
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Figure 2. The repulsion parameter p plotted against the number of electrons for
some families of ions. ’
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We too follow a similar approach. We define a standard environment and define
the radius and compressibility of an ion in this environment as the standard values.
We choose the standard environment to consist of six forces F acting on the surface
of the ion along the cubic directions. The symmetry thus conforms to the environ-
ment of an ion in the NaCl lattice. In choosing the magnitude of F, however, we are
faced with two options.

(i) We could suitably choose a single value Fy and calculate the radii and com-
pressibilities of all ions. This would be the most sensible approach for the
comparative studies we are attemping here. F, may be conveniently chosen as
an average of the forces occurring in the alkali halide crystals. In this case,
we would calculate what may be termed univalent radii and compressibilities
(similar to the concept of univalent radius introduced by Pauling 1927,
1960).

(i) For multivalent ions, the univalent radius and compressibility would be quite
different from the * crystal ’ values since the binding in these crystals is much
higher. Hence, for estimating crystal properties, it appears better to define
multivalent radii and compressibilities using F=v*F,, where v is the valency
of the ion (»? arising because the compressing force acting on an ion in an
jonic crystal is largely due to the Coulomb interaction which is directly
proportional to 22).

Since there are obvious advantages in both approaches, we carry out both analyses
in this paper.
3. Univalent radius and compressibility
For calculating the univalent radius and compressibility of an ion, we choose
Fy = 645 x 1075 dyne. ©)
The magnitude of F, is so adjusted that the univalent radii calculated for the alkali
and halogen ions through equation (8) below give the best possible fit for the

interionic spacings in the alkali halides.
From (5), the force F acting on an ion at each contact is given by

F(ry) = (A/p) exp (—ri/p). M
Equating this to F;,, we have
r, = p In (A/pFy), ®8)

where r, is the univalent ionic radius of the ion. To calculate the compressibility,
we first rewrite (7) as

rp=r,+ plIn (Fy/F). . )
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Then, the compressibility X is given by
1
K=— ;—,(aV/aP)T,

= (3 p/r, F) (dF|dP). (10)

Assuming a spherical surface for the ion*, we see that the total force of 6F acts on the

surface area of 4= rf, so that

P = (6Fdn 1),

.. dF|dP = 27 r¥3 (r;+2p). (11)
Substituting in (10), we thus have
K, = 2m pri/Fy (ra+2p), (12)

where K, is the univalent ionic compressibility of the ion.

The pair of numbers r, and K, define the properties of an ion as completely as the
earlier pair of parameters 4 and p do. To emphasise this, we ‘ invert ’ (8) and (12)
to obtain 4 and p in terms of r, and X,.

p =K, Fyruf2(m r* — K, F), (13)

A = p Fyexp (rJ/p). (14)

The advantage of the pair, r, and K|, over the earlier pair, 4 and p, is that one can
more readily see their physical significance.

4. Trends in ry and Ky

Table 1 lists the values of r, and K, for all the ions we have studied. The values for
the four families of ions of particular interest to us are plotted in figure 3 and 4. It is
quite significant and gratifying that the new parameters show an improved systematic
behaviour compared to 4 and p (figures 1 and 2).

The r, values of related ions show the following qualitative relationships:

(i) The r, values of ions belonging to the same column of the periodic table
increase with the atomic number.

*This is a crude approximation because, according to the present theory, ions are not spherical
However, this approximation will only introduce a scale factor into the calculated values of com-
pressibility and will not affect the trends which we seek. A later paper (Narayan and Ramaseshan
1979) describes a more detailed theory of ionic crystals in which the shapes of ions are also taken

into account,
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Table 1. Repulsion parameters, univalent radius and univalent compressibility of
ions and radicals studied with the present theory.

Ton v A (erg) p(A) ru (A) Ky (10-12 cm?/dyne)
Li* 1 0-1544  10-3 0-04158 0-7430 0-2706
Na® 1 0-1211  10-7 009029 1-106 0-8359
K+ 1 0-5600 < 107 01078 1-466 1-342
Rb* 1 03980 x 1075 0-08883 1-604 1-250
Cs* 1 0-5604 < 10-5 0-09977 1-824 1-598
Cu* 1 0:1222 < 10+1 0-01542 09263 0-1347
Ag* 1 03404 < 10- 0-05481 1-260 06189
TI* 1 07386 x 10-* 0-1001 1627 1-413
F- 1 0-7506 x 10-10 0-2152 1-354 2+154
cl- 1 0-2958  10-* 02240 1-708 2:952
Br- 1 03724 < 10-° 0-2352 1-836 3-348
1- 1 04407 X 10~* 0-2538 2:005 3-955
H- 1 0-1604 % 10~ 0-3150 1-376 2-897
Mg+ 2 0-9939 x 10+ 0-03051 1-033 0-2899
Cat+ 2 0-1471 x 104 0-07017 14375 0-8530
Sre+ 2 03483 x 104 0-07441 1-518 1-002
Ba*+ 2 0-1997 x 10-3 0-09919 1-712 1-482
Zn++ 2 0-1562 x 10-t 004713 1-162 0-4936
Ccd++ 2 0-3410 - 10-5 0-07645 1-380 09253
Hg** 2 0-6079 < 10+ 0-01680 1422 0-2273
Mn*++ 2 0-2941 < 1012 0-01733 1-054 01723
Fe++ 2 0-7895 = 10+ 0-01515 1-008 0-1445
Co** 2 0-9939 3 10+1 0-01737 0-9978 0-1632
Ni++ 2 0-1251 x 10+ 0-01656 09559 0-1490
Sm*++ 2 03309 x 10*? 004081 1-513 0-5706
Eu*+ 2 0-3412 x 10*¢ 0-03370 1-490 0-4678
Yb++ 2 0-1104 x 10%¢ 002944 1-408 0-3875
Pb** 2 0-2814 x 10-* 0-08014 1-612 1-145
o-- 2 0-5135 x 10-1° 0-3160 1-747 3-950
s— 2 0-8843 X 10-1° 0-3431 2:055 5-150
Se—— 2 06948 x 10-1° 0-3877 2:182 6079
Te— 2 0-1071 x 10-* 0-3771 2:296 6347
NH,* 1 0-1698 X 10-4 0-07820 1-535 1-062
SH- 1 01759 x 107 0-1545 1-867 2:410
SeH- 1 0-1463 % 10-° 0-1190 1-995 2:066
CN- 1 0-3460 x 10-° 0-2288 1-775 3-146
NH,~ 1 0-9310 % 10-7 0-1149 1-614 1-581
ClO,- 1 0-4614 % 10-5 0-1186 2:125 2:208
BrO;~ 1 0-5821 x 10-% 01200 2:176 2:291
Clo,- 1 0-3489 x 10-° 0-2724 2:069 4.345
BH,~ 1 01294 x 10-° 0-2682 1-775 3-561
BF,- 1 0.2959 X 104 0-1068 2:123 2:007
NO,;~ 1 0-5882 X 10-* 0-2354 1-945 3-591
SO~ 2 0-7213 X 10-* 0-2838 2:350 5232
NH-- 2 0-3258 x 1010 0-3954 1-918 5-230
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Figure 3. The univalent radius r, of some ions plotted against the number of clec-
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(ii) The r, values of equi-electronic ions increase rapidly with decrease in the
atomic number (e.g., the sequence Ca**, K*, CI-, S~ 7).

(iii) The r, values of divalent ions of transition and rare-earth elements decrease
with increase in atomic number.

(iv) Anions are generally larger than cations and so determine, to a large extent,
the structure of crystals.

Similar generalisations to those made above have been made before (e.g. Evans
1966) with regard to the classical crystal radii. It is satisfying that our univalent
radii reproduce the same systematic trends.

Tonic compressibility, however, is a new concept that we have introduced and this is
probably the first time estimates of this quantity have been obtained for various
ions. The K, values of related ions show the following remarkable qualitative

relationships:

(1) The K, values of ions belonging to the same column of the periodic table

increase with the atomic number.

(i) The K, values of equi-electronic ions increase rapidly with decrease in the
atomic number.

(iii) The K, values of the divalent rare-earth ions decrease with increase in atomic
number (the results in the case of transition metal ions are inconclusive).

(iv) Anions are generally very much more compressible than cations and so deter-
mine, to a large extent, the compressibility of the crystal.

These are only qualitative statements but they fit very well with our intuitive ideas
of ionic compressibility. We are currently attempting to quantify the above relation-
ships so that extrapolations could possibly be made to other ions.

Apart from extrapolations to other ions, we point out another interesting possibility.
In figures 3 and 4, we see four lines corresponding to ions of charge+2, +1, —1 and
—2. Surely, there must be another line in the middle corresponding to 0 charge which
would include the rare gases Ne, Ar, Kr and Xe. It would be interesting to estimate
r, and K, for these atoms from figures 3 and 4 and see how well they predict the pro-
perties of the rare gas crystals. Calculations along these lines are currently being
carried out.

5. Multivalent ionic radius and compressibility

For calculating the multivalent radius and compressibility of tons, we follow the
second option discussed in § 2 and take F = v® F,, where v is the valency of the ion
and F is given by (6). We then obtain the following relations

rm = pln (4/p v* Fy), (1%
Km=277prn2|/szo(rm + 2 p), } (16)

where r,, and K,, are the multivalent radius and compressibility of the ion. For multi-
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valent ions, the quantities r,, and K, rather than r, and K, are suitable for estimating
their crystal properties.

Table 2 lists r,, and K,, for the various divalent ions we have studied (for the mono-
valent ions, r,=r, and K,=K,). One notices that the multivalent radii of the diva-
lent ions are approximately equal to the r, values of the equivalent monovalent ions.
This implies that the lattice spacings of monovalent and divalent ion crystals are
approximately equal. Secondly, considering the K, values, one notices that the anions
are much more compressible than the cations and so are primarily responsible for the
compressibility of the divalent ion crystals. Since the K,, values of the chalcogen
ions are about three times smaller than those of the halogens, the divalent ion crystals
are on the average three times less compressible than the monovalent ion crystals.
The remarkable fact is that the chalcogen ions are, intrinsically, almost twice as com-
pressible as the halogen ions (compare their K, values in table 1). Their compressibi-
lities are reduced by a factor of about six when the compressing force increases from
Fy to 4 F,. This illustrates the fact that the compressibilities of ions (as also their
radii) vary strongly with their environment.

6. Comparison of univalent and multivalent radii with classical ionic radii

Estimates of the radii of ions have been made by a number of authors (Pauling 1960;
Goldschmidt 1926 Zachariasen 1956; Shannon 1976) based on the requirement that

Table 2. Multivalent radii and compressibilities of divalent ions and radicals.

Ion v rm (A) K (10712 cm?3/dyne)
Mg+t 2 0-9906 0-06934
Cat+t 2 1-278 0-1968
Srt+ 2 1-415 0-2320
Bat* 2 1-574 0-3377
Zntt 2 1-097 0-1159
Cd++ 2 1-274 0-2118
Hg++ 2 1-398 0-05587
Mn++ 2 1-030 0:04207
Fet+ 2 0-9874 0-03535
Cott 2 0-9737 0:03977
Nit+ 2 0-9329 0-03633
Smt+ 2 1-456 0-1371
Eut+t 2 1-443 0-1131
Yb++ 2 1-367 0-09395
Pb++ 2 1-501 0-2647
O 2 1:309 0-6795
ge" 2 1-580 0:9202
- 2 1-644 1-055
Te— 2 1-773 1142
SO, 2 1-956 1-048
NH-- 2 1-:370 0-8361
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the ionic radii should add up approximately to the interionic spacings in crystals. It
would be interesting to compare a typical set of these radii with the univalent and
multivalent radii calculated in this paper.

The univalent radii of Pauling (1960) are compared with our r, values in table 3.
Our r, values are larger than those of Pauling’s for the cations and smaller for the
anions. It is not possible to resolve the question as to which of the two sets is closer
to reality since the actual radii of ions are generally not known in ionic crystals. In a
few crystals, electron density distributions have been obtained by x-ray methods.
In NaCl (Witte and Wolfel 1958; Schoknecht 1960) the electron density suggests a

Table 3. Univalent radii (in A) as given by Pauling (upper lines) and the present

theory (lower lines).

H- ) Lit+ Bet+

2:08 060 0-31

1-376 0-743 —
o F- Na* Mg*+
1-76 1-36 095 0-82
1:747 1-354 1-106 1-033
S— Cl- K+ Cat+
2:19 1-81 1:33 1-18
2-055 1-708 1-466 1-375
Se— Br- Rb+ Sr++
2:32 1-95 1-48 1-32
2-182 1-836 1-604 1-518
Te—- I- Cs* Bat+
2:50 2-16 1-69 1-53
2:296 2-005 1-824 1-712

Table 4. Crystal radii (in A) as given by Pauling (upper lines) and the present theory

(lower lines).

H- Li* Bet+

2-08 0-60 0-31

1-376 0-743 —
o F- Na* Mg+
1-4¢ 1-36 0-95 0-65
1-309 1-354 1-106 0-991
S— Ci- K+ Cat+
1-84 1-81 1:33 0-99
1-580 1-708 1-466 1-:278
Se—- Br- Rb* Sr++
198 1-95 1-48 113
1-644 1-836 1-604 1-415
Te—- I- Cs+* Bat+
2:21 2-16 1-69 1-35
1-773 2-005 1-824 1574
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radius of 1-17 A for Na*+and 1-65 A for CI~. Our r, values are closer to these numbers
than those of Pauling’s radii.

We compare our multivalent radii r, with those of Pauling in table 4 (the ionic
radii of most of the other authors mentioned above are closely related to Pauling’s
multivalent radii). The striking feature of table 4 is that the opposing shifts in the
radii of the cations and anions are very much more pronounced here. This occurs
because the two methods of calculation are different. Pauling’s approach is one of
equal compressibility by which he scales down all the radii by approximately a
constant factor. In our theory, on the other hand, the difference between the r,, and
r, values of an ion depends on its compressibility, which is large for an anion and
small for a cation. Thus, for the anions, we predict a large change from r, to rp,
whereas, for the cations, the changes are much smaller. The comparatively large
polarisabilities of anions seem to favour our picture of soft anions and much harder
cations as against Pauling’s ‘equi-compressible ions’.
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