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Abstract. Photons emitted during the formation of primordial hydrogen and helium atoms over the Epoch
of Recombination are expected to be preserved as additive distortions to the Cosmic Microwave Background
(CMB) spectrum. The ‘ripple’ like spectral features from Cosmological Recombination Radiation (CRR) have
never been detected, and are expected to be 9 orders of magnitude fainter than the CMB. Array of Precision
Spectrometers for the Epoch of Recombination (APSERa) is an upcoming ground-based experiment to detect
the CRR signal over 2-6 GHz. While astrophysical foregrounds may be theoretically separated from the
CRR signal using their inherently different spectral characteristics, instrument-generated systematics present
a practical problem. We present the first-ever study to detect the CRR lines in the presence of a non-ideal
antenna, adopting a toy model for antenna beam chromaticity. Using Euclidean distance and Pearson correlation
coefficient as metrics to distinguish between CRR signal presence and absence in a simulation pipeline, we
demonstrate that it is indeed possible to detect the signal using a chromatic antenna. Furthermore, we show that
there are different tolerances to the antenna non-ideality based on the type of chromaticity, observing location,

and LST. These can inform antenna and experiment design for a practical detection.
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1. Introduction

Standard cosmology suggests that the Universe transi-
tions from being fully ionized to predominantly neutral
during the period known as the Epoch of Recombi-
nation. Doubly ionized helium (Helll) transitions to
singly ionized and eventually neutral helium (Hel) over
redshifts spanning 1600 < z < 8000, and ionized
hydrogen recombines to form neutral atomic hydro-
gen over 500 < z < 2000. The physics of the
epoch of recombination has been extensively studied
(Dubrovich 1975; Dubrovich & Grachev 2005; Kholu-
penko & Ivanchik 2006; Hirata 2008; Ali-Haimoud &
Hirata 2010b) and there exist several codes that simulate
the radiative transfer and effective atomic transitions
over this period (Chluba & Ali-Haimoud 2016; Sea-
ger et al. 2011; Ali-Haimoud & Hirata 2010a; Chluba
& Thomas 2010; Sarkar & Khatri 2019; Fendt et al.
2008). A comprehensive review is in Sunyaev & Chluba
(2009). It is important to note that the redshift of recom-
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bination is well after the CMB thermalization redshift
of z ~ 10°. Consequently, any photons that are emit-
ted over recombination are expected to be preserved as
an additive distortion to the CMB spectrum. Whereas
recombination lines are expected to be transitions result-
ing in spectral lines, these lines are smoothed due to the
extended redshift of recombination, as each transition
settles in equilibrium before the next one is effective.
Thus, the cosmological recombination radiation (CRR)
appears to be a broad additive spectral distortion of
the CMB. Whereas the CRR spectrum is predicted to
exist over a wide frequency range, starting as low as
~100 MHz all the way up to ~ THz, a feasibility study
(Rao et al. 2015) (henceforth MSR2015) suggests an
octave window between 2 and 6 GHz is best suited
for a detection from the ground. Over this window,
the CRR has a characteristic quasi-periodic structure
dominated by alpha transitions of the hydrogen atom
(redshifted line transitions, n = 14-13, 13-12, 12-11,
11-10, and 10-9), which cannot be mimicked by any
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Figure 1. The predicted CRR signal that is present as an
additive distortion to the CMB spectrum over 2-4 GHz.
These ripples are dominated by alpha transitions of primor-
dial hydrogen, and a detection can help us study the thermal
and ionization history of the Universe. The prediction comes
from CosmoSpec (Chluba & Ali-Haimoud 2016).

other astrophysical process. The same feasibility study
in MSR2015 introduces Maximally Smooth (MS) func-
tions to describe the foregrounds and provide a method
for foreground separation from CRR in a dataset. Thus,
MS functions exploit the inherent difference in the spec-
tral properties of the CRR and foregrounds (dominated
by Galactic synchrotron emission and the CMB black-
body). Based on the feasibility study in MSR2015, an
experiment, Array of Precision Spectrometers for the
Epoch of Recombination (APSERa), has been proposed
to operate over a frequency range of 2—4 GHz. Figure
1 shows the CRR estimated by CosmoSpec (Chluba
& Ali-Haimoud 2016). A detection of the CRR can
provide an understanding of the thermal and ioniza-
tion history of the Universe. A precise measurement can
provide an additional method to determine cosmologi-
cal parameters (Shaw & Chluba 2011; Rubifio-Martin
et al. 2009), have implications for studying annihilating
dark matter (Chluba 2009), and provide an experimen-
tal measure of the pre-stellar helium abundance of the
Universe (Chluba et al. 2021). A non-detection would
result in a fundamental paradigm shift in cosmology!
Over the 2-4 GHz band, the CRR signal is predicted
to have a brightness temperature of ~1-10 nK. This is
8-9 orders of magnitude fainter than the CMB. A one
part per billion detection is fundamentally challenging.
Traditional methods proposed to separate astrophysi-
cal foregrounds from global cosmological signals are
based on the premise that over sufficiently wide band-
widths, foregrounds are spectrally smooth, whereas the
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cosmological signals are not. MSR2015 presented a
feasibility study with ideal conditions, including a per-
fect antenna and a perfectly calibrated receiver, with
no instrument-induced systematics that can hinder or
confuse signal detection. In practice, any instrument
generated systematics can introduce spurious spectral
artefacts that can hinder or confuse CRR signal detec-
tion. The most subtle and hence pernicious instrument
generated spectral structures are those arising from
the chromaticity of the observing antenna. In specific
the leakage of spectral structure in the foregrounds
into the spectral structure of the measurement set,
dubbed ‘mode-mixing’ (Bowman et al. 2009; Thya-
garajan et al. 2016; Morales et al. 2012), has attracted
a lot of attention in the astronomy community, specif-
ically in experiments seeking to detect the redshifted
global 21-cm signal from the cosmic dawn and epoch of
reionization. Another common contaminant that arises
from the antenna is spectrally complex structures due
to frequency-dependent impedance mismatch between
the antenna and the receiver. The coupling between the
antenna and receiver is parameterized by the antenna
return loss, which can also introduce spectral com-
plexity in the measurement set. Antennas have been
designed for the APSERa experiment (Raghunathan
et al. 2015; Kavitha et al. 2021; Sathish et al. 2024).
Whereas each antenna has improved over the previ-
ous one, it is understandable that achieving achromatic
behaviour to one part per billion is challenging if not
impossible. This paper presents a first-ever attempt to
simulate antenna-chromaticity using a toy-model beam.
It provides evidence that, within reasonable bounds of
specific kinds of chromaticity, the CRR lines can still be
detected. That is, for the first time ever, we demonstrate
that though daunting, it may be possible to detect the
CRR using an antenna that is not perfectly achromatic,
to one part per billion. The simulations demonstrated
herein can be used to further inform antenna designs
for APSERa, present tolerances in beam chromaticity
for detection, and suggest experiment design strategies
for signal detection.

The paper is organized as follows. In Section 2, we
describe the sky-measurement simulation and signal
extraction pipeline. The two metrics of signal detection,
namely, fractional Euclidean distance and the Pear-
son Correlation Coefficient, are described in Section
3. We describe the beam perturbations in the antenna
toy model and their impact on the signal detection
metrics in Section 4. The results are presented in Sec-
tion 5, and we close with conclusions and discussions
in Section 6.
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2. Pipeline: SKky spectrum simulation and signal
extraction

The pipeline adopted herein broadly follows that
described in Sathish et al. (2024); a brief summary is
presented here. The antenna-receiver system measures
the total intensity from the observable part of the sky at
each pixel, weighted by the gain of the antenna beam
G and multiplied by a windowing function determined
by the antenna return loss I'. In the case of an antenna
with no back lobes (zero response below the horizon,
6 = 0), the antenna temperature 7, (v, t) is presented
in Equation (1):

0271 fo% Toky(O, ¢, v,1)G(0, ¢, v)sin6 dO de
22 GO, ¢, v)sin do dp

(D

where I' is the antenna return loss, G(6, ¢, v) is the
antenna beam pattern, Ty is the sky brightness temper-
ature, 6 is the elevation angle, ¢ is the azimuthal angle,
v is the observing frequency, and ¢ is the observation
time.

In a sky spectrum simulating a null hypothesis, we
do not include the CRR, whereas in the case where the
CRR signal is present, we include the CRR as shown in
Figure 1. For a diffuse model of Galactic synchrotron
emission, we adopt a power-law form at each pixel. As
inputs to the model, we use all sky maps at 408 MHz
(Haslam et al. 1982), 1420 MHz (Reich 1982; Reich &
Reich 1986), and 23 GHz (WMAP science data prod-
uct).! The maps are appropriately treated for scaling
and offset corrections and are in brightness tempera-
ture units. All maps are at Healpix (Gorski et al. 2005)
resolution of Ngge = 64 corresponding to a spatial
resolution of 0.9161°. We fit a power law as represented
in Equation (2):

v\ 7
T(eiv ¢iv V) = T(ei? d)is UO) <l)—()> ) (2)

where T (0;, ¢;, v) is the brightness temperature of the
diffuse emission at pixel i at frequency v, vg is the refer-
ence frequency of 408 MHz, and g; is the spectral index
towards pixel i. The fitting algorithm minimizes the chi-
square at each pixel to determine the best fit spectral
index. We note here that there are several comprehen-
sive and complex sky models available in the literature
(de Oliveira-Costa et al. 2008; Rao et al. 2016). Some

L WMAP Science Team.
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Figure 2. Flowchart describing the APSERa sky simula-
tion and signal extraction pipeline.

of these are based on data-driven interpolation tech-
niques, such as using Principal Component Analysis,
to generate sky maps at frequencies between the raw
input maps. Such models can contain unphysical spec-
tral structure that can hinder signal detection to 1 part
per billion. Adopting more physically motivated mod-
els is preferable. However, with intrinsic errors in the
input raw maps ranging from 1 to 10%, these errors
can propagate through complex equations and further
reduce confidence in the overall sky-spectrum. We pri-
oritize signal recovery at a part per billion level from an
ideal spectrum (ideal instrument) and demonstrate that
even without an ideal antenna, metrics of signal detec-
tion can be used to recover evidence of the presence of
the signal. Thus, we adopt the power-law model for the
sky model as demonstrated in MSR2015 (Figure 2).

A calibration equation is included to convert the
beam-weighted sky power to antenna temperature units.
The total mock spectrum is of the order of K. It is impor-
tant to note that in brightness temperature units, the
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Figure 3. Sample sky spectra generated every hour for 24
h in the 2-4 GHz frequency range obtained with the ideal
sin(6) beam pattern antenna.

recombination signal is of the order of 10 nK, which
is ~8 orders of magnitude less than the foreground
brightness temperature. We adopt a beam weight of
sin?(0), with 0° <= 6 <= 90° being the elevation
in degrees above the horizon (6 = 0°), as the ideal ref-
erence antenna pattern. sin(9) is the analytical beam
pattern for a Hertzian or electrically short dipole antenna
that exhibits a wide bandwidth and hence a reasonable
approximation for the toy model. For the ideal case, the
beam pattern remains the same at all frequencies. With
this, sample spectra generated at different time stamps
over 24 h and a finely sampled time-frequency water
fall plot are shown in Figures 3 and 4, respectively.
The latter captures the effect of the rising and setting
of the Galactic centre on the mock spectrum, providing
a check on the simulation.

The mock spectra so generated are then fit with an
MS function of arbitrarily large order (such as order
10). This fitting follows the downhill simplex optimiza-
tion algorithm to minimize the chi-square of the fit to
obtain the MS polynomial coefficients. The order of
the MS polynomial is successively increased, starting
with a second-order polynomial. At each iteration, the
optimization solution is accepted (coefficient values)
only if the solution respects the criteria that there are
no inflection points in the second-order derivative of
the resulting polynomial. If this criterion for smooth-
ness is violated, then the chi-square is manually reset
to a large value to reject the solution, and the algorithm
continues to search for other solutions. By having a large
value (1e5) for the number of iterations that the algo-
rithm will continue to attempt finding a smooth solution
to the equation, the code ensures that a large parame-
ter space is explored, overcoming some local minima,
and the final polynomial is smooth. If, despite several
attempts to find such a solution, the algorithm still does
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Figure 4. A time-frequency plot showing the variation in
the sky spectrum over a period of 24 h. The waterfall plot
clearly illustrates the rising and setting of the Galactic plane.

not find a smooth solution, then it is a confirmation
that the input data contains intrinsic non-smooth fea-
tures. This is reflected in the large chi-square returned.
Any MS function of order 3 or above (order = infin-
ity) will result in the same residual when fitting the
CRR signal. Smooth foregrounds, on the other hand,
are completely described to machine precision level by
MS functions typically of order 4 to 6 based on LST.
MSR2015 has demonstrated that MS functions describe
the smooth components of a dataset, which in the mock
spectra are dominated by foregrounds. The foreground
and the baseline smooth component of the CRR are fit
by the MS function. The fit is then subtracted to obtain
a residual spectrum. This residual spectrum, in the
ideal case, contains the baseline-subtracted CRR signal
when the signal is included in the mock spectrum and
returns the simulated thermal noise in the null hypothe-
sis case. The baseline subtracted CRR signal is used as a
reference template for all further tests, namely, the frac-
tional Euclidean distance (denoted by y herein) and the
Pearson correlation coefficient (o herein).

3. Metrics of signal detection

The process of the cosmological recombination is well
understood, and simulations have few (if any) parame-
ters of large uncertainty. Thus, there is high confidence
in the amplitude and shape of the predicted signal.
This is the basis for using the template of the expected
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smooth baseline-subtracted signal—derived from cos-
mological simulations and passed through the pipeline
for MS subtraction—as a reference for the signal detec-
tion metrics. No known astrophysical processes in the
foreground can mimic this distinctive signature over
the full band. Thus, any artefacts that generate simi-
lar spectral structure in the total spectrum arise from
instrument non-idealities alone, or, pertinent to this
work, from the antenna beam chromaticity. We employ
two standard measures of similarity as metrics of sig-
nal detection, namely Euclidean distance (adapted as
a fractional Euclidean distance, elaborated as follows)
and Pearson correlation coefficient. The Pearson cor-
relation coefficient is defined as scale-independent and
tracks ‘similarity’ in trends between two variables. The
Euclidean distance is applied when the two variables
being compared are on the same scale. Whereas the two
variables being compared in detection tests below are
both residuals on fitting and subtracting mock sky spec-
tra with an MS function, for a test case and reference
(ideal) case, we employ both measures of similarity.
When the beam perturbation is small, it is expected that
the Euclidean distance is a better measure of the simi-
larity between residuals in the test and reference cases
when the order of magnitude of the residual in both
cases is comparable. As the perturbation in the beam
is increased, the residuals are larger in amplitude com-
pared to the reference case. In such cases, we ask if
the mock spectrum continues to retain any indication or
memory of the embedded CRR signal and can discern
this from the null hypothesis using the Pearson corre-
lation coefficient metric. Thus, the Euclidean distance
may be applied in cases when the residuals in the test
and reference case are comparable in amplitude (likely
when the beam perturbation is low). The Pearson Cor-
relation coefficient may be applied to test if the signal
is present or absent when the residual in the test case(s)
are no longer comparable in amplitude to the reference
case.

3.1 Euclidean distance

The Euclidean distance between two points, a standard
measure in mathematics, is the length of the connecting
line segment between the two points in Euclidean space.
We adopt this formalism to describe the Euclidean dis-
tance between two signals, or effectively two arrays of
data points, namely, the residual obtained in the test
and reference cases. The test case signal is the resid-
ual obtained by subtracting the mock spectrum (with or
without the CRR signal) from a best fit MS function,
wherein the mock spectrum is itself generated using a
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Figure 5. Residuals after fitting an ideal sky spectrum—
observed with a perfectly achromatic sin’(0) beam, with the
MS function. The blue residual is for the case when the CRR
signal is present in the total sky spectrum, and the red residual
is for the case when the signal is absent.

non-ideal or ‘perturbed’ beam. The reference case is
always the ideal CRR signal residual obtained using a
perfectly achromatic sin?(#) beam, shown in Figure 5
as the blue solid line.

It is more meaningful to look at the Euclidean dis-
tance not as an absolute number, but as a relative number
when applied to the test cases that follow. A meaningful
detection of the signal can only be claimed if there is a
clear distinction between the presence and absence of
the signal. If beam-induced systematics create artefacts
in a null hypothesis spectrum suggesting a signal detec-
tion, this results in a false positive. Thus, we define the
fractional Euclidean distance y as follows:

E Dpun — EDsig

Yy = , (3)
EDnull

where E Dgig and E Dpy1 are the Euclidean distances
of the test cases from the reference signal, residual
with the CRR present and absent (null hypothesis),
respectively. We note that this definition of y is con-
servatively defined towards rejecting a false positive,
but not towards detecting or rejecting a false negative.

In this definition, the closer the fractional Euclidean
distance is to 1, the stronger the indication is for the
presence of the signal than absence (marginalizing
over artefacts of beam-induced systematics suggesting
a false positive).

In the extreme case when the perturbation to the beam
18 zero, 1.e., the test case is the same as the reference case,
we expect the Euclidean distance for the signal present
to be zero and that for the null case to be large, resulting
in y = 1. Whereas co < y < 1, in the limiting case
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where no distinction can be made between signal pres-
ence and absence, ¥ = 0. Thatis, when the perturbation
in the beam is very large and thus there is a significant
spectral feature in the mock spectrum; the residual in
both cases (CRR present and absent) will look identical
due to the limiting nature of MS functions—the fitting
algorithm saturates when it hits the limit of the first sign
of non-smoothness, perhaps orders of magnitude above
the CRR signal amplitude.

3.2 Pearson’s correlation coefficient

Pearson’s correlation coefficient (o) is a measure of lin-
ear correlation between two variables. In this case, the
two variables are the residuals from the test case x and
the reference case y, with means x and y, respectively.
o is defined in Equation (4):

_ Yo (i =X — )
Q - )
I =02 [ i - 9

o ranges from —1 to 1, namely from perfectly anti-
correlated, O for uncorrelated, and to 1 for perfectly
correlated. Given the well-defined range of o, we can
separately investigate the value o takes in the test cases
when the signal is present and when the signal is absent.
In the extreme cases, when there is no perturbation and
the beam in the test case is identical to the reference
case, o = 1 for the case when the signal is present, and
o = 0 when the signal is absent. When the perturbation
is very large, o can range from —1 < o < 1 in both
cases, resulting in an inconclusive detection suggesting
false negatives when the signal is present and a false
positive when the signal is absent.

Thus, the fractional Euclidean distance and Pearson’s
correlation coefficient provide useful complementary
metrics to signal detection, depending on the amount
of perturbation or non-ideality in the beam, as demon-
strated in Section 5. We now discuss the different beam
perturbations built into the toy model to investigate
the effect of antenna chromaticity on the above-defined
signal detection metrics.

“4)

4. Beam perturbations and their effects

Any antenna in the real world exhibits varying levels
of chromaticity, such as a beam that varies with fre-
quency, especially when operating over a broad range
of frequencies, such as one full octave. Whereas there
are multiple ways in which the beam may change with
frequencies that are typically complex, we consider two
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specific forms of beam variation as a toy model and ask
the question: Is it possible to detect the CRR lines with
such ‘non-ideal’ antenna behavior? Specifically, we
term the two beam frequency-dependent perturbations:
(i) wobbling with two sub-cases, and (ii) stretching.
While simplistic, this exercise is the first step in moving
away from the ideal beam used in the feasibility study
of MSR2015.

As mentioned previously, the analysis here consid-
ers the sin%(9) beam pattern over the full band of 2—4
GHz as the ideal case, where 0 is the elevation angle
defined as zero at the horizon. The scenarios consid-
ered to introduce beam chromaticity in the toy model
are: (i) changing the half power beam width at dif-
ferent frequencies—called beam stretching henceforth
and (ii) tilting of the beam maximum direction with
frequency—called beam wobbling. The beam wobbling
can be realized as two distinct sub-cases, where the
beam strictly wobbles in one direction with frequency—
called 1-D(irectional) beam wobbling henceforth, and
tilting of the beam maximum back and forth—called
2-D(irectional) beam wobbling henceforth. In both
1-D and 2-D wobbling, the central frequency of 3 GHz
maintains a sin(6) beam pattern with the beam peaking
towards the zenith. A visual representation of the beam
perturbation for each case is available in the links in the
respective subsections below.

4.1 Beam ‘wobbling’

The reference antenna beam of sin(9) peaks at an ele-
vation angle 8 = 90°. This is chosen as the beam at
the mid-frequency of 3 GHz. Varying degrees of beam
wobble are introduced to change the direction of the
beam maximum for different levels of perturbation. The
‘amount’ of beam wobble is parameterized by «. Beam
wobbling introduces contributions from foregrounds at
different directions in the sky (effectively different fore-
ground pixels) at different frequencies with varying
beam weight, generating a mock spectrum where spatial
features produce spectral features. The Galactic emis-
sion is itself not very bright over 2—4 GHz, as is the case
at much lower frequencies (~100 MHz); the effect of
beam wobble is not very obvious in the total spectrum.
The effect of the chromaticity-induced spectral struc-
ture is seen instead in the residuals of the test cases.

For a wobble of «°, we model the beam using the
transformed coordinate corresponding to a rotation of
«°. The modified beam weight in the toy model is
realized using Equations (5) and (6) when the beam
wobbles:

GO, p,v) =sin’(©@), (5)
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where

0 = cosfl(sin(é)sin(qb) sin(ay) + cos(f)cos(ay)),
(6)

¢ = tan_l(tan(qb)cos(av) — cot(6)sin(ay)sin(¢)).
(7

To introduce frequency dependence in the 1-D beam
wobble case, the total angle of the wobble « takes the
form in Equation (8):

Wobble angle (vghz) = @y = « (UGHZT3> , (8)
o parameterizes the total range in the peak elevation
angle over the frequency range of 2-4 GHz, with the
shift being equally distributed between —«//2 and «/2
around the zenith (6 = 90°) (Figure 6).

In the case of 2-D wobble, the frequency dependence
takes a modified form given by Equation (9):

2

Figure 7 shows the beam at 2, 3, and 4 GHz in the case
of 1-D beam wobbling. This is also shown in the anima-
tion https://tinyurl.com/46m25zwx. Mock sky spectra
are then generated for varying amounts of wobble, i.e.,
for a range of «. The effect of the beam wobble on
the effective sky region observed is shown in Figure 8,
and the corresponding animation is shown in the link
at https://tinyurl.com/2fd3479¢t. It is clear that different
parts of the sky are weighted differently depending on
the frequency of observation, and this results in spec-
tral features in the mock spectrum and consequently
changes the residual when fitting the same with an MS
function. Mock spectra with perturbation are generated
with the CRR signal and without to provide test resid-
uals, which are compared with the reference residual
using the two detection metrics. The treatment is sim-
ilar for the 2-D beam wobble case, with the difference
that the tilt direction reverses with frequency about the
central frequency of 3 GHz, as shown in Figure 9. The
animated case of this 2-D wobble toy model is shown
https://tinyurl.com/ykfh6tb3.

2 — 3
Wobble angle (vghz) = @y = « (M) .9

4.2 Antenna beam ‘stretching’

The ideal sin?(0) beam has a full width at half maxi-
mum (FWHM) of 90°. In this perturbation, the FWHM
changes, once again weighting the foreground (pixels
in the simulation) differently with frequency, always
retaining the direction of the maximum towards zenith
(90° altitude). This can result in the beam looking
squeezed or stretched. The stretching perturbation is
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Figure 7. Perturbed beam showing 1-directional wobble at
spot frequencies of 2, 3, and 4 GHz, with a total wobble angle
of 20°.

parameterized by B, wherein the beam has a sin®(6)
value or FHWM of 90° at the centre frequency of 3
GHz. For a particular value of 8, we perturb the beam
such that the FWHM of the beam increases smoothly for
the frequencies from 2 to 4 GHz. Thus, the beam looks
squeezed at frequencies below 3 GHz, and stretched
above. For a particular value of maximum stretching,
the beam weight across frequencies (freq) in the toy
model is given by Equation (10),

GO, ¢, v) =sin*(0) + B(vgH, — 3) - sin(20).  (10)
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Figure 8. Beam footprint (at the full width half maximum
point) on the sky shown as an encompassing grey ‘circle’ at 2
and 4 GHz, when the beam is wobbled 15° over the frequency
range.
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Figure 9. 2-directional beam wobble with a total wobble
angle of 10° shown over spot frequencies of 2, 3, and 4 GHz.

J. Astrophys. Astr. (2025) 46:49
Alt 6 = 90°
<= =
e
@ =90" @ = 270°
¢ =180°
Alt 6 = 90°
¢ =90° @ =270°
@ =180°
Alt 6 = 90°
¢ =90 @ =270°

¢ = 180°

Figure 10. Stretched beam from the toy model, 8 = 0.1
(AFWHM = 22.2°).

The perturbed beam at spot frequencies is shown
in Figure 10, and the resultant field of view from the
changing beam footprint on the sky is in Figure 11.
An animation of beam stretching with § = 0.2 is
at https://tinyurl.com/5¢84fnyx with the corresponding
footprint on the sky at https://tinyurl.com/39rduvvs.

Varying the B parameter to a maximum value of 0.25,
we perturb the beam to have a maximum AFWHM of
48° corresponding to an FWHM of ~65° at 2 GHz and
115° at 4 GHz. Figure 10 shows the beam at 2, 3, and 4
GHz with an FWHM variation of 22.2° between them
corresponding to § = 0.1. The field of view of the beam
for B = 0.2 (AFWHM = 41.1°) at both frequencies is
shown in Figure 11.

5. Results

With the beam perturbed as described in Section 4,
mock sky spectra are generated for varying observa-
tion locations and LSTs. In each case, one set of spectra
is generated with the CRR signal included, and another
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Figure 11. Half power beam width region comparison on
the sky shown as an encompassing grey ‘circle’ at frequencies
of 2 and 4 GHz, when the beam is stretched with § = 0.2
(AFWHM =41.1°) in the frequency range.
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Figure 12. Effect of 1-D wobble beam perturbation at
Murchison, 13 h LST. Increasing the perturbation increases
the residuals, suggesting leakage of spatial foreground
features into spectral structures.

is without. The mock spectra are then fit with a Max-
imally Smooth function of order 10 (or any arbitrarily
large order) to generate residuals, which serve as test
cases for further analysis. The two locations of choice
are Bangalore and Murchison, which provide varying
sky coverage from the Northern and Southern hemi-
spheres. The three representative LSTs chosen are at
17 h (corresponding to Galactic centre overhead at
Murchison), 9 h (Galactic anticentre), and 13 h (some-
where in between the two). The variation in observ-
ing location and LST can help discern the effect of
beam chromaticity on the observed sky spectrum and
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Figure 13. Fractional Euclidean distance (y) comparison
for different LSTs at Murchison and Bangalore for 1-D beam
wobbling.

consequently the interpretation of the detection metric
(Figure 12).

5.1 I-direction beam wobble

We examine the performance of the two metrics—
fractional Euclidean distance and Pearson Correlation
Coefficient—for the case when the beam wobbles in
1-Direction, i.e., the beam maximum moves in one
direction over the 2—4 GHz frequency range. The frac-
tional Euclidean distance (y) is in Figure 13. At the
lowest level of perturbation, « = 0, the total wob-
ble angle = 0, and this is identical to the ideal case,
without any chromaticity. As expected for this case,
y = 1. As the perturbation is increased, y is <1 for
small perturbations and y <« 1 for large perturbations.
This is the expected trend, as the residual departs fur-
ther in shape and importantly in amplitude from the
reference case as the beam introduces more structure
in the mock spectrum. In the limiting case, the resid-
ual with the CRR signal and without in the test case
are identical to one another and very different from the
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Figure 14. 1-D wobble: Pearson correlation coefficient (o)

comparison between recombination signal injected vs. null
case, at Murchison and Bangalore. Black dotted line marks
the o = 0.8.

reference case, resulting in y = 0. Placing a thresh-
old of y = 0.8 to claim a detection, we make the
following observations. With a non-ideal beam exhibit-
ing 1-directional wobbling behavior with frequency, the
range of beam non-ideality that is tolerable for signal
detection is finite, where one can distinguish between
signal presence and absence. The tolerance is a func-
tion of observing location and LST, with it being largest
(4.8°) at LST 9 h in Murchison, looking straight away
from the Galactic centre. The tolerance is lowest (0.6°)
at LST 17 h in Murchison when the Galactic centre is
overhead, and any change in the beam behavior trans-
lates more significantly into features in the spectrum.
The corresponding Pearson correlation coefficient is
shown in Figure 14. A few observations can be made
right away. For all locations and LSTs, at zero wob-
ble, o = 1 for the test cases with the CRR signal
present and o = 0 when it is absent. Again, using 0.8
as a threshold to distinguish between the two cases,
the tolerance in the acceptable beam wobble to make
a distinction between the signal present and absent in
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the test cases is larger than when using y. This is as
expected, given o is a more relaxed metric of detection,
as it is a more qualitative comparison of the test and
reference cases. The trends in the location and LST are
similar to y, and in most cases, the tolerance is finite
and non-zero. The underlying effect of the change in
the beam direction on the sky has on signal detection
is evidenced by the richness in the o curves, providing
insight into choosing optimal observing locations and
LSTs.

5.2 2-direction beam wobble

The y and o when the beam is perturbed to have a
shift in the direction of peak wobble about the centre
frequency, i.e., 2-D wobble, are shown in Figures 15
and 16, respectively. Using the same threshold of signal
detection as in the 1-D wobble case, we make the fol-
lowing observations. The tolerance on 2-D beam shift is
much tighter than the 1-D case, which can be attributed
to the intrinsic non-linearity in the beam’s frequency
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dependence. This is attributed to the discontinuity in
the beam behavior at 3 GHz. If one were to necessarily
use the full band, this non-smooth feature at the band
centre would always result in unphysical spike-like fea-
tures in the residuals. Thus, tolerances in simulation,
though finite, can be considered negligible. If the fre-
quency of the beam direction change is closer to a band
edge, i.e., either closer to 2 or 4 GHz, the case would
be closer to a 1-D wobble over a significant portion
of the band, and only the contiguous stretch of fre-
quency where the beam direction is maintained can be
processed. This can help inform antenna design, either
in avoiding peak direction shift entirely or maintaining
the direction of beam shift change close to the band
edge. Other treatments, such as flagging the turnover
frequency, may also be employed. In either case, the
best way to utilize data from an experiment where the
beam changes direction is by dropping channels, and the
more such direction changes, the larger the fraction of
channel loss would be, resulting in lower confidence in
detection.
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Figure 17. Fractional Euclidean distance (y) comparison

for different LSTs at Murchison and Bangalore for beam

stretching.

Investigating the different types of beam wobble
(1-D vs. 2-D) suggests that it is more suitable to have an
antenna with ‘smooth’ changes in its beam systematics
across frequencies. The abrupt change in the wobble
direction leads to a noticeable departure from overall
spectrum smoothness and is best avoided.

5.3 Beam stretching

The metrics of signal detection for test cases when the
beam is stretched with increasing frequency are pre-
sented in Figures 17 and 18. Some observations follow.
Once again, at all locations when the stretching parame-
ter B = 0, the test case with the signal is identical to the
reference case, resulting in ¥y = 1 and o = 1, and the
test case without signal is noise, reflected by 0 = 0. The
tolerance for beam stretching at all locations and LSTs is
finite and significantly larger than that of the best cases
for 1-D beam stretch. This is expected, as the direction
of the beam maximum is always fixed towards zenith,
i.e., towards the same pixel. The effect of beam stretch-
ing only affects the pixels that are naturally weighted
lower, resulting in the spectral structure they introduce
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being down weighted. Whereas the tolerance in general
is larger for Bangalore compared to Murchison which
sees the Galactic centre overhead, it is interesting to
note that the LST of 13 h offers the most tolerance as
the pixels that do enter the beam because of stretch-
ing are more likely to be cooler and thus have a lower
effect on the final spectrum when observed through the
non-ideal beam.

A summary of the tolerances in the different types
of beam perturbation for a metric threshold of 0.8 is
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Figure 18. Beam stretching—Pearson correlation coeffi-
cient (o) comparison between recombination signal injected
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Table 1. Tolerances in beam perturbations.
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in Table 1. The tolerances for the 1D and 2D wob-
bles represent the total wobble angle permitted until
the threshold drops to or below 0.8 at the first instance.
The tolerance for the stretch represents the change in the
FWHM (AFWHM) permitted until the threshold drops
to or below 0.8 at the first instance. The locations are
indicated as M for Murchison and B for Bangalore.

6. Conclusion

We have demonstrated that using standard measures of
similarity as signal detection metrics, it is feasible to
distinguish between the presence and absence of CRR
lines despite adopting a non-ideal beam for spectrum
simulation. The fractional Euclidean distance serves as
a conservative metric and thus a stronger measure of
signal detection, permitting tighter tolerances in beam
perturbations. Using the Pearson correlation coefficient
allows a larger range in the beam perturbations while
discerning between signal presence and absence, which
may serve as a first step towards detection while improv-
ing antenna properties. While the beam perturbations
discussed herein are simplistic, it is a first-of-its-kind
approach, moving a step ahead towards a practical treat-
ment of CRR signal detection, a step forward from the
ideal instruments in all simulations thus far. Future work
will consider more complex chromatic features in the
antenna and the full system. The results from this study
provide confidence that there are certain types of beam
chromaticity (such as 1-D wobble and stretching) that
provide a larger margin of tolerance for signal detection,

whereas other kinds of chromaticity (2-D wobble) are

more detrimental to signal detection by way of channel

loss. The choice of observing location and the LST play

an important role in the way beam chromaticity affects

the prospects of signal detection. The signal detection

metrics themselves rely on the well-predicted theoreti-

cal expectation of the CRR signal, which is a powerful

Type M9(°) M13(°) M17°)  B9(°) B13(°) B17(°)
1D-y 4.8 2.8 0.6 3.6 2.4 1.2

1D- 11.4 2.8 0 4.8 3.6 1.8

2D-y 0 0.5 x 107* 10~* 1074 05x107*%  05x107*
2D-p 1073 0.5x 1073 1073 1074 05x1073  05x1073
Stretch-y 4 18 4 18 10 22
Stretch-o 4 22 4 22 26 26
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tool that can be harnessed for experiment design. Any
detection is claimed by being able to distinguish from a
null hypothesis scenario, which can be realized in prac-
tice using appropriate calibration strategies, such as the
use of an external blackbody or external ‘mock sky’
source. All the above can help inform antenna model-
ing, observing and calibration strategy, and experiment
design, bringing us one step closer to detecting the CRR
line, an inevitable prediction of standard cosmology.
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