PEDAGOGICAL NOTES

The Aharonov-Bohm effe_ct

Joseph Samuel

Quantum mechanics teaches us that matter consists of waves. Interference of matter waves gives
rise to delicate effects best illustrated by the double slit experiment. Aharonov and Bohm showed
that the interference pattern of electrons in a multiply connected region can be influenced by
magnetic fields outside that region. This surprising effect (now called the Aharonov-Bohm effect)
has been measured in the laboratory. The process of understanding and coming to terms with this
effect has deepened our understanding of both quantum mechanics and electromagnetism. This
paper gives an elementary account of the Aharonov-Bohm effect.

IN classical physics, electromagnetic
effects are completely described' by the
electric (E) and magnetic (B) fields.
These fields can be directly measured by
their effect on a test charge. Further, the
behaviour of the test charge can be
completely determined from a know-
ledge of these ficlds. However, it is
usual and convenient' to introduce
potentials @ and A. The fields then
emerge as derivatives of the potentials.
For example, B = Vx A. The advantage
of introducing potentials is that some
Maxwell equations (the homogeneous
ones, like V- B =0) arc automatically
solved. Potentials are not directly
measurable quantitics and only their
derivatives E and B have physical
significance. Potentials which give rise
to the same clectric and magnetic fields
are classically indistinguishable. In
classical physics the introduction of
potentials is a mathematical conve-
nience and not a physical or logical
necessity.

In quantum mechanics the situation is
different. In order to couple the wave
function y (x. ¢} of a test charge to the
electromagnetic field. it is necessary to
introduce vector potentials. However,
the coupling is such that if one performs
a ‘gauge transformation’, i.c. changes
the potentials and the wave function
as follows:

A'(x, t) = A(x, )+ Vy(x. 1),
O(x.1)=d (x.t)+%%%—(x. 0.

y'(x, t) = ¥ (x. t)exp [_h—':x(x. I)J.

all measurable quantities are unchanged.
Such a transformation does not alter the
fields (which are, of course, mea-
surable). And conversely, given the
fields in a simply connected region, one
can determine the potentials up to a
gauge transformation. Since measure-
ments  cannot  distinguish  between
‘gauge-related’ potentials, one might
expect that even in quantum mechanics,
a knowledge of the fields in a region
should enable one to completely deter-
mine the behaviour of a test charge. The
truth is more subtle — and more interest-
ing. In a multiply connected region,
potentials which are not related by a
gauge transformation can give rise to
the same E and B fields. The work of
Aharonov and Bohm? shows that one
can experimentally distinguish between
such potentials. The potentials contain
physically measurable information which
is not contained in the E and B fields.
Thus, electromagnetic potentials play an
indispensable role in quantum physics.

Consider the following experiment: A
beam of electrons is split into two and
allowed to interfere on a screen (see
Figure 1). The setup is exactly the same
as in the double slit experiment’, save
for the solenoid S between the two
interfering beams. Passing a current
through the solenoid produces a
magnetic field (normal to the plane of
the figure) which we suppose, is
contained entirely within the solenoid.
Electrons are prevented from entering
the solenoid. Since the electrons never
directly experience the magnetic field,
one might conclude that the interference
pattern on the screen is unaffected by
the presence of the field. Surprisingly, *
this conclusion is false?.
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To see that the field does affect the
fringe pattern on the screen. let us
compute the probability that an electron
starting at x, will arrive at a point x, on
the screen. According to the Feynman
path integral approach®, the probability
amplitude for the particle to go from x,
to x, is given by a sum over all possible
paths connecting these points, weighted
by [exp(i/h)Sy], where S is the clas-
sical action along the path.

The classical action for a charged
particle in an external vector potential A
is

e
Sy = g,+zjv-Adt

e
= é1+?J'A-dx,

where S =%Imv2dt is the classical

action of the free particle. The principal
contribution to the probability
amplitude will come from classes of
paths that pass to the left and right of
the solenoid. (There are also paths that
wind around the solenoid before
arriving at x;. In the semiclassical
approximation these would contribute
negligibly.) The amplitude to go from x;
to x; is therefore

ie
K(X]fl, Xzfz) = KI. e€xp [Z?J’LA . dx:l

+K exp [% JRA . dx} ,

where K, (Ky) is the sum of [expiS]]
over all paths that pass to the left (right)
of the solenoid. Squaring the amplitude
to find the probability of arrival at x,,
we find
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Screen

Figure 1. A schematic illustration of the experimental set-up for the Aharonov-Bohm
effect. It differs from the usual double slit experiment only in the presence of the
solenoid S between the two interfering beams.

T momcrrmtrmtseen e et
IR A T R

Figure 2. Dynamically recorded fringe system showing the displacement of the
fringes caused by a continuousily varying magnetic flux between the split beams.

From Missiroli et al.’

P(xytixaty) =| K =| K, P+ Ky
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where @, = hcle and @ = A -dx is the
total flux through the solenoid. Thus,
the probability of arrival at x, does

depend on ¢. A change in ¢ would
produce a shift in the interference

+2Re [KZKR exp
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fringes. The calculation sketched above
was approximate. An exact calculation
yields the same qualitative result:
aithough the electron is excluded from
the location of the magnetic field, its
behaviour is changed by the field. This
discussion suggests that in quantum
mechanics, the potentials do have
physical significance. The fields (E and
B) in the region outside the solenoid

incompletely describe the effects of
electromagnetism in quantum physics.

The experiment described above was
performed  shortly afterwards by
Chambers® and the theoretical predict-
ion confirmed. In practice, it is hard to
obtain large separations between the
electron beams, so Chambers used a
magnetic whisker rather than a solenoid
to produce a magnetic field. Since then
the experiment has been done with more
and more sophistication. For a review
see ref. 6. Figure 2 shows a photograph
of the interference fringes changing as ¢
is increased (along the vertical axis).
The envelope of the fine interference
fringes is the diffraction pattern of the
slits. Notice that the envelope does not
move when the ¢ is changed. This
shows that the individual beams do
not experience any deflection when
the magnetic field in the solenoid is
varied.

It is appropriate to mention an earlier
piece of work’ that arrived at the same
conclusion as ref. 2. but went comple-
tely unnoticed. Ehrenberg and Siday’, in
their studies of electron microscopy,
had the main conclusion of ref. 2, quite
explicitly stated in their paper. But, to
use the delicately phrased words of
Chambers® ‘they did not sufficiently
emphasize the remarkable nature of
their result’. In less delicate words, it is
not enough to make a remarkable
discovery to get credit for it, one must
also make a noise about it!

In some accounts of the Aharonov-
Bohm effect (see for instance, ref. 8)
one gets the impression that the wave
function ‘splits into two parts’:

V=YLt e,

each passing on ceither side of the
solenoid and acquiring different phases.
This is a physically incorrect descript-
ion of the effect. There is only one
wavefunction, which furthermore is a
single-valued function® on the configu-
ration space. One is, of course, at liberty
to split the wave function into two parts,
but there is no reason why each part
should separately obey the Schrédinger
equation. The Feynman path integral
derivation given above avoids this pit-
fall. Another way to derive the
Aharonov-Bohm effect is to solve the
Schrédinger equation for the wave
function in the external potential A,

" which is what Aharonov and Bohm did.
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If one computes the probability
exactly (and not approximately as we
did above), one finds'® that the prob-
ability amplitude in equation (1) is an
infinite sum over all paths that wind
around the solenoid. The probability
then becomes an infinite sum

P(¢) =Z,P, exp [iZn:n i] .
¢U

The dependence of the probability on ¢
is not sinusoidal any more. but acquires
higher harmonics. Of course. P (¢) is
still periodic in ¢ with period ¢,. One
cannot measure the flux ¢ in the
solenoid through interference effects
outside it. One can only determine its
fractional part modulo ¢, .

The impact of ref. 2 has becn felt in
many diverse arcas of physics. We
mention two here for illustration. The
work leads us to ask the question: What
is a complete description of the
electromagnetic field? It appcars from
thc Aharonov-Bohm effect that the
(electric and magnetic) ficlds do not
have enough information and the
potentials have too much (remember
they can be altered by gauge trans-
formations, which do not change
physics). What about line integrals like
§A -dx ? These still contain too much

information. All that appears in the
Aharonov-Bohm effect is the phase
[exp 2mi (¢/9,)]. AH effects are periodic
in ¢ with period ¢,. Indeed. one can
make a gauge transformation in the
region outside the solcnoid to change ¢
by this amount. Thus. a complete descri-
ption'! of the electromagnetic ficld is
via ‘path-dependent phase factors’™ or
Wilson loops —[exp+-§ A - dx|. Wilson

loops have played a role in our
understanding of other gauge theories.

There are two ways of looking at the
problem of a particle moving in the
region around a solenoid. One can
regard the configuration space of the
system to be a plane, with an infinite
potential used to keep the particle away
from the solenoid. With a slight shift of
emphasis, one can regard the configu-
ration space of the system as the plane
minus a disc, which is topologically
distinct from the plane. In the second
point of view, the Aharonov-Bohm
phase appears as a’ quantization ambi-
guity'?. If one studies quantization on
spaces which are multiply connected
(like the plane with a hole) one finds
that the quantum theory is ambiguous.
For each “hole’ in the configuration
space, one finds a possible Aharonov—
Bohm phase. In the above elementary
example. the second point of view is a
lofty way of looking at an casy problem.
However, in the quantum theory of
fields. this is the only point of view
available. The configuration space has
“holes’ in it. which cannot be “filled in’.
This leads to alternative quantizations
of the same classical field theory.
Examples are the emergence of 6
vacuua in quantum chromodynamics
and the fractional spin of topological
geons in quantum gravity'.

The Aharonov—Bohm paper was a
conceptually important step forward in
our understanding of gauge fields and
quantum mechanics. As is evident from
the two examples quoted above. it has
left its mark on our thinking. What was
‘new’ about this paper was not a new
technique or a new calculation. It was a
new perspective.
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