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Abstract

The exquisitely measured maps of fluctuations in the cosmic microwave background (CMB) present the possibility
of systematically testing the principle of statistical isotropyof the Universe. A systematic approach based on strong
mathematical formulation allows any nonstatistical isotropic (nSI) feature to be traced to the nature of physical
effects or observational artifacts. Bipolar spherical harmonics (BipoSH) representation has emerged as an
overarching general formalism for quantifying the departures from statistical isotropy for a field on a 2D sphere.
We adopt a little-known reduction of the BipoSH functions, dubbed minimal harmonics in the original paper by
Manakov et al. We demonstrate that this reduction technique of BipoSH leads to a new generalized set of isotropic
angular correlation functions referred to here as minimal BipoSH functions that are observable quantifications of
nSI features in a sky map. This paper presents a novel observable quantification of deviation from statistical
isotropy in terms of generalized angular correlation functions that are compact and complementary to the BipoSH
spectra that generalize the angular power spectrum of CMB fluctuations.

Unified Astronomy Thesaurus concepts: Two-point correlation function (1951); Cosmic microwave background
radiation (322)

1. Introduction

The cosmic microwave background (CMB) anisotropy
measurements by the WMAP (Hinshaw et al. 2009) and Planck
(Aghanim et al. 2020) space missions have ushered in the
precision era of cosmology, enabling cosmologists to pose
queries beyond the statistically isotropic two-point correlation
function predicated by the fundamental assumption of homo-
geneity and isotropy widely referred to as the cosmological
principle. Current observations are in good agreement with CMB
temperature anisotropies being Gaussian (Aghanim et al. 2020).
In such a case, all the information encoded in the CMB
temperature field can be specified by a two-point correlation
function. However, the WMAP and Planck collaboration data
release claimed intriguing hints of deviations from statistical
isotropy in CMB maps beyond known effects. Bipolar spherical
harmonics (BipoSH) provide an elegant and general formalism
for the two-point correlation function between two directions n̂1
and n̂2 for a random field on a 2-sphere. In this formalism, the
statistical isotropy component corresponds to the L= 0 element
and L> 0 represents the nonstatistical isotropic (nSI) feature in
the BipoSH basis (Hajian & Souradeep 2003). In this paper, we
extend the BipoSH formalism to a new θ-dependent
( ˆ ˆq = n ncos .1 2) irreducible representation that is applicable in
real (angular) space instead of a harmonic basis.

Departures from statistical isotropy can have their roots in
known or yet-to-be-discovered physical effects, as well as
observational artifacts. Some well-known effects include
Doppler boost, weak lensing of CMB photons by large-scale
structure, and systematics, such as noncircular beam, which

have been extensively studied in the BipoSH representation
(Mitra et al. 2004; Joshi et al. 2010; Mukherjee et al. 2014;
Kumar et al. 2015). With upcoming missions that offer even
greater precision, novel studies of violations of statistical
isotropy using generalized mathematical constructs could have
far-reaching implications in cosmology.

2. BipoSH Formalism

BipoSH representation provides a general formalism for
quantifying the departure from the statistical isotropy of the
CMB temperature field. BipoSH functions form a complete and
orthonormal basis in S2× S2 and thus have bidirectional
dependence. The most general two-point correlation function
for a field defined on the sphere can be obtained in terms of a
BipoSH basis as
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are BipoSH basis functions. BipoSH functions are a tensor
product of two spherical harmonics (SH) functions that can be
expanded as
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are Clebsch–Gordon coefficients (Varshalovich
et al. 1988). The indices of Clebsch–Gordon coefficients satisfy
the triangularity conditions as |l1− l2|� L� l1+ l2 and
m1+m2=M.
BipoSH coefficients are the natural generalization of the

CMB angular power spectrum. The L= 0 BipoSH coefficient
gives the isotropic part, and the coefficients at higher L values
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represent the strength of the nSI effect in the CMB sky at the
corresponding bipolar multipole. BipoSH coefficients carry
crucial signatures of statistical isotropy violation, whose
description necessarily invokes direction-dependent statistics
of the CMB sky. Since the two-point correlation function is a
real measurable, BipoSH is widely used to characterize
different known sources of nSI effects and systematically
probe for nSI from the CMB maps.

3. Reduction Technique for Bipolar Harmonics

In this section, we present a mathematical construct for the
reduction of the BipoSH basis along the lines studied by

Manakov et al. (1996). In the BipoSH basis, the rank L has
values from 0, 1, 2,3 ..., and the internal ranks ¢l l, run over all
values from 0 to infinity for a given rank L, constrained by the
triangularity relations obeyed by the Clebsch–Gordon coeffi-
cients. In other words, the information at a given bipolar
multipole L could be spread over the entire or a large angular
spectral range l. We show that the reduction to minimal bipolar
spherical harmonics (mBipoSH) limits the spectral spread to L
isotropic angular correlation functions with θ-depend-
ence ( ˆ · ˆq º n ncos 1 2).

This above reduction follows from the detailed proof in
Manakov et al. (1996), that any irreducible tensor of rank L can
be constructed using L vectors of its arguments. Any BipoSH
with any possible internal rank + ¢l l can be constructed using
a combination of L mBipoSH basis functions (originally
referred to as minimal harmonics in Manakov et al. 1996) as

 ( ˆ ˆ ) ( ˆ ˆ ) ( )= =-n n Y n n k L, , , where 0, 1 ....., . 3k L k k
LM 1 2 LM

,
1 2

The above relation reduces our analysis to only a few
internal ranks up to L. The tensor with rank + ¢l l L can be
written from L mBipoSH basis functions and its coefficients
depending upon ¢l l, and ( ˆ ˆ )q = - n ncos .1

1 2 . The mathematical
representation of the mBipoSH basis functions can be written
as
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The parameter λp describes the space inversion property that
carries information about the parity of BipoSH functions, as
discussed in Book et al. (2012). It specifies that the BipoSH
function Y l l

LM
1 2 is a tensor for even parity and a pseudo tensor for

odd parity. Further, the coefficients aλ follow the symmetry

relation given as

( ) ( ) ( )q q=l l l- -a l l L a l l L, , , cos , , , cos . 6L1 2 2 1p

The set of mBipoSH basis functions, after the above
transformation, also forms a complete basis for BipoSH. The
coefficients aλ are functions of the angle θ between two
directions, and the BipoSH functions with dependence on
higher L values can be constructed using these coefficients with
a finite set of mBipoSH basis functions. With the completeness
property of BipoSH functions, the final expression for aλ can
be written as

where q= l1+ l2+ L+ 1, j= L+ l2− λp, tmax=min

⎡⎣ ⎤⎦l l- - -L ,p
j l
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m

n
denotes the binomial coefficient,

and ( )( )P xn
m is the mth derivative of the Legendre polynomial

Pn(x). As aλ coefficients follow the symmetry relation in
Equation (6), Equation (7) is only referred to for coefficients
having l L

2
to construct the mBipoSH basis functions, and

the remaining coefficients can be computed using the symmetry
relation. This provides us with a complete set of aλ coefficients
for the reduction of bipolar harmonics with any rank L. Further
analysis of the aforementioned set of mBipoSH basis functions
reveals that the tensor Y l l

LM
,1 2 has L+ 1− λp different basis

components. Using this reduction mechanism for bipolar
harmonics, we can construct equivalent compact and com-
plementary θ-dependent mBipoSH basis functions for any
given value of multipole L.

4. Application to CMB Sky Maps

By employing the mathematical reduction of the bipolar
harmonics basis described in the previous section, we construct
a representation of the nSI CMB temperature anisotropy sky
maps, ( ˆ)DT n , in terms of a set of angular correlation
functions5. The most general two-point correlation function

( ˆ ˆ ) ( ˆ ) ( ˆ )º áD D ñC n n T n T n,1 2 1 2 can be expanded using
Equations (1) and (4) in the form of reduced minimal BipoSH
basis functions as follows
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For the nSI effect at a specific multipole L> 0, the above
Equation (8) reduces the representation of correlation function
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5 This can be readily recast for CMB polarization, weak lensing, and other
cosmological random sky maps.
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to BipoSH basis functions up to L. (Typically for most nSI
effects, the bipolar spectral range in L is more compact than
that in the angular spectral range of l). We refer to the
expression inside the square bracket as mBipoSH angular
correlations functions:

( ) ( ) ( )åa q q=l lA a l l Lcos , , , cos . 9L M

l l
l l

,
,

LM
1 2

1 2

1 2

For L= 0, the mBipoSH is the isotropic two-point correlation
function ( ˆ ˆ ) ( )qºC n n C.1 2 that has been extensively studied and
measured in cosmology literature within the context of the
homogeneous and isotropic cosmological model (Copi et al.
2010). It is noted that the nSI effects at multipole L with
projection M are characterized by L+ 1 different angular
correlation functions in the case of even parity λp= 0 and L
correlation functions in the case of odd parity λp= 1.

Further, BipoSH coefficients can be expressed in terms of
the harmonic space covariance matrix of CMB maps (Hajian &
Souradeep 2003), leading to the following expression for the
mBipoSH angular correlations functions,

( )

( ) ( ) ( )å åa q q= á ñ -l l-*
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This equation is expressed in terms of harmonic coefficients
alm that are directly measurable from a CMB temperature
fluctuation map. The above relations emphasize that mBipoSH
angular correlations functions are a set of different θ-dependent
correlation functions in the real space defined for a specific nSI
feature in a CMB map.

Further, it is interesting to note this mathematical structure
opens a new avenue toward a visual representation of statistical
isotropic violations in a set of sky maps. The mBipoSH angular
correlation functions can be summed over to construct the θ-
dependent angular correlation function at each point on the 2D
sphere.

( ˆ ) ( ) ( ˆ ) ( )åz q a q=l ln Y n, cos cos . 111
LM

LM
LM 1

These defined functions form a basis in S2× S1 and can
minimally represent the underlying pattern in the nSI
CMB map.

To summarize, in this paper, we present an extended set of θ-
dependent mBipoSH correlation functions that can be
employed to study nSI CMB maps and to completely capture
deviations from statistical isotropy that have not been
previously studied using correlation functions. This mBipoSH
representation provides a complimentary compact avenue to
study nSI CMB maps using higher bipolar multipole angular
correlation functions.

5. Illustrative Example: Doppler Boost

Our motion today with respect to the cosmic rest frame
causes a dipole anisotropy in the CMB temperature and
polarization fields, with an inferred velocity (β≡ |v|/c=
1.23× 10−3). The Doppler boost of the CMB sky in this
moving observer frame leads to observable nSI features in the
CMB due to well-known relativistic effects of modulation and
aberration of the CMB temperature field. The Doppler boost
nSI effect has been reliably measured by Planck collaboration
(Planck Collaboration et al. 2014).

In the BipoSH representation, this effect induces a nonzero
even parity dipolar (L= 1) BipoSH coefficient in the CMB
map (Mukherjee et al. 2014). The Planck collaboration has
employed the BipoSH formalism to measure this effect (Ade
et al. 2016) using a quadratic estimator. More recently, a fully
Bayesian approach utilizing publicly available Planck data has
provided a 5σ confirmation of this nSI effect (Saha et al. 2021).
We illustrate our new representation of this well-understood

and quantified case of statistical isotropy violation in the CMB
map. We explicitly derive the expressions to compute the two
nonzero mBipoSH angular correlations functions expected in a
Doppler-boosted CMB map for this even parity effect at L= 1.
We also outline the derivation of an appropriate estimator for
these mBipoSH angular correlation functions from a
CMB map.
The nSI signature of the Doppler boost is captured by the

BipoSH coefficients

˜ ( )∣ b=
P
P+

+
+A D C , 12l l TT

M M
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TT l l
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where BipoSH spectra are defined as
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where β refers to the boost velocity vector and bν captures the
frequency dependence of the Doppler boost given by

⎜ ⎟
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= -nb coth
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and the local velocity β1M defined in the harmonic basis as

ˆ ( ˆ) ˆ ( )ò bb = *nY n dn. 15M M1 1

with the notation ( )( ) ( )P = + + ¼ +¼ l l l2 1 2 1 2 1l l l n1 2n1 2 .
The mBipoSH angular correlation functions for Doppler boost
can be constructed using the method used in the previous section
as

( ) ( ) ( )åa q q= +l l+A a l lcos , 1, 1, cos . 16M

l
l l

M1
, 1
1

The above reduction process for the Doppler boost (L= 1) can
be simplified in terms of the correlation function as

( ˆ ˆ ) ( ) ( ˆ ˆ ) ( )q= +C n n C C n n, cos , , 171 2 SI nSI 1 2

where the nSI correlation function corresponding to Doppler
boost (L= 1) along the β direction in terms of angular
correlation functions as

( ˆ ˆ ) ( ) ( ˆ ˆ ) ( )å q=
l

l l
=

C n n C f n n, cos , . 18nSI 1 2
0

1

1 2

The above Equation (18) provides an explicit expression to
compute the angular correlation function ( ˆ ˆ )C n n,nSI 1 2 for the
Doppler-boosted CMB temperature map. The function

( )qlC cos represents two distinct angular correlation functions,
while ( ˆ ˆ )lf n n,1 2 are distinct functions of directions for λ= 0, 1.
For the L= 1 case, the functions ( ˆ ˆ )lf n n,1 2 take the form of

( ˆ ˆ ) [ ˆ ] ˆ ˆº =f n n n n d, .0 1 2 1 10 1 and ( ˆ ˆ ) [ ˆ ] ˆ ˆº =f n n n n d, .1 1 2 2 10 2

(where the indices represent the zeroth component of the
rank-1 tensor). These indices specify the projection of the
respective vector along the boost direction (d̂). We obtain the
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complete expression for ( ˆ ˆ )C n n,nSI 1 2 from Equation (18) as

( ˆ ˆ ) ( ) ˆ ˆ ( ) ˆ ˆ ( )q q= +C n n C n d C n d, cos . cos . , 19nSI 1 2 0 1 1 2
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It is interesting to note that both the angular correlation
functions depend on the first derivative of Legendre poly-
nomials ( )( ) qP cosℓ

1 , indicating that the nSI signal is related to
gradients induced in the temperature map. Furthermore, it
should also be noted that the magnitudes of the two correlation
functions are close but not identical, as evidenced by their
explicit mathematical expressions.

Figure 1 shows the theoretical and simulated plots of the
angular correlation functions for a CMB map with anisotropy

corresponding to an L= 1 Doppler boost nSI effect. This
representation makes it evident that the departures from
statistical isotropy temperature fluctuations in a Doppler-boosted
map are primarily correlated at small angular separations
(θ 1°). Based on the cosmic variance error bars shown in the
plot in the right panel of Figure 1, it can be more readily
appreciated that the Planck mission (Planck Collaboration et al.
2014) could detect the Doppler boost velocity signal primarily
due to its higher angular resolution compared to the previous
full-sky measurements from WMAP (Hinshaw et al. 2013).

We now outline the derivation of an estimator of the real
space mBipoSH angular correlation functions to capture nSI

effects from a measured CMB map. The estimation of the
mBipoSH angular correlation functions can be expressed as

ˆ ( ) ( ) ( ) ( )a q a q q= + Gl l lGcos cos cos , 22LLM LM
LM

where ˆ ( )a ql cosLM is the observed mBipoSH angular correlation
function and ( )a ql cosLM is the mBipoSH angular correlation
function for a single realization of the statistical isotropy map.
The ensemble average of ( )a ql cosLM is zero for L≠ 0. G lGL

LM

represents a statistical isotropy violation, such as weak lensing,
Doppler boost, etc. ( )qlG cosL is the shape factor related to the
nSI effect and ΓLM denotes the signal strength of the nSI
effects. This estimator is based on the estimator defined by Hu
& Okamoto (2002) and Hanson et al. (2009) for estimating the
angular power spectrum.
Specifically, for the Doppler boost case, we define the

estimator b̂LM for L= 1 as
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where the shape factor for λ= 1 is defined as

To arrive at the minimum variance estimator, we can write
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where ( )qlw cos1 are the weights such that ( )qå =q lw cos 1L .
The explicit expression for the weight factors that minimize the
reconstruction noise can be readily derived.

6. Discussion

In this paper, we propose a natural generalization of the well-
known isotropic angular correlation function that can also

Figure 1. The left panel displays the mBipoSH correlation functions for the nSI Doppler boost effect, which are C0(θ) and C1(θ) with parameters bν = 3 for
ν = 217 GHz with β = 1.23 × 10−3 along with the statistical isotropy correlation function. These plots are generated assuming angular power spectrum Cl

TT computed
for the best-fit ΛCDM model parameters using CAMB (Lewis & Challinor 2011). The right panel presents the cosmic variance error bar for mBipoSH correlation
functions corresponding to the Doppler boosted effect using 1000 simulated Doppler boost maps. We used the CoNIGS code to generate the simulated nSI maps for
the Doppler boost (Mukherjee & Souradeep 2014).
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capture nSI features in random maps on a 2-sphere. We utilize
a reduction technique for BipoSH that results in new basis
functions called mBipoSH functions. In this new basis, new
measures quantifying nSI features emerge as an additional set
of the real space angular correlation functions that we refer to
as mBipoSH angular correlation functions.

In the specific domain of our interest, which involves the
detailed study of observed maps depicting the anisotropy in the
CMB, these maps offer a new set of observables in real space
that complement the harmonic space BipoSH representation
used earlier in the literature. Introducing new approaches often
helps shed new light on the nature of the phenomena
underlying the observed nSI signals. As an illustrative example,
we derive and plot the mBipoSH angular correlation functions
for the well-known nSI effect induced in CMB maps due to the
Doppler boost associated with the motion of the observer with
respect to the cosmic rest frame of the CMB. We show that this
representation readily reveals that the nSI effect on the two-
point correlation function due to Doppler boost is strong only at
small angular separations. We emphasize that the work
presented in this paper can be effectively employed in the
wider context to investigate random distributions on a 2D
sphere, encompassing diverse applications ranging from
celestial sky maps to geographical maps.
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