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We present two complementary viewpoints for combining quantum computers and the foundations of quantum
mechanics. On the one hand, ideal devices can be used as test beds for experimental tests of the foundations of
quantum mechanics: We provide algorithms for the Peres test for complex numbers in quantum superpositions
and the Sorkin test of Born’s rule. On the other hand, noisy intermediate-scale quantum devices can be
benchmarked using these same tests. These are deep quantum benchmarks based on the foundations of quantum
theory itself. We present test data from Rigetti hardware.
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Physics is experimental, so the postulates of all physical
theories are based on experiments. Here, we propose to use
quantum computers for direct experimental tests of two of
the postulates of quantum mechanics. In the ideal case, as-
suming perfect hardware, they are especially suited to this
aim as they are quantum systems with a large number of
degrees of freedom. In contrast, in the nonideal case of noisy
intermediate-scale quantum (NISQ) devices, one can assume
that quantum mechanics is valid and use these tests for bench-
marking [1–3] the device at a deep quantum level, since they
are based on the very foundations (the postulates) of the
theory. In other words, assuming perfect hardware, one can
test quantum mechanics; assuming quantum mechanics, one
can test the hardware. Relaxing both assumptions, one can
perform self-consistency checks to test both.

We present two such experimental tests: We give algo-
rithms and quantum machine code for the Peres and the Sorkin
tests and run them on Rigetti quantum computers. The first
one is a test of the state postulate of quantum mechanics
(i.e., the superposition principle), which claims that quantum
states live in a complex Hilbert space. In principle, one could
imagine a quantum mechanics based on real [4,5], complex,
or quaternionic Hilbert spaces [6]: The choice is based on
the outcome of experiments, such as the Peres one; see also
Refs. [7–12]. The fact that complex numbers are necessary
(and sufficient) has interesting implications, e.g., it implies
that quantum states are locally discriminable [13] and it is
connected to the locality of some quantum phenomena [7].
The second experimental test, proposed by Sorkin [14], is
a test of the Born postulate. Born’s rule declares that quan-
tum probability is the square modulus of a scalar product in
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the state space. A failure (or an extension [15]) of Born’s
rule would result in a new physical effect: the presence of
genuinely n-fold superpositions that cannot be reduced to an
iteration of the usual twofold superpositions that we find in
textbook quantum mechanics [15–17]. Thanks to our imple-
mentation, we also ran both tests at the same time for a class
of states. In contrast to previous tests [8,9,18–20], ours do not
use custom-built setups; they permit arbitrary initial states and
can be easily scaled up as new reliable quantum computers
become available. Our assumptions are that the quantum state
is a vector in a Hilbert space (superposition principle) without
specifying whether the Hilbert space is defined on a real,
complex, or quaternion field, that the evolution is described by
unitary transformations (i.e., the Schrödinger equation), and
that the probabilities of measurement outcomes are functions
of the scalar product of the state and some basis vectors. The
last assumption is only a part of the Born’s rule postulate,
which states that the probabilities are equal to the square
moduli of the scalar product. The Sorkin test is independent of
whether the required field is real, complex, or quaternionic, so
it is independent of the results of the Peres test. In the case of
the Peres test, we are additionally assuming Born’s rule (veri-
fied by the Sorkin test). Regarding the dependence of the Peres
test on the Sorkin test, we note that we can assume the validity
of Born’s rule in the Peres test because we are testing the
former separately using the Sorkin test (which is independent
of the Peres test) and then we also perform both tests jointly.

There are multiple advantages of doing these (and other)
fundamental tests on quantum computers: (i) Both tests are
performed on the same hardware, which prevents possible
biases that may arise from a tailored experimental setup. At
the same time, it is simple to translate the proposed algorithms
to different quantum computer architectures, if one wants to
confirm the results independently. (ii) It is possible to perform
both experiments at the same time (see below), which is
important since, as discussed below, the two experiments are
not entirely independent of each other. (iii) These experiments
are easily scalable to large dimensions, once reliable quantum
computers are available. (iv) As discussed, one can reverse
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perspective: Under the assumption that quantum mechanics is
correct, these tests become deep benchmarks for a quantum
computer.

We initially believed that we could translate the Peres and
Sorkin tests into quantum algorithms in a straightforward
manner, but we found that we had to modify these tests in a
nontrivial way both due to the practical limitations of current
NISQ devices and due to the fundamental limitations of the
gate model of quantum computation, which would require, as
an input to an unmodified Peres algorithm, the same quantity
γ (defined below) that one then measures.

Peres test. The state postulate claims the following: “The
pure state of a system is described by a normalized vector |ψ〉
in a complex Hilbert space.” Like all physical postulates, it
is based on experimental data, and the Peres test specifically
refers to whether one needs complex numbers, real numbers
[5], quaternions [6,16,21], octonions [17,22], etc.; however, it
does not question the Hilbert space structure of the theory. For
example, we accept the natural assumption that the Hilbert
space dimension is equal to the system’s number of degrees
of freedom, namely, of independent outcomes of a non-
degenerate observable (dropping this assumption [4,5], one
needs different tests for the complexity of quantum mechanics
[7–9,11], based on the locality of measurement outcomes).
Octonions can be discarded upon observing that they are not
associative for multiplication (interestingly, this means that
different combinations of twofold interferences may give dif-
ferent results, which would give the same signature as a failure
of the Sorkin test).

We now review the Peres test [6]. Consider two pure
states |ψ1〉 and |ψ2〉 and their superposition |ψ12〉 = α |ψ1〉 +
β |ψ2〉, with α, β being nonzero real numbers (in case of
complex α and β, their phases can be absorbed as the phases
of |ψ1〉 and |ψ2〉 respectively). If we project it on, say, |1〉 (any
other state would give similar results), then, assuming com-
plex Hilbert spaces, the probability of successful projection
is

|〈1|ψ12〉|2 = |α 〈1|ψ1〉|2 + |β 〈1|ψ2〉|2
+ 2αβ|〈1|ψ1〉 〈1|ψ2〉| cos ϕ12 (1)

⇒ cos ϕ12 = |〈1|ψ12〉|2 − |α 〈1|ψ1〉|2 − |β 〈1|ψ2〉|2
2αβ|〈1|ψ1〉 〈1|ψ2〉| , (2)

with ϕ12 = arg(〈1|ψ1〉 〈ψ2|1〉). If instead we assume that real
Hilbert spaces are sufficient, the term cos ϕ12 can only take the
values ±1. We can rewrite the left-hand side of (2) in terms of
experimental values as

γ12 := p12 − α2 p1 − β2 p2

2αβ
√

p1 p2
, (3)

with p12, p1, and p2 being the experimental probabilities of
projection onto |1〉 of |ψ12〉, |ψ1〉, and |ψ2〉. If we experimen-
tally find that γ12 = ±1 always, then a real quantum theory
is sufficient. If we find states for which |γ12| < 1, then it is
necessary to use a complex or quaternionic quantum theory. If
|γ | > 1, the superposition principle is violated.

To discriminate between a complex and a quaternionic
theory, we need a further step, based on the identity

cos2 a + cos2 b + cos2 c − 2 cos a cos b cos c = 1, (4)

valid for any a, b, c real numbers with a + b + c = 0. Con-
sider three pure states |ψ1〉, |ψ2〉, |ψ3〉, and take superpositions
of two at a time. We will have three quantities of the type
given in (2) with ϕ12, ϕ23, or ϕ31, one for each pair. Since
ϕ12 + ϕ23 + ϕ31 = 0, the identity (4) holds for these three
angles if a complex quantum theory is sufficient. Otherwise,
if a quaternionic theory is necessary, the amplitudes cannot
be represented by vectors in a two-dimensional (2D) plane,
and therefore the left-hand side of (4) is less than 1 in general.
One can detect this by analyzing the quantity F = γ 2

12 + γ 2
23 +

γ 2
31 − 2γ12γ23γ31 (where γ23, γ31 are defined similarly to γ12,

but using the state |ψ3〉). If the experimentally measured F is
always 1 for all states, then a complex theory is sufficient (no
quaternions, octonions, etc., are needed) since all the γ ’s can
be written as cosines, and (4) holds. Otherwise, if |F | < 1,
then we must employ quarternions. Finally, if |F | > 1, the
superposition principle is violated, as the states cannot be
represented as vectors.

The above Peres proposal can be directly implemented on
a quantum computer using a unary encoding (one qubit per
system) where orthogonal states are mapped into separate
physical qubits and their superpositions are obtained through
interferences among them, but our tests showed that such a
procedure is highly sensitive to noise and will be reported
elsewhere [23]. Moreover, one has to make sure that the
algorithm does not contain as input the quantity cos ϕ12 of
(2), which would render the whole procedure circular. We
now present a nontrivial way to overcome both problems: It
is suited to current NISQ devices, and the cosine term only
arises from quantum interference of different paths.

The trick is to prepare a two-qubit factorized state |ψ1〉 |ψ2〉
with |ψk〉 = ak |0〉 + eiϕk bk |1〉 (ak ∈ [0, 1], bk =

√
1 − a2

k)
and then project it onto the anticorrelated subspace spanned
by |01〉 and |10〉. This produces a state proportional to

a1b2eiϕ2 |01〉 + a2b1eiϕ1 |10〉 ∝ a1b2eiϕ2 (α∗ |�+〉 (5)

+ β |�−〉) + a2b1eiϕ1 (β∗ |�+〉 − α |�−〉), (6)

with |�+〉 = α |01〉 + β |10〉, |�−〉 = β∗ |01〉 − α∗ |10〉.
By projecting this state onto |�+〉, we can see the interference
among the two |�+〉 paths present in the state (6). Indeed,

|〈�+|ψ1ψ2〉|2 = |α|2|〈01|ψ1ψ2〉|2 + |β|2|〈10|ψ1ψ2〉|2
+2Re{α∗β}|〈01|ψ1ψ2〉 〈10|ψ1ψ2〉| cos ϕ12

⇒ cos ϕ12

= |〈�+|ψ1ψ2〉|2 − |α|2|〈01|ψ1ψ2〉|2 − |β|2|〈10|ψ1ψ2〉|2
2Re{α∗β}|〈01|ψ1ψ2〉 〈10|ψ1ψ2〉| .

(7)

Projections onto an entangled state can be implemented by
a CNOT gate and a single-qubit rotation followed by a mea-
surement in the computational basis. The experimental values
of the γ ’s can then be obtained by measuring the probability
of projection of this state (and of the projection of |ψ1ψ2〉
onto |01〉 and |10〉). The algorithm to create and measure
these states is given pictorially in Fig. 1. Once the γ ’s are
measured, we can test, by hypothesis testing, whether their
experimental values are compatible with ±1, and similarly for
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FIG. 1. Graphical depiction of the algorithm to calculate the γ

factor of (7) by creating and projecting superpositions of arbitrary
states. The states are created from unitary rotations R�(λ) of an angle
λ around the � axis, with ak = cos θk/2, bk = sin θk/2, followed by
a CNOT gate and a rotation by angle −θm for desired projection. For
example, to project on α |01〉 + β |10〉, choose θm = 2 cos−1 α and
record the counts of |01〉. The unentangled projections | 〈01|ψ1ψ2〉 |2,
etc., that are necessary for the γ ’s can be measured by a similar
circuit where the CNOT gate and the single-qubit rotation at the end
are removed.

F . In principle, the Peres test should check that F = 1 for all
states, which is, of course, not feasible. However, by choosing
sets of (uniform) random states, we sample the Hilbert space
uniformly.

The experimental results are presented in Fig. 2. The fact
that a complex quantum theory is necessary, and it is also
sufficient as quaternions are not required, is confirmed by our
results up to experimental error (which we fully character-
ized). All the circuits are run for 104 shots, and the limited
sample gives rise to significant statistical fluctuations in the
results, indicated in the plots by 3σ confidence intervals. We
also plotted the values obtained from simulations on Rigetti’s
quantum virtual machine (QVM). Because of noises in the
quantum computer, the result of the Peres test has statistically
significant deviations from the theoretical values. However,
when we take into account the dominant sources of system-
atic errors (readout and dephasing errors here) in the gates
in a noisy simulation, we observe that the deviations in the
results are accounted for. We choose the noise parameters for
each type of noise from the device specifications provided
by Rigetti. Including the specified errors reproduces the de-
viations in the value of F up to statistical fluctuation. This
confirms that the observed value of F < 1 is due to the noises,
and we cannot reject the hypothesis that complex numbers are
sufficient. We explore the effects of different types of errors in
Ref. [23].

Since the value of F is sensitive to the number and amount
of errors present in the hardware, it can be used to bench-
mark the quantum computer if one assumes the correctness
of quantum mechanics, e.g., in the presence of dephasing
noise (parametrized by 0 � p � 1). If we simulate the Peres
test using an artificial dephasing noise model, we observe
that the deviation of F from 1 towards zero increases with
the increase in the amount of noise. Namely, by finding the
amount of dephasing noise that reproduces the experimentally
observed deviation of F , we can get a bound on the amount
of dephasing noise in the system [23]. Similar bounds can be
determined for other types of noises.

FIG. 2. Plots of the γ12 and of F for different sets of (uniformly
distributed) random states. The green circles are the measured out-
puts on a Rigetti Aspen-9 device, the blue stars are the (ideal)
quantum prediction from Rigetti’s quantum virtual machine (QVM),
and the red diamonds are the quantum prediction that takes into ac-
count the systematic noise sources (the noise parameters are obtained
from Rigetti’s own calibration data). Most γ values are different from
±1, which implies that a real Hilbert space is insufficient. The values
of F are all smaller than 1, but they are all statistically compatible
with the value corrected by taking into account the readout and
dephasing errors in the hardware (as explained in the main text).
None of the values of F are outside the interval [−1, 1], so the
superposition principle is not violated.

Sorkin test. The measurement postulate (Born’s rule)
claims the following: “The probability that a measurement
of a property O, described by the operator with spectral de-
composition

∑
j o j | j〉 〈 j|, returns a value o j , given that the

system is in state |ψ〉, is p(oj |ψ ) = | 〈ψ | j〉 |2 = |x j |2, with
|ψ〉 = ∑

j x j | j〉” [24].
The linearity of quantum mechanics implies that, if a value

o j of some system property is determined by two or more
indistinguishable pathways, the probability of measuring such
value is obtained from the sum (interference) of the ampli-
tudes for each (superposition principle). This interference is
encoded in the postulate by the scalar product 〈ψ | j〉 (whose
definition contains a sum). The exponent 2 in the probability
postulate implies that the superposition of more than two path-
ways gives the same probability that is obtained by separately
considering the interference of all the couples of paths inde-
pendently [14,15]. Namely, no genuinely n-path interference
effects appear for n > 2. In fact, for n = 3, assuming Born’s
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rule, consider the following probabilities:

p123 =
∣∣∣∣
( 〈1| + 〈2| + 〈3|√

3

)
|ψ〉

∣∣∣∣
2

= |x1 + x2 + x3|2
3

, (8)

p12 =
∣∣∣∣
( 〈1| + 〈2|√

2

)
|ψ〉

∣∣∣∣
2

= |x1 + x2|2
2

, etc., (9)

p1 = |〈1|ψ〉|2 = |x1|2, etc., (10)

where the bras refer to the O eigenstates | j〉, the term (8) refers
to a three-path interference, (9) refers to two-path interfer-
ence, and (10) is the probability of each path by itself. The
exponent 2 ensures that the multipath probability can always
be expressed in terms of the two-path and single-path ones.
Indeed the quantity

κ3 = 3p123 − 2(p12 + p23 + p13) + p1 + p2 + p3 (11)

is identically null thanks to the following identity, valid for
any three complex numbers x1, x2, x3:

3

∣∣∣∣x1 + x2 + x3√
3

∣∣∣∣
2

− 2
[∣∣∣∣x1 + x2√

2

∣∣∣∣
2

+
∣∣∣∣x1 + x3√

2

∣∣∣∣
2

+
∣∣∣∣x2 + x3√

2

∣∣∣∣
2]

+ |x1|2 + |x2|2 + |x3|2 = 0. (12)

Sorkin [14] proposed to check the form of Born’s rule and the
superposition principle by measuring the probabilities (8)–
(10) and calculating the experimental value of κ3 to check if
it is null (up to statistical error). This can be extended to arbi-
trary n. In fact, if we assume (or measure experimentally) that
the κ j’s up to j = n − 1 are null, one can show by induction
that

κn =
∣∣∣∣∣

n∑
j=1

x j

∣∣∣∣∣
2

−
n−1,n∑
j,k> j

|x j + xk|2 + (n − 2)
n∑

j=1

|x j |2, (13)

so that one can incrementally increase n by just measuring the
n-path, two-path, and one-path probabilities.

Importantly, one has to ensure that the pathways are dis-
tinguishable (i.e., they are described by orthogonal states);
otherwise interferences are not obtained through simple sums
as in (8)–(10). Initial experiments were carried out following
Sorkin’s proposal of multislit experiments [18] which are
only approximately orthogonal (looping paths that go through
multiple slits exist [25–27]). As we do here, some tests used
orthogonal states [28], where a null result is easier to evaluate.

To implement a Sorkin test on a quantum computer, we
need to create an arbitrary superposition of n orthogonal path-
ways. This can be done using n qubits with a unary encoding
[23] or, more efficiently and in a less error-prone manner,
with log2 n qubits in a binary encoding. Start with n = 3: The
circuit to create arbitrary three-level states with binary encod-
ing is presented in Fig. 3(a). It implements the transformation
U (θ1, ϕ1, θ2, ϕ2)|00〉, which prepares the state

|ψ〉 = cos
θ1

2
e−iϕ1/2 |00〉 + sin

θ1

2
eiϕ1/2 cos

θ2

2
e−iϕ2/2 |10〉

+ sin
θ1

2
eiϕ1/2 sin

θ2

2
eiϕ2/2 |11〉 , (14)

where θk and ϕk are defined in the figure caption and are
chosen randomly. To get the probabilities (8)–(10), we need to
project |ψ〉 onto a state 〈ψ ′| such as (〈00| + 〈10| + 〈11|)/√3,

FIG. 3. Sorkin-test circuits. (a) Circuit to prepare arbitrary three-
level states (14): R�(λ) represents a rotation around the � axis by
an angle λ. (b) Complete circuit that includes also the measure-
ments. The parameters t1 and t2 are used to select the different
measurements. For example, the projection onto |00〉 + |10〉 + |11〉
discussed in the text is obtained by choosing t1 = 2 cos−1(1/

√
3),

t2 = 2 cos−1(1/
√

2).

etc. The state 〈ψ ′| = 〈00|U †(t1, f1, t2, f2) is imple-
mented by the adjoint of the circuit of Fig. 3(a)
with appropriate t1, f1, t2, f2, and the projection is
〈00|U †(t1, f1, t2, f2)U (θ1, ϕ1, θ2, ϕ2)|00〉. The simplified
quantum circuit to implement U †(t1, 0, t2, 0)U (θ1, ϕ1, θ2, ϕ2)
is shown in Fig. 3(b). Measurements in the computational
basis can be done by setting t1 = t2 = 0 and getting all the
projections from the same run of the circuit. Using this
circuit, we performed the three-level Sorkin test on a number
of randomly chosen states. The results are presented in Fig. 4,
and they confirm that κ3 is statistically compatible with zero,
as expected.

The extension to arbitrary n can be obtained from the
measurement of the n-path probability: It can be implemented
using a Hadamard gate on each path followed by computa-
tional basis measurement if n is a power of 2 or, in general,
from a circuit whose adjoint creates a uniform superposition

FIG. 4. Plot of κ3 of Eq. (11) of the Sorkin test for randomly
chosen states performed using the circuit of Fig. 3(b). All obtained
values are compatible with the theoretical value κ3 = 0 expected
from standard quantum mechanics. The error bars are produced using
the same method as in the case of the Peres test in Fig. 2.
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FIG. 5. Results of the joint Peres and Sorkin test using the same
set of states and circuits for both. The data acquired to perform the
Sorkin test in this case were sufficient to perform the Peres test,
and therefore the same data set is used to plot both κ3 and F . The
results of the joint Peres-Sorkin test are consistent with theoretical
expectations, taking into account the readout and dephasing errors
present in the system. These results are also consistent with the
results of the standalone versions of the Peres test and the Sorkin test
shown in Figs. 2 and 4 (the values are, however, different because the
set of random states used in each case is different).

starting from a |0 · · · 0〉 state. The probability of obtaining all
zeros from this measurement gives the first term of the hierar-
chy, namely, the first sum in (13), i.e., Eq. (8) for n = 3. Then
we only require two-path and one-path probabilities that can
be obtained with a trivial extension of the above procedure:
Translate to binary and then use two-qubit correlations for the
two-path probabilities or measure the computational basis for
the one-path probabilities. This is sufficient, in principle, to
incrementally scale the Sorkin test to large n = 2N using N

qubits [23], although in practice, current NISQ device limita-
tions prevent us from testing for large n as errors increase with
increasing number of qubits.

Interestingly, our algorithmic procedure allows us to per-
form the Peres and Sorkin tests jointly for a class of states.
Instead of using the above procedure to prepare the Sorkin-
test state, we use the Peres-test circuit of Fig. 1 to produce
and project a set of randomly generated states of the form
|ψ1ψ2〉 = a |00〉 + b |01〉 + c |10〉 + d |11〉. We then consider
the projections onto |00〉 + |01〉 + |10〉, onto the two path
states |00〉 + |01〉, |00〉 + |10〉, and onto |01〉 + |10〉 and for
the singles. For the Sorkin test, we make an additional pro-
jection on |00〉 + |01〉 + |10〉 by replacing the CNOT gate
and single qubit rotation at the end with the adjoint of the
circuit that transforms |00〉 → (|00〉 + |01〉 + |10〉)/

√
3 and

then measuring |00〉. Since the state |11〉 never appears in
these measurements, this procedure is equivalent to first pro-
jecting the state |ψ1ψ2〉 onto the subspace spanned by |00〉,
|01〉, and |10〉 and then performing the Sorkin test on the
projected state (results are shown in Fig. 5).

The experimental results presented here refer to the out-
put of algorithms we ran on an Aspen-9 machine provided
by Rigetti Computing. The source code of our algorithms is
written in PYTHON, using the PYQUIL library [29], the quan-
tum instruction language developed for the Rigetti software
development kit (SDK) [30].

Conclusions. We propose and implement quantum algo-
rithms to test some of the physical principles behind two pos-
tulates of quantum mechanics: the complex nature of quantum
Hilbert spaces and the form of Born’s rule. We also perform
both tests at the same time. We present results on a NISQ
device. The source codes of our algorithms are available [31].
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