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Of Connections and Fields – II
Chern’s Mathematical Ideas in Physics
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In the ¯rst part of this article1 we gave an ele-
mentary introduction to Chern's ideas and their
impact on modern physics. In this concluding
article we describe some more advanced applica-
tions of Chern's ideas. This second part is some-
what more demanding than the ¯rst part and is
addressed to students with some background in
mathematics and physics.

In the ¯rst part we described some elementary occur-
rences of Chern's ideas in physics. We now treat a few
more advanced topics from elementary particle physics.
The standard model of elementary particle physics relies
heavily on `gauge theories'. Classically, gauge theories
are just connections on ¯bre bundles, a structure that
mathematicians like Chern have studied. To see the re-
lation between the mathematics and the physics, one
needs to view gauge theories from a slightly advanced
point of view. Let us do this starting with electrodynam-
ics. Recall that electrodynamics is described by a vector
potential A¹(x), where ¹ = 0; 1; 2; 3 labels the compo-
nents of the 1 form A = A¹dx¹ and x¹ represent the four
coordinates of a space-time point. Let Ã(x) be the wave
function of a particle with charge q. The theory enjoys a
symmetry called `gauge invariance'. The Lagrangian of
electrodynamics is invariant under the transformations:
A¹ ! A¹ + u¡1@¹u and Ã ! uÃ, where u = exp iqÂ(x)
and Â(x) is an arbitrary real function of x. u(x) is a
complex number of modulus 1, i.e an element of the
group U(1). In modern language, electrodynamics is a
U(1) gauge theory. Note that there is no gauge invari-
ant meaning to comparing the wave function at di®er-
ent space-time points. The ordinary derivative @¹Ã is
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Box 1. Local Versus Global Description

Although in the main article, we have used coordinates x¹, these need not be globally
de¯ned all over space time. It is enough if the spacetime manifold (which is the same
as the base space B) can be covered by charts, each of which admits local coordinates.
When charts overlap, we require that the coordinate transformation connecting di®erent
systems of coordinates be compatible. Similarly, the vector potential A may only be
de¯ned in local patches. These patches can be `sewn together' like a quilt to produce the
global picture. In the overlap of patches, we require that there is a gauge transformation
connecting di®erent vector potentials. Mathematicians have a global way of describing
this structure: one thinks of a ¯bre bundle with U (1) as ¯bre and B as the base. (The
¯bre is U(1) because we are concerned here withU (1) connections as in electromagnetism.
More generally, the ¯bre is some group manifold.) Replacing the ¯bre with some other
group such as SU(2); SU (3) of SU (N) leads to non-Abelian gauge theories. In the
mathematical description, a connection is a rule for horizontally lifting curves in B to E.
In general the horizontal lift of closed curves in B may be open in E. One returns to the
same ¯bre but to a di®erent point on the ¯bre. This means that the connection is not
integrable. A local measure of the non-integrability of the connection is the curvature,
which physicists identify with generalised electric and magnetic ¯elds.

not gauge invariant. However, the covariant derivative
D¹Ã = @¹Ã ¡ A¹Ã is a gauge invariant object. This
requires the use of additional structure, the vector po-
tential A¹. Mathematically this additional structure is
called a connection (See Box 1). This is one of the most
important mathematical ideas to have entered physics
and this is an important focus of this article.

Mathematically, we view the complex-valued wave func-
tion of the charged particle as taking values in a ¯bre,
a vector space of one complex dimension. A connection
gives us a rule for comparing wavefunctions on ¯bres at-
tached to di®erent points. This rule is in general not
integrable: given three points (a; b; c) in B, with ¯bres
Fa;Fb;Fc, comparing Fa with Fb and Fb with Fc is not
the same as directly comparing Fa with Fc. This lack of
integrability is locally captured by the curvatureF of the
connection, which is in local coordinates, the commuta-
tor of the covariant derivative: F¹º = D¹Dº¡DºD¹. F
is an antisymmetric tensor and therefore a 2 form (see
Box 2).
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Box 2. Di®erential Forms

Forms are generally found just under integral signs. In a multiple integral (say d dimen-
sional), one slices up the region of integration into parallelopiped cells. The integral can
be split up into contributions, one from each cell and this is proportional to the d volume
of the cell. The d volume of a cell is naturally expressed as a determinant. For example,
the volume of a three dimensional parallelopiped with sides (~a;~b;~c) is ~a:(~b £~c) or

det

0
@

a1 a2 a3
b1 b2 b3
c1 c2 c3

1
A :

Determinants are antisymmetric objects and switch sign when two rows (say, a and b
above) are exchanged. p-forms are antisymmetric tensors of rank p. p-forms can be in-
tegrated over p dimensional manifolds. For example, 0-forms are just ordinary functions
and `integrating' a 0 form over a 0 dimensional manifold (a point) just consists of evalu-
ating the function at that point. 1-forms are like the vector potential in electrodynamics
and the line integral

R
A¹dx¹ is a familiar object from electromagnetic theory. An ex-

ample of a 2-form is a magnetic ¯eld and
R

S
~B:d~S is the integral over a two dimensional

manifold S. More usually we convert the vector ~B into a second rank antisymmetric ten-
sor F = Bi²ijk and write

R
S F . Forms provide us with a particularly powerful language

for expressing physical ideas. Unlike other tensors, di®erential forms can be integrated
(that's how we introduced them) and also di®erentiated. Simply di®erentiate the p-form
in local coordinates and then antisymmetrise with respect to the p+1 indices. If ® is a p
form, then d® is a p+ 1 form. Antisymmetrisation results in the identity dd® = 0, which
is called Poincare's lemma. This identity includes familiar identities like curl:grad = 0
and div:curl = 0. Forms can be multiplied together: just multiply the p and q forms
and then antisymmetrise in all p + q indices. They can be contracted with vectors to
produce lower rank forms, p¡1 forms. These manipulations do not require any metric on
the manifold. E Cartan was a great advocate of the use of di®erential forms. S S Chern
came into contact with Cartan early in his life and was very much in°uenced by him.
The use of forms has been particulary fruitful in physics. For instance, electrodyanamics
lends itself easily to a formulation in terms of di®erntial forms. The formulation of su-
pergravity takes the Einstein-Cartan theory (which is general relativity souped up with
forms) as a starting point.

Gauge theories are generalisations of electrodynamics
and play an important role in the standard model of
elementary particle physics and also in gravity. Quan-
tum Chromodynamics (QCD), the gauge theory of the
strong nuclear interactions is a non-Abelian gauge the-
ory based on the non-Abelian group SU(3) and the
Weinberg-Salam model of the electroweak interactions
is based on the gauge group SU(2)£U(1). Gravity also
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can be fomulated as a gauge theory (based on a non-
compact group) but applying quantum mechanics to it
is notoriously di±cult and presently an open problem.
For a gauge theory based on the group G, the vector
potential takes values in the adjoint representation of
the group (or more simply, it is a matrix valued object).
Gauge transformations are written as A ! u¡1Au ¡
u¡1du, Ã ! uÃ, where the `wave function' Ã is now a
vector in a representation of G. The `curvature' (or ¯eld
strength to physicists) is given by

F = dA+ A ^A (1)

which also takes values in the adjoint representation of
G. (Like A, F is also matrix valued.) In studying gauge
theories, we often ¯nd that we have to deal with con-
nections with globally nontrivial properties. In the ¯rst
already seen one, the magnetic monopole, which is an
example of the ¯rst Chern class c1. We now describe a
few more globally nontrivial connections.

The Instanton

The instanton is a topologically non-trivial gauge ¯eld
con¯guration which represents tunnelling between states
of Quantum Chromodynamics (QCD) the theory of the
strong nuclear interactions based on the group SU(3).
To simplify matters consider instead an SU(2) gauge
theory, without Fermionic matter. An important state
in the quantum theory is the vacuum state, de¯ned as
the state which minimises the Hamiltonian (or energy).
It is plausible that one can learn about the quantum vac-
uum by considering small quantum °uctuations about
classical static con¯gurations (independent of the time
coordinate x0) which minimise energy. These are given
by F = 0 or A = ¡U¡1dU and thus de¯ne a map from
IR3 to G. ~x 2 IR3 to U(~x) 2 G. Boundary conditions at
in¯nity of IR3 require that U ! Id as j~xj ! 1. So we
really have a map from S3 (the one point compacti¯ca-
tion of IR3) to SU(2), which also has global topology S3.
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These maps fall into topological classes which cannot
be continuously deformed into one another. The classes
are characterised by an integer n, the number of times
U `winds' around SU(2) as ~x winds around S3. There
appear to be multiple classical vacua as would happen
even in a simple quantum mechanical problem if the po-
tential energy function is periodic like cos x. Classically
these vacua are degenerate (they all have the same en-
ergy). But quantum mechanically, there is tunnelling
between them. This tunnelling lifts the degeneracy and
reveals the true vacuum state as a particular superposi-
tion (characterised by µ the vacuum angle) of the clas-
sical vacua. This is entirely analogous to Bloch states
in a periodic potential. The phenomenon of tunnelling
is described in Euclidean IR4 by analytically continuing
to imaginary time. In the path integral formulation of
quantum ¯eld theory, one regards physical amplitudes
as an integral over all classical ¯eld con¯gurations (`sum
over histories'). The amplitude for tunnelling is domi-
nated by the saddle points, the solutions to the classi-
cal equations of motion. These are called `instantons'.
They describe tunnelling between topologically distinct
vacua. These gauge ¯eld con¯gurations are non-trivial
bundles on S4 (the one point compacti¯cation of IR4).
The instanton solution connecting vacua n and n + k
is characterised by its `topological charge' or winding
number

1=N
Z

B
trF ^ F = k; (2)

where N is a normalisation constant. Notice again that
the left hand side is the integral of a geometrical quan-
tity, the Chern density trF ^ F , but the right hand side
is an integer and topological! The instanton is an exam-
ple of the second Chern class. The monopole and the
instanton illustrate the ¯rst two Chern classes. There
are higher order invariant polynomials in F describing
the other Chern classes.
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The Chiral Anomaly

Another context where the Chern density TrF ^ F ap-
pears is the Chiral anomaly, which arises when one cou-
ples a gauge theory to massless fermions. At a clas-
sical level, massless fermions have two conserved cur-
rents j¹ = ¹Ã°¹Ã, the electric charge current and j¹5 =
¹Ã°5°¹Ã, the chiral current. Both currents are conserved:
they satisfy the equation @¹j¹ = @¹j¹5 = 0. The conser-
vation of these currents follows from NÄother's theorem
from symmetries of the classical theory. However, quan-
tum ¯eld theories have an in¯nite number of degrees of
freedom and need regularisation in order to produce ¯-
nite answers. The regularisation procedure results in a
loss of chiral symmetry. One ¯nds that the chiral current
is no longer conserved, but

@¹j¹5 = C²¹º®¯TrF¹ºF®¯ ; (3)

where C is a constant depending on the couplings and
the number and chirality of the fermions and ²¹º®¯ is
the completely antisymmetric tensor. The reader will
recognise the right hand side of (3), the chiral anomaly,
as the Chern density TrF ^ F . The chiral anomaly was
¯rst discovered in perturbation theory and only later
was its global topological signi¯cance realised. There
are clear physical consequences resulting from the chiral
anomaly. The decay of the ¼ meson into two photons
(¼0 ! °°) is forbidden by classical symmetry, but is in
fact observed in nature and understood using the chiral
anomaly.

We just saw that an anomaly in the chiral current has
physical consequences. However if an anomaly occurs in
a current corresponding to a gauge symmetry, the theory
becomes inconsistent. This can be used to impose con-
straints on the allowed matter ¯elds. The matter ¯elds
must be so chosen that the anomaly cancels out (i.e. the
analogue of the constant C in equation (3) is zero) and
doesn't spoil the conservation of charge. Anomaly can-
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cellation is an important principle in present day particle
physics and used in string theory to restrict the allowed
matter content.

Chern-Simons Theory

The Chern density TrF ^ F can locally be written as
an exterior derivative of a 3 form. Let us restrict to
Abelian U (1) gauge theory where F = dA. We have
TrF ^ F = TrdA ^ dA = d[TrA ^ dA], where we have
used Poincare's lemma dd = 0. The three form TrA ^
dA is called the Chern-Simons form. Its integral over a
closed three manifold

R
TrA^dA is gauge invariant. The

Chern-Simons invariant can be used as a Lagrangian to
describe 3 dimensional ¯eld theories. Such ¯eld theories
have found application in the Quantum Hall e®ect. The
Chern-Simons action describes a gauge ¯eld theory with
no local degrees of freedom, a `topological ¯eld theory'.
Such quantum ¯eld theories have proved useful, not only
in physics, but also in mathematics as they lead to a
better understanding of knots!

The Geometric Phase

In the ¯rst part of this article, we described the geomet-
ric phase and showed how it leads to a natural U(1) con-
nection. Berry's phase also leads to non-Abelian connec-
tions. These occur if the eigenspace for each eigenvalue
is of dimension more than one. Examples are sytems
with Kramers'degeneracy, which arises in fermionic sys-
tems with time-reversal symmetry. In such systems,
the time reversal operator T squares to ¡1. We can
think of i; j = T and k = ij as generators of Hamil-
ton's quaternions and we now have quaternionic Hilbert
spaces rather than complex ones. Since quaternions do
not commute, we get a nonabelian connection. Box
3 brings out globally nontrivial connections within the
context of the geometric phase. This part of the article
is more technical and needs working through.
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Box 3. Instantons and Berry's Phase

The geometric phase provides us with examples of globally non-trivial bundles in physics.
To see instantons, we need to consider a four state system with pair wise degenerate
energy levels. The `phase' here is not an Abelian U(1) phase but a non-Abelian U(2)
phase. Consider the ¯ve dimensional Cli®ord algebra generated by f¡i ; i = 1:::5g ¡i¡j +
¡j¡i = 2±ij. These generators can be realised as 4 £ 4 Dirac matrices (°¹;°5 ). We
consider the system described by the Hamiltonian H = xi¡i, where the xi now span a
¯ve-dimensional parameter space IR5¡f0g. Such a system can be realised experimentally
in Nuclear Quadrupole Resonance (NQR). We need only restrict our attention to the unit
sphere in parameter space. The positive energy subspace of H de¯nes a IC2 bundle over
S4. Choosing an orthonormal frame in each eigenspace gives an U(2) bundle over S4.
Just as before, we notice that H(x) = h(x)¡5h¡1(x), where h(x) is now de¯ned by

h(x) =
1 +H¡5p
2(1 + x5)

;

at all points of S4 except the south pole, wherex5 = ¡1. If we pick an orthonormal pair of
positive energy states jvN

® >;® = 1; 2 at the north pole, which satisfy ¡5jvN
® >= jvN

® >,
the states jv®(x) >:= h(x)jvN

® > are orthonormal positive energy states all over the
sphere, except for the south pole, where h(x) is ill-de¯ned. The Berry potential is now a
2 £ 2 Hermitian matrix

A®¯ =< v®(x)jdjv¯(x) >=< vN
® jh¡1dhjvN

¯ > :

A is in fact, traceless and so is really an SU(2) connection. Its ¯eld strength is given by
F = dA + A ^ A and represents an instanton of charge k = 1. Globally the instanton
bundle is S7 and the ¯bres are S3 and the base is S4.

Conclusion

It often happens that mathematicians study structures,
which turn out to be exactly right for describing the
real world. One instance of this is Riemannian geom-
etry, which was developed before Einstein used it in
General Relativity. Another example is the idea of a
connection. This idea too was developed by mathemati-
cians quite independently of the real world. After many
e®orts to understand the world of atoms, nucleii and
quarks, physicists have realised that connections provide
the right description. Are there other such mathemat-
ical objects waiting in the wings to enter the stage of
theoretical physics? Only time (whatever that is!) will
tell.
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