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Effect of an axial magnetic ficld on the Poiseuille flow of
a nematic liquid crystal
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Abstract. The effect of an axial magnetic field on the Poiseuille flow of nematic
p-azoxyanisole (PAA) has been computed using the Ericksen-Leslie continuum
theory. The apparent viscosity decreases appreciably in the presence of the
magnetic field. Orientation and velocity profiles for different shear rates and
magnetic fields are presented.

Keywords. Liquid crystal; p-azoxyanisole; Ericksen-Leslie continuum theory.

1. Imtroduction

The flow properties of a nematic liquid crystal are very much different from those
of an ordinary fluid. For example, the viscosity of an ordinary fluid is inde-
pendent of shear rate, while the coefficient of apparent viscosity of a nematic
(defined as the ratio of shear stress to average velocity gradient) may rise by as much
as 1009, as the shear rate is decreased. These unusual properties are now
well explained in terms of Ericksen-Leslie theory (Ericksen 1962, Leslie 1968)
Atkin (1970) developed the analytical theory of Poiseuille flow of a nematic liquid
crystal on the basis of the Ericksen-Leslie equations. Recently Tseng er al (1972)
numerically solved the differential equation obtained by Atkin and presented
detailed calculations for the case in which the molecules are oriented perpendi-
cular to the wall. These results were found to be in good accord with the experi-
mental observations of Fisher and Fredrickson (1969). In the present paper we
investigate the effect of an axial magnetic field on Poiseuille flow. It turns out
that the apparent viscosity is quite strongly influenced by the magnetic field.

2. Theory

In the continuum theory of liquid crystals we describe the anisotropy of the
structure by a dimensionless unit vector n called the director, and set up differential
equations both for the velocity » and for the director n. They are

P'bx = Fy + ty,

P1 .’.11=Gi+gl+'”il,l , nH



20 U D Kini and G S Ranganath

p is the density of the fluid, p, the moment of inertia of the director, v; the velocity,
F, the external body force per unit volume, G; the external director body force
per unit volume, ¢, the stress tensor, =y the director surface stress and g; the
intrinsic director body force;*
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Here u, to ug are the viscosity coefficients introduced by Leslie (1968). W is the
Frank elastic energy per unit mass given by Leslie (1968) [Frank (1958)].

20W = Kooty jny 5+ Ky — Ky — K,4) Ry,
+ (Kaz — Kgpo) ninyiy ity + Kyunyny 6)

with Ky, Kss, Kas and Ky as the elastic constants of a nematic liquid crystal. In
(2) and (4) p and y are arbitrary constants, which arise from the constraints that
the fluid is incompressible and that the director is of constant magnitude.

For Poiseuille flow in the presence of a homogeneous axial magnetic field H
the steady state equations are
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f(8) = Ky; cos? 8 + K3 sin® 8
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Also from Parodi’s relation (Parodi 1970) p, + p#3 =ps — - In the above

* In reality G; and g; are torques per unit volume but in conformity with standard usage [Leslie
(1968)] we refer to them as forces; similarly =y is the director surface torque.
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equations @ = dp/dz the pressure gradient, # the angle between the tube axis and
the director and (Ay) the anisotropy of diamagnetic susceptibility. Equations
(7) and (8) are solved subject to the boundary conditions

80 =0, 6(R)=40, and v(R) =0
where R is the tube radius and 6, the orientation at the wall.

3. Results

To simplify the computational procedure we transform (7) and (8) using a different
variable ¢ = al/?r. ’
dz6 1 df df?)2 n 1df _ Ky sin 20 n (Ay) H?sin 8 cos ¢
£d¢ 262 1(9) f(8) a*?

ag+ o a0 \d
Ay + A; cos 20
oA ) s 1 ()
T HF O ® (10)
do al/3¢
= e 11
d¢ 2g (6) (n
Tseng et al (1972) solved the above equations for H=0and §, = — }=. One can

employ Runge-Kutta method to solve eq. (10) numerically. The procedure is to
assume a value of 0’ = d8/d¢ at ¢ =0 and to integrate eq. (10) upto 8 = 6,, at
which ¢ = £, so that R = £aV/3 :

If we simultaneously integrate eq. (11) we can get Q, the rate of flow |

0 = —2ma | {0 b0} — 4w (t) &7] 12
where
! éd¢ '
w(¢) = —_-o 2-g—(7) with w (0) =0.
The velocity profile is given by
) v () =[w () —w)a? (13)

Then the apparent viscosity is given by

n R (gl’z-)z x

Table 1. Viscosity and elastic constants of PAA

(14)

u#’s (poise) K’s (dyne)
= —0-038 pe= 0-068 K, = 49 X107
pe = —0-068 ps = 0-048 Ky = 10-5 x 1077
H3y = 0'000 He = -‘0'02

N= A
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Figure 1. Apparent viscosity 1 of PAA versus 4Q/nR for a tube radius of R = 55-54.
The values of (Ax) H? and 8, are (@) 0, —3=; (b) 1:23, —1n; ()0, —}n; (d) 24-2,
—4n; (o0, —4wor O, O.

We have computed the apparent viscosity for PAA for two values of (Ay) H?,
24-2 and 1-23 CGS respectively, with a homeotropic (perpendicular) wall align-
ment for a tube radius = 55-5 . Figure 1 shows the results. In our calculations
we have used w’s and K’s which give a very good fit of  (versus 4Q/=R) with [the
experimental results of Fisher and Fredrickson (Tseng et al 1972). Table 1 gives
the values of these parameters. Here A, = — A, and in addition Parodi’s relation
is satisfied.

The curves for (Ayx) H2+# 0 in figure 1 are not universal in that they cannot be
used for any value of R. This is so because the scaling laws (which leave the
differential equation invariant) first obtained by Ericksen (1969) and later
applied to Poiseuille flow by Atkin (1970) do not hold in the presence of an external
perturbation like a magnetic field*. For this reason magnetic field results are
presented for a tube of finite radius (in our case = 55-5u).

If there is weak anchoring at the wall and the homeotropic alignment is disturbed,
there can of course be considerable errors in the experimental determinations. To

* Recently B A Finlayson [Liquid crystals and ordered fluids, eds J F Johnson and R S
Porter, Plenum Press (1974), Vol. 2, p. 211} has computed the viscosity and transport properties
for a flow between parallel plates, in the presence of a magnetic field. Also, it has been shown
in this paper that by using a dimensionless group containing the parameter (A x) H?/d (d being
theJgap width) one can get ‘ common’ curves for apparent viscosity versus shear rate, i.e., if the
gap width is doubled and the field is increased 21/2 times the solutions remain unaltered for this
parameter, We are grateful to a referee for bringing this work to our notice,
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Figure 2. Orientation profiles at different shear rates for (Ax) H® = 24:2 (A) and
for (Ax) ‘H? =123 (B), with homeotropic wall alignment. The values of 4Q/=R in (A)
are (a) 0-003045; (b) 0-03354; (c) 0-1345 and in (B) (a) 0-001245; (b) 0-004167
(c) 0-032438; and (d) 0-1372.

illustrate this point, we have computed the apparent viscosity for a wall orientation
= —}= for H =0 (dashed line in figure 1). A non-homeotropic wall alignment
decreases the apparent viscosity. This is in qualitative agreement with the experi-
mental observation of Fisher and Fredrickson who found a decrease in » when
they attempted to effect parallel alignment at the wall.

For H =00, 0, = —4r or H =0, 0, =0 the liquid crystal behaves like the
anisotropic fluid of Ericksen which has neither a surface stress nor an elastic con-
tribution to the intrinsic director body force. Figure 1 also includes this case.
In all our calculations R is accurate to 4 0-5x and 3 to 0:2%.

In figures 2 (A) 2 (B) we have given the orientation profile at different shear rates
for (Ax H2 =24-2 and 1-23 (or H = 13,340 and 3,000 G) respectively. At the
same shear rate the transition of the director orientation from § =0 to § = — i
becomes more and more abrupt as the magnetic field increases. The same pheno-
menon is observed when the shear rate is increased keeping the field a constant.
The effect of the magnetic field on the velocity profile is shown in figure 3. The
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Figure 3. Velocity profiles at different values of 40/=R and same field (curves a and
b) and nearly same value of 4Q/#R and different ficlds (curves b and ¢). Values of
(Ax) H?and 4Q/=R are (a) 1-23, 0-001245; (b) 1-23,0-004167; (c) 24-2,0-003045;
and (d) (Ax) H® =00 or 4Q/=R =oco (truly parabolic).

profile which is non-parabolic at low fields (or low shear rates) tends to become
truly parabolic only when the field or the shear rate is extremely large.
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