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Abstract. The problem of the relative stability of ionic structures is still unsolved
current semi-empirical theories wrongly predict the caesium halides to have the NaCl
structure. We point out here that these theories also predict some of the other alkali
halides to occur in cubic ZnS structure. To understand these discrepancies, we study
the effect of various interactions (such as second neighbour repulsion, van der Waals
interaction and differences in ionic compressibilities) on the relative stability of
simple structures. The results throw into question the radius ratio approach. It is
suggested that one could allow for the presence of three-body interactions by relaxing
the requirement that the repulsion interaction should be strictly proportional to
the number of neighbours. Such an approach might explain the relative stability of
simple ionic structures.
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1. Introduction

One of the outstanding problems in the theory of cohesion in ionic crystals is the
question of the relative stability of even the simplest structures. Among the fre-
quently studied alkali halides, the experimental observation is that all of them exist
in the NaCl structure except CsCl, CsBr and CsI which take up the CsCl structure.
Apart from some very detailed quantum mechanical calculations (e.g., Lombardi et al
1969; Cohen and Gordon 1975), no simple theory has made any significant progress
in explaining the observed structures.

The earliest and simplest approach to the relative stability of ionic structures was
based on the concept of radius ratio (see Evans 1964 for a discussion). This theory is
basically qualitative and at best, only semi-quantitative. Although it has the advant-
age of simplicity, the very fundamental assumptions on which it is based may be
questioned as will be shown in the present paper (§§ 2, 5.2). The approach is there-
fore not quite reliable.

Detailed theories of ionic crystals attempt to take into account the various known
interactions present in these crystals. Since the attractive interactions are generally
well understood, most theories concentrate on calculating the repulsive forces, the
popular approach being semi-empirical. The pioneering studies were by Born (1923)
who wrote the repulsion energy in a binary ionic crystal in the form B/r* where r
is the interionic spacing and B and n are parameters determined by fitting crystal
data. This function was soon replaced by an exponential of the form 4 exp (—r/p)
and has been further modified in many ways by later workers (Tosi 1964 gives a re-
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view). All these theories have been quite successful in fitting the experimental lattice
spacings and compressibilities of ionic crystals. But when the same potentials are used
to calculate the free energies of competing structures to decide the stable structure,
the results are often quite different from observation. In the alkali halides, there are
two significant discrepancies (cf. table 1)

(i) CsCl, CsBr and Csl are wrongly predicted to occur in the NaCl structure.

(ii) Some of the lithium and sodium halides are found to be more stable in the
ZnS structure (this discrepancy is apparently being pointed out here for the
first time).

There have been some suggestions such as van der Waals forces (May 1937, 1938;
Jain et al 1976; Wallat and Holder 1978), multipolar deformation (de Wette 1959),
etc., as to the important interaction determining the relative stability of structures,
but none of them has been very convincing so far. Since there are a number of inter-
actions and effects present in ionic crystals, the question is by no means straightfor-
ward. We attempt to clarify the issue in the present paper by presenting the results
of a systematic study of the effect of various interactions on the relative stability of
binary ionic structures. It is hoped that this will generate some new insight into and
possibly a solution to the problem.

Table 1. Structures of the alkali halides predicted by the theory of Huggins and
Mayer (1933). Wrong predictions are marked with crosses.

Structure predicted

Crystal (S)ttr)::l;vuig by Hugg(itll; ;;;d Mayer
LiF NacCl ZnS X
LiCl NacCl ZnS X
LiBr NaCl NaCl
Lil NaCl NaCl
NaF NaCl ZnS X
NaCl NaCl NaCl
NaBr NaCl NaCl
Nal NacCl NacCl
KF NacCl NaCl
KCl1 NaCl NacCl
KBr NaCl NaCl
K1 NacCl NacCl
RbF NaCl NacCl
RbCl NacCl NacCl
RbBr NacCl NaCl
RbI NacCl NacCl
CsF NacCl NaCl
CsCl CsCl NaCl x
CsBr CsCl NaCl x

Csl CsCl NaCl x
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2. The radius ratio approach

The radius ratio approach to the relative stability of structures makes the following
assumptions:

(i) Ions are hard spheres with fixed radii.

(ii) In the absence of contact between second nearest neighbours, the structure
with the highest Madelung constant « occurs. In binary ionic crystals, this
is the CsCl structure. ,

(iii) If the higher a structures have second neighbour contact, then the structure
with the highest a among those not having such contact occurs. Thus, if CsCl
is eliminated, NaCl structure occurs and if even this is not allowed, cubic ZnS
structure occurs.

The presence or absence of second neighbour contact in a given structure is a geo-
metrical question which evidently depends only on the radius of the constituent ions.
Motivated by this, we use a plot of r_ (anion radius) against r, (cation radius) for the
discussion in this paper. The twenty alkali halides have been marked on such a
plot in figure la using the radii of Narayan and Ramaseshan (1976, 1977). On this
figure, we can talk of regions of stability of the three simple structures CsCl, NaCl
and ZnS. The experimental situation has been demarcated by the two lines. At
large values of r,, there is a region of stability of the CsCl structure; this region in-
cludes the crystals CsCl, CsBr and Csl. In the middle, there is the region of NaCl
structures, which includes all the other alkali halides. Finally, at small values of r_,
we have introduced a region of stability for ZnS structure; this has been included
on theoretical considerations, there being no experimental data here.

Using the experimental demarcations as reference, we have also shown in figure 1
the regions of stability predicted by the radius ratio approach. Here there is a prob-
lem because several estimates of ionic radii exist. Figure 1b corresponds to the classi-
cal ionic radii (Evans 1964) while figure 1c is obtained with the crystal radii of
Shannon (1976). We may mention that the crystal radii are generally closer than
the classical radii to actual ionic radii as obtained from x-ray electron density maps.

The results of the radius ratio approach are not very close to experiment, but they
are rather good considering the qualitative nature of the argument. This is all the
more surprising since, as we show in § 5, the underlying assumptions of the theory
are quite questionable. One suspects the ‘ good ’ results of figure 1 to be a coin-
cidence.

3. Predictions of current semi-empirical ionic theories
Taking the theory of Huggins and Mayer (1933), which is a typical semi-empirical
theory of ionic crystals, we have calculated the predicted stable structure for the alkali

halides. The results are shown in table 1.* We notice two kinds of discrepancies:

(i) The three crystals CsCl, CsBr and Csl are predicted to occur in the NaCl

‘*Other theories give similar results and so have not been included.

P.—9
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Figure 1. Regions of stability of CsCl, NaCl and cubic ZnS$ structures in the r,—r_
plot of binary ionic crystals. (a) Experimental results. (b) Radius ratio approach
using the classical ionic radii of Evans (1964), (c) Radius ratio approach using the
crystal radii of Shannon (1976).
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structure. This is a well-known problem and all attempts at resolving the
question of relative stability of ionic structures have aimed at solving this,
though without much success so far.

The three crystals LiF, LiCl and NaF are predicted to occur in the cubic ZnS
structure. We have verified that this surprising and hitherto unrecognised
defect is present in all other current theories of ionic crystals. The problem,
it appears, is equally bad in divalent ion crystals; the predictions of the theory
of Huggins and Sakamoto (1957), for instance, are shown in table 2. The
surprising occurrence of the ZnS structure in ionic theories is explained in

§ 5.1(ii).

4. Effect of various interactions on the relative stability of structures

The few suggestions that have been made so far (such as increasing the van der Waals
coefficients) have aimed at solving problem (i) above. Now that we recognise the
presence of two discrepancies, at, so to say, opposite ends of the spectrum, the posi-
tion becomes vastly more complicated and it is quite difficult to identify any single
effect which could solve both problems. However, to make a beginning, we present
here the effect of various prominent interactions on the relative stability of structures.
The calculations and arguments are based on the compressible ion theory of ionic
crystals (Narayan and Ramaseshan 1974, 1976, 1977; Narayan 1979).

Table 2. Structures of the alkaline earth chalcogenides predicted by the theory of
Huggins and Sakamoto (1957). Wrong predictions are marked with crosses. No dis-
tinction is made here between cubic ZnS and hexagonal ZnO structures.

Structure predicted by Huggins and

Crystal (S)tlzlsxf:l;:ﬁ(ei Sakamoto (1957)
a=2-5A a = 3-0A
BeO ZnO ZnS ZnS
BeS ZnS ZnS ZnS
BeSe ZnS ] ZnS ZnS
BeTe ZnS ZnS ZnS
MgO NaCl ZnS X ZnS X
MgS NaCl ZnS X ZnS X
MgSe NacCl .ZnS X ZnS X%
MgTe ZnO ZnS NaCl x
CaO NaCl ZnS X ZnS X
CasS NaCl ZnS X NadCl
CaSe NaCl NaCl NacCl
CaTe NaCl NaCl ) NaCl
SrO NaCl ZnS X ~ NadCl
SrS NacCl NadCl NacCl
SrSe NaCl NacCl NaCl
SrTe NacCl NacCl NaCl
BaO NaCl ZnS X NaCl
Ba$S ) NaCl NaCl NaCl
BaSe - Nacl NaCl NacCl

BaTe NacCl NaCl NacCl
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To consider the effect of various interactions, we consider progressively more
detailed pictures of ionic crystals, in each case delineating the regions of stability of the
three simple structures in plots similar to those already discussed in figure 1.

(i) From the work of Narayan (1979), it is known that anions are much more

(i)

(iii)

(iv)

compressible than cations. So, we initially assume the cations to be approxi-
mated by hard spheres of radius r,. Also, as a crude first approximation,
we consider the presence of only the Madelung energy among the attractive
interactions and only first neighbour repulsion. These are the very minimum
of features necessary to have a stable, compressible crystal. For this highly
simplified model, calculations have been carried out for ionic crystals with the
four anions F-, ClI-, Br~ and I~, for cation radii r, ranging from 0 to 2 A.
The regions of stability so obtained are shown in figure 2b. Significantly,
most of the area belongs to the NaCl structure with no region at all for the
CsCl structure. Also, surprisingly, there is a small region of stability for the
ZnS structure.

In the next set of calculations, the model of (i) above was improved by the
inclusion of second neighbour repulsion. The results are shown in figure 2c.
Now we see that CsCl has been pushed further away whereas ZnS has moved
up, taking over all the lithium and one of the sodium halides.

In the next set of calculations, van der Waals interactions were also included.
Using the known values of C and D for the alkali halides (Hajj 1966; Mayer
1933), values for hypothetical cations of intermediate radii were obtained by
interpolation. The results (figure 2d) now show that the CsCl structure
dramatically becomes competitive with NaCl for the larger cations, while the
ZnS-NaCl boundary has hardly moved.

In the final set of calculations, the softness of the cations was also included
so that this corresponds to the full theory, including all known effects. Here
again, an interpolation was made for intermediate cations using the known
univalent radii and compressibilities of the alkali ions (Narayan 1979). The
results are shown in figure 2¢. As mentioned earlier, in the full theory, the
caesium crystals are more stable in the NaCl structure, though the heartening
feature is that the boundary is not far away. However, the continuation of
the ZnS region well within the range of the alkali halides is rather disturbing.

5. Discussion

5.1. Results of figure 2

The important results of the calculations depicted in figure 2 are:

®

(i)

The CsCl structure occurs only when van der Waals interactions are consi-
dered and then too only when there are large, polarisable cations. The slightly
larger value of e, compared to ay,cy is inconsequential in deciding the
relative stabilities of the two structures.

The lithium and some of the sodium halides are obtained in the ZnS structure.
This result is hardly affected by the presence or absence of the van der Waals
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Figure 2. Regions of stability of CsCl, NaCl and cubic ZnS§ structures in the r,—r_

plot of binary ionic crystals.

(a) Experimental results. (b) Predictions with a highly

simplified model having hard sphere cations and compressible anions and consider-
ing only Coulomb attraction and nearest neighbour repulsion. (¢) Hard sphere cations
and compressible anions; Coulomb attraction; nearest and next nearest neighbour
repulsion. (d) Hard sphere cations and compressible anions; Coulomb and van der
Waals attraction; nearest and next nearest neighbour repulsion. (¢) Compressible
cations and anions; Coulomb and van der Waals attraction; nearest and rext nearest

neighbour repulsion.
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interactions. The occurrence of ZnS structure for some of the alkali halides
needs some discussion. This fact has not earlier been mentioned anywhere
in the literature. The general belief has been that the ZnS structure with its
low value of a cannot occur in ionic crystals except in cases of abnormally
large radius ratios. However, the low coordination number in ZnS actually
causes a shift in equilibrium to smaller values of r, which in some cases can
more than compensate the effect of smaller «. (Note: Madelung energy is
- —a ¢/r). This can apparently stabilise the ZnS structure in many crystals
(cf. tables 1 and 2).
(iii) Among the four sets of calculations discussed in § 4, the set (iii) is the closest
to experiment, although set (iv) is the one which includes all the interactions.

5.2. Implications for the radius ratio approach

One of the definite results of the present calculations is that the radius ratio approach
is thrown into doubt. In this approach, it is assumed that, in the absence of second
neighbour repulsion, the CsCl structure would occur. .On the other hand, the calcu-
lations of set (i) in § 4 where second neighbour repulsion is neglected show that CsCl
does not occur at all. The reason is similar to that discussed in the previous para-
graph viz., that although ay,~ < acecp PNnact 18 2150 < regey and it turns out that
in most cases (a e¥/r)y,c) > (@ €/r)csc-  Secondly, the radius ratio approach
assumes hard sphere ions so that second neighbour repulsion arises only when the
corresponding ions touch. On the other hand, in more realistic models, second
neighbour repulsion occurs at all radius ratios and is always higher in the CsCl
structure. Finally, our calculations show that the only interaction which favours the
CsCl structure is the van der Waals interaction which is never considered at all in
radius ratio calculations. Because of the above arguments, we believe that the
radius ratio approach is not reliable and any correct results obtained from it are
probably fortuitous.

5.3. Implications for the problem of relative stability of structures

(i) One of the popular approaches to the problem of the relative stability of
structures is to attempt to increase the value of the van der Waals coefficients
(e.g., May 1937, 1938; Jain et a/ 1976; Wallat and Holder 1978). Our studies
indicate that this would stabilise the CsCl structure for larger cations. Since
the NaCl-CsCl boundary is seen to be quite close to the crystals of interest
(figure 2e), this would appear to be a promising line. However, it turns out
that the value of C has to be increased almost three-fold, which is far-fetched.
But, the bigger drawback to this approach is that the present calculations
clearly indicate that the van der Waals interaction hardly affects the ZnS-NaCl
boundary so that this method will not solve the problem of the occurrence of
ZnS structures.

(ii) Set (iii) of § 4 seems closest to experiment. In this set of calculations, the
cations are considered to be hard spheres. It is tempting to take this as a
theory of ionic crystals in order to solve the problem of structural stability.
However, the theoretical compressibilities of the crystals would then differ
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considerably from the measured values, which is not acceptable. In fact, it was
shown long ago by Hund (1925) that one can stabilise the CsCl structure by
reducing the crystal compressibility.

(iii) We suggest here an alternate approach which is quite different from the main
line of thought. A basic feature so far in all theories of ionic crystals is that
the repulsion energy at a given interionic spacing is taken to be directly pro-
portional to the number of neighbours. Thus, the nearest neighbour re-
pulsion energies in CsCl, NaCl and ZnS structures at a constant value of r
are taken to be in the ratios 8:6:4. We propose that this may not necessarily
be so. Suppose the ratios are taken to be, say, 6:5:4. Obviously, this will
shift the boundaries in figure 2e to the left; the important feature is that both
boundaries (ZnS-NaCl as well as NaCl-CsCl) would move approximately to
the same extent, which is a desirable objective. We point out that the above
proposal is not as unreasonable as one might initially suppose. The presence
of three-body forces will lead to similar effects. It is not without significance
that the quantum mechanical theory of Lombardi et al (1969) requires the
inclusion of three-body integrals to obtain reasonable results. We have in-
corporated the above suggestion in a physically attractive generalization of the
compressible ion theory. The results, which are quite encouraging, are
discussed in a forthcoming paper (Narayan and Ramaseshan 1979).
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