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It is generally believed that the classical regime emerges as a limiting case of quantum theory.

Exploring such quantum-classical correspondences provides a deeper understanding of founda-

tional aspects and has attracted a great deal of attention since the early days of quantum theory. It

has been proposed that since a quantum mechanical wave function describes an intrinsic statistical

behavior, its classical limit must correspond to a classical ensemble—not to an individual particle.

This idea leads us to ask how the uncertainty product of canonical observables in the quantum

realm compares with the corresponding dispersions in the classical realm. In this paper, we explore

parallels between the uncertainty product of position and momentum in stationary states of quan-

tum systems and the corresponding fluctuations of these observables in the associated classical en-

semble. We confine ourselves to one-dimensional conservative systems and show, with the help of

suitably defined dimensionless physical quantities, that first and second moments of the canonical

observables match with each other in the classical and quantum descriptions—resulting in identical

structures for the uncertainty relations in both realms. VC 2012 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4720101]

I. INTRODUCTION

It is imperative to retrieve classical dynamics as a limiting
case—in its domain of validity—from quantum theory. The
generally prevailing notion is that classical mechanics
emerges in the limit �h! 0. The applicability of this limit is
reviewed critically in Refs. 1 and 2.

Another quantum-classical correspondence discussed
widely is Ehrenfest’s theorem,3 which states that the equa-
tions of motion for the expectation values of the position and
momentum are the same as those obeyed by a classical parti-
cle under certain conditions. More specifically, for a system
with Hamiltonian Ĥ ¼ p̂2=2mþ Vðx̂Þ, the equations of
motion for the expectation values of the position and mo-
mentum operators are

dhx̂i
dt
¼ hp̂i

m
; (1)

dhp̂i
dt
¼ � dVðx̂Þ

dx

� �
¼ hFðx̂Þi; (2)

where Fðx̂Þ ¼ �dVðx̂Þ=dx is the force operator. Under the
approximation hFðx̂Þi � Fðhx̂iÞ (which is exact for linear
and quadratic potentials), the equation of motion for hp̂i
reduces to

dhp̂i
dt
¼ Fðhx̂iÞ: (3)

In other words, the quantum averages hx̂i and hp̂i satisfy the
classical equations of motion (1) and (3). However, in order
for these equations to lead to classical trajectories, the quan-
tum wave function must be narrow compared to the typical
length scale over which the force varies. Furthermore, for
the stationary states of a Hamiltonian that is symmetric under

x$ �x, both hx̂i and hp̂i are always zero and therefore
Eherenfest’s theorem does not yield any useful information.

The discussions in many textbooks on quantum mechanics
are essentially confined to the limit �h! 0 and the Eherenfest
theorem in discussing the emergence of the classical regime.
While both these quantum-classical correspondences operate
in their own domains of applicability, it has been identified
that they are not universally satisfactory.4–10 In the absence
of a commonly accepted notion of the classical limit, it is im-
portant to recognize the quantum features that are expected
to leave their imprints in the classical regime.

It has been pointed out that the classical limit of a quan-
tum state ought to correspond to an ensemble rather than a
single particle.1,6,11 The averages, variances, and higher-
order moments of the quantum and classical probability dis-
tributions are therefore expected to agree in the limiting
case. Interestingly, considerable attention has been evinced
recently in exploring the borderline between classical and
quantum worlds via uncertainty principles.12 Conceptual
advances in symplectic geometry and topology—followed
by Gromov’s discovery of symplectic non-squeezing phe-
nomena13—shed light on the fact that there is an underlying
uncertainty principle governing classical Hamiltonian phase
flows too.14

In order to compare the statistical form of classical dy-
namics with the corresponding one in quantum dynamics,
the phase space probability distribution of the classical en-
semble (a counterpart of the corresponding quantum state)
needs to be identified. The classical phase space probability
distribution satisfies the Liouville equation and the phase
space averages of the classical observables are shown to
exhibit dynamical behaviour analogous to that of the
corresponding quantum case—even when Ehrenfest’s theo-
rem breaks down.6 More recently,15 it has been shown that
starting from the Ehrenfest theorem, either the Liouville
equation (if the momentum and coordinate commute) or the
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Schrödinger equation (if the momentum and coordinate obey
the canonical commutation relation) would ensue.

It is pertinent to mention here another approach towards
the classical limit, where one considers only stationary state
solutions of the quantum Hamiltonian and graphically

compares the probability density function P
ðnÞ
QMðxÞ ¼ jwnðxÞj

2

with the corresponding classical probability distribution
PCLðxÞ of an ensemble; it is then recognized that the enve-
lope of the quantum probability density approaches the clas-
sical one in the large-n limit.16

In this paper, we show that the first and second moments
of suitably defined dimensionless canonical variables eval-
uated for the stationary states of one-dimensional conserva-
tive quantum systems match with those associated with the
corresponding classical ensemble. This, in turn leads to iden-
tical structure for uncertainty relations of the dimensionless
position and momentum variables in both classical and quan-
tum domains—bringing out the underlying unity of the two
formalisms—irrespective of their structurally different math-
ematical and conceptual nature.

II. CLASSICAL PROBABILITY DISTRIBUTIONS

CORRESPONDING TO QUANTUM MECHANICAL

STATIONARY STATES

We begin by reviewing the classical probability distribu-
tions16 for an ensemble of particles bound in a one-dimensional
potential V(x). The probability density function for the position
x of a single particle, whose initial position and velocity are
specified, is given by

Psingle
CL ðx; tÞ ¼ d½x� xðtÞ�; (4)

where x(t) denotes the deterministic trajectory of the particle
at any instant of time t. However, the quantum mechanical
probability density P

ðnÞ
QMðxÞ ¼ jwnðxÞj

2
associated with the

stationary-state solution wnðxÞ is not expected to approach—
in the classical limit—the single-particle probability density
of Eq. (4). Rather, the locally averaged quantum probability
density does approximate a probability distribution PCLðxÞ
of a classical ensemble of particles (of fixed energy E) in the
large n limit.16

Classical particles of fixed energy E in a statistical ensem-
ble (microcanonical ensemble) are confined to move on a
surface of constant energy E in the phase space and the asso-
ciated phase space probability distribution PCLðx; pÞ obeys
the stationary state Liouville equation

dPCLðx; pÞ
dt

¼ fPCLðx; pÞ;Hg ¼ 0; (5)

where fPCLðx; pÞ;Hg is the Poisson bracket of PCLðx; pÞ
with the Hamiltonian H ¼ ðp2=2mÞ þ VðxÞ. In other words,
the phase space distribution PCLðx; pÞ is a function of the
Hamiltonian H itself. The constant energy assumption then
corresponds to

PCLðx; pÞ / d
p2

2m
þ VðxÞ � E

� �
: (6)

The position probability function is then obtained by inte-
grating over the momentum variable p

PCLðxÞ ¼
ð

dpPCLðx; pÞ

¼ Constant �
ð

dpd
p2

2m
þ VðxÞ � E

� �
: (7)

Using the properties dðaxÞ ¼ dðxÞ=jaj and dðx2 � a2Þ
¼ dðxþ aÞ þ dðx� aÞ½ �=2jaj of the Dirac delta function, the
classical probability distribution reduces to

PCLðxÞ ¼ Constant �
ð

dp2md p2 þ 2m½VðxÞ � E�
� �

¼ Constant �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m

½E� VðxÞ�

s

�
ð

dp d pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E� VðxÞ�

p	 
h

þ d p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E� VðxÞ�

p	 
i
¼ Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E� VðxÞ
p ;

(8)

where N denotes the normalization factor, such thatÐ x2

x1
dxPCLðxÞ ¼ 1 (the integration is taken between the classi-

cal turning points ðx1; x2Þ as the probability distribution
PCLðxÞ vanishes outside the domain x1 � x � x2).

It may be readily seen that, by substituting E ¼ mx2A2=2
and VðxÞ ¼ mx2x2=2 in the familiar example of the har-
monic oscillator, the classical position probability distribu-
tion (8) reduces to the well-known expression PCLðxÞ
¼ 1=p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � x2
p

.
The phase space averages of any arbitrary function F(x,p)

of position and momentum variables get reduced to those
evaluated with the position probability distribution function
PCLðxÞ as follows:

hFðx; pÞiCL ¼
ð

dx

ð
dpPCLðx; pÞFðx; pÞ

¼ Constant �
ð

dx

ð
dpd

p2

2m
þ VðxÞ � E

� �
Fðx; pÞ

¼ Constant �
ð

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

E� VðxÞ

s

�
ð

dp d pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E� VðxÞ�

p	 
h
þ d p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E� VðxÞ�

p	 
i
Fðx; pÞ

¼ Constant �
ð

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

E� VðxÞ

s

� Fðx;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E� VðxÞ�

p
Þ

h
þFðx;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E� VðxÞ�

p
Þ
i

¼ 1

2

ð
dxPCLðxÞ F x;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E� VðxÞ�

p	 
h
þF x;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E� VðxÞ�

p	 
i
: (9)

We define dimensionless (scaled) position and momentum
variables,
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X ¼ x

A
; P ¼ pffiffiffiffiffiffiffiffiffi

2mE
p ; (10)

such that jXj; jPj � 1 in a bounded system.
In Sec. III, we compute the first and second moments

hXiCL; hX2iCL; hPiCL, and hP2iCL of the classical probability
distribution in three specific examples of one-dimensional
bound systems. We then compare these classical averages
with the quantum expectation values hX̂iQM; hX̂2iQM; hP̂iQM,
and hP̂2iQM, evaluated for the stationary states wnðxÞ,
and show that they agree remarkably with each other in the
classical limit.

III. COMPARISON OF FIRST AND SECOND

MOMENTS OF THE CLASSICAL DISTRIBUTION

WITH THE STATIONARY STATE QUANTUM

MOMENTS

We focus now on three specific examples of one-
dimensional bound systems: the harmonic oscillator, the infi-
nite well, and the bouncing ball. We evaluate the first
and second moments of the dimensionless position and mo-
mentum variables [Eq. (10)] and show that the quantum
moments—evaluated for stationary eigenstates of the Hamil-
tonian—match their classical counterparts.

A. One-dimensional harmonic oscillator

As shown in Sec. II, the classical probability density for
finding a system of harmonic oscillators—all with the same
amplitude A—between position x and xþ dx is given by

PCLðxÞ ¼
1

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � x2
p for jxj � A;

0 for jxj > A:

8<
: (11)

We use scaled canonical variables X¼ x/A and P ¼ p=
ffiffiffiffiffiffiffiffiffi
2mE
p

¼ p=ðmxAÞ, and evaluate the averages of X, X2, P, and P2,
making use of Eqs. (9) and (11)

hXiCL ¼
1

A

ð
dxPCLðxÞx ¼

1

Ap

ðA

�A

dx
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � x2
p ¼ 0;

(12)

hX2iCL ¼
1

A2

ð
dxPCLðxÞx2

¼ 1

A2p

ðA

�A

dx
x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � x2
p ¼ 1

2
; (13)

hPiCL ¼
1

2mxA

ðA

�A

dxPCLðxÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E� 1

2
mx2x2

� �s 

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m E� 1

2
mx2x2

� �s !
¼ 0; (14)

hP2iCL ¼
1

m2x2A2

ðA

�A

dxPCLðxÞ2m E� 1

2
mx2x2

� �

¼ 1

A2p

ðA

�A

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � x2
p

¼ 1

2
: (15)

The variances of X and P are given by

ðDXÞ2CL ¼ hX2iCL � hXi
2
CL ¼

1

2
;

ðDPÞ2CL ¼ hP2iCL � hPi
2
CL ¼

1

2
;

(16)

and hence the product of variances is

ðDXÞ2CLðDPÞ2CL �
1

4
(17)

in a classical ensemble [characterized by the probability dis-
tribution (11)] of harmonic oscillators.

The stationary-state solutions of the quantum Hamiltonian
Ĥ ¼ ½p̂2 þ m2x2x̂2�=2m are given by

wnðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx=p�h

p
2nn!

 !1=2

Hnð
ffiffiffiffiffiffiffiffiffiffiffiffi
mx=�h

p
xÞe�mxx2=�h; (18)

where Hn are the Hermite polynomials of degree n. These
states correspond to the energy eigenvalues En ¼ nþ 1=2ð Þ
�hx. The classical turning points associated with energy

En are readily identified to be An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2En=mx2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ�h=mx

p
.

We use scaled position and momentum operators, X̂ ¼ x̂=

An¼ x̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx=ð2nþ 1Þ�h

p
; P̂ ¼ p̂=

ffiffiffiffiffiffiffiffiffiffiffi
2mEn

p
¼ p̂=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ�hmx

p
(corresponding to their classical counterparts above), and

evaluate the expectation values of X̂; X̂2; P̂, and P̂2 for the sta-
tionary states wnðxÞ

hX̂iQM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mx
ð2nþ 1Þ�h

r ð1
�1

dxjwnðxÞj
2x ¼ 0; (19)

hX̂2iQM ¼
mx

ð2nþ 1Þ�h

ð1
�1

dxjwnðxÞj
2x2 ¼ 1

2
; (20)

hP̂iQM ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

ð2nþ 1Þmx

s ð1
�1

dxw	nðxÞ
dwnðxÞ

dx
¼ 0;

(21)

hP̂2iQM ¼
��h

ð2nþ 1Þmx

ð1
�1

dxw	nðxÞ
d2wnðxÞ

dx2
¼ 1

2
: (22)

Clearly, these quantum expectation values match the classi-
cal ones given in Eqs. (12)–(15) and we obtain the uncer-
tainty product, for all stationary-state solutions of the
quantum oscillator,

DX̂
� �2

QM
DP̂
� �2

QM
� 1

4
: (23)

It is pertinent to point out here that the commutator relation

½X̂; P̂� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mx
ð2nþ 1Þ�h

r
x̂;

p̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hmxð2nþ 1Þ

p
" #

¼ 1

ð2nþ 1Þ�h ½x̂; p̂� ¼
i

2nþ 1
(24)

leads to the uncertainty relation

DX̂
� �2

QM
DP̂
� �2

QM

 1

4ð2nþ 1Þ2
: (25)
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In the large-n limit the right-hand side goes to zero, which
would be expected in the classical regime. However Eq. (23)
for the uncertainty product holds for all the stationary-state
solutions; and strikingly, this result matches that of a classical
ensemble of oscillators with fixed energy E [see Eq. (17)].

B. One dimensional infinite potential box

We consider a symmetric infinite potential well defined by

VðxÞ ¼ 0 for � L=2 � x � L=2;
1 for jxj > L=2:



(26)

The particles move with a constant velocity within the box
and get reflected back and forth. The position probability dis-
tribution for an ensemble of classical particles confined to
move within the box is a constant [as can be readily seen by
substituting Eq. (26) in Eq. (8)] and is given by16

PCLðxÞ ¼
1=L for jxj � L=2;
0 for jxj > L=2:



(27)

This distribution obeys
Ð L=2

�L=2
PCLðxÞdx ¼ 1.

In this example, the dimensionless position and momen-
tum variables are

X ¼ x

L=2
; P ¼ pffiffiffiffiffiffiffiffiffi

2mE
p ¼ p

jpj ; (28)

and the classical averages hXiCL; hX2iCL; hPiCL, and hP2iCL

are readily evaluated using the probability distribution (27)

hXiCL ¼
ð

dxPCLðxÞ
x

L=2
¼ 2

L2

ðL=2

�L=2

xdx ¼ 0; (29)

hX2iCL ¼
ð

dxPCLðxÞ
x2

L2=4
¼ 4

L3

ðL=2

�L=2

dxx2 ¼ 1

3
; (30)

hPiCL ¼ 0; (31)

hP2iCL ¼ 1: (32)

So, the variances of X and P are ðDXÞ2CL ¼ 1=3 and
ðDPÞ2CL ¼ 1 for the classical ensemble of particles of fixed
energy E, confined within the infinite well. The product of
the variances is

ðDXÞ2CLðDPÞ2CL �
1

3
: (33)

The quantum mechanical stationary-state solutions (even and
odd parity) for a particle confined in the one-dimensional infi-
nite potential well are

wðþÞn ðxÞ ¼
ffiffiffi
2

L

r
cosðnpx=LÞ; n ¼ 1; 3; 5;…;

wð�Þn ðxÞ ¼
ffiffiffi
2

L

r
sinðnpx=LÞ; n ¼ 2; 4; 6;…;

(34)

and the corresponding energy eigenvalues are

En ¼
n2p2�h2

2mL2
: (35)

The scaled dimensionless position and momentum operators
are

X̂ ¼ x̂

L=2
; P̂ ¼ p̂ffiffiffiffiffiffiffiffiffiffiffi

2mEn

p ¼ p̂

np�h=L
: (36)

The expectation values of X̂; X̂2; P̂, and P̂2 are evaluated in
the stationary states (both even and odd) to obtain

hX̂iQM ¼
1

L=2

ðL=2

�L=2

dxjwðþ=�Þn ðxÞj2x ¼ 0; (37)

hX̂2iQM ¼
1

L2=4

ðL=2

�L=2

dxjwðþ=�Þn ðxÞj2x2 ¼ 1

3
� 2

n2p2
; (38)

hP̂iQM ¼ �i
L

np

ðL=2

�L=2

dxwðþ=�Þn ðxÞ dwðþ=�Þn ðxÞ
dx

¼ 0; (39)

hP̂2iQM ¼ �
L2

n2p2

ðL=2

�L=2

dxwðþ=�Þn ðxÞ d
2wðþ=�Þn ðxÞ

dx2
¼ 1:

(40)

It may be seen that hX̂2iQM approaches the classical result,
hX2iCL ¼ 1=3, in the large-n limit. In this limit, the uncer-
tainty product becomes

lim
n!1

DX̂
� �

QM
DP̂
� �

QM
¼ 1

3
: (41)

Meanwhile, from the commutator relation,

½X̂; P̂� ¼ 2

L
x̂;

L

np�h
p̂

� �
¼ 2i

np
; (42)

it is clear that the uncertainty product obeys

DX̂
� �2

QM
DP̂
� �2

QM

 1

n2p2
; (43)

and in the large-n limit one recovers the expected result
ðDX̂Þ2QMðDP̂Þ2QM 
 0. However, the stationary-state uncer-
tainty product, Eq. (41), does not vanish in the limit n!1.
Instead, it approaches the value 1/3, which coincides exactly
with that associated with the classical ensemble [see Eq. (33)].

C. Bouncing ball

We now consider the example of a particle bouncing verti-
cally up and down in a uniform gravitational field, which is
described by the confining potential

VðzÞ ¼ 1 for z < 0;
mgz for z 
 0:



(44)

A classical particle of total energy E, subject to this poten-
tial, bounces back and forth between z¼ 0 and a maximum
height z¼A, where A¼E/mg.

An ensemble of bouncing balls of energy E is character-
ized by the classical position probability distribution16

PCLðzÞ ¼
1

2A

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðz=AÞ

p for 0 � z � A;

0 otherwise:

8<
: (45)

This expression follows from substituting Eq. (44) in Eq. (8).

711 Am. J. Phys., Vol. 80, No. 8, August 2012 A. R. U. Devi and H. S. Karthik 711



Employing dimensionless position and momentum variables

Z ¼ z

A
; P ¼ pffiffiffiffiffiffiffiffiffi

2mE
p ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m2gA
p (46)

(so that 0 � Z � 1 and �1 � P � 1 for the bouncing par-
ticles), we obtain the classical moments

hZiCL ¼
1

A

ð
dzPCLðzÞz ¼

1

2A2

ðA

0

dz
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðz=AÞ
p ¼ 2

3
;

(47)

hZ2iCL ¼
1

A2

ð
dzPCLðzÞz2 ¼ 1

2A3

ðA

0

dz
z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðz=AÞ
p ¼ 8

15
;

(48)

hPiCL ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2gA

p ðA

0

dzPCLðzÞð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE� mgzÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðE� mgzÞ

p
Þ ¼ 0; (49)

hP2iCL ¼
1

2m2gA

ðA

0

dzPCLðzÞ2mðE� mgzÞ

¼ 1

2A

ðA

0

dz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðz=AÞ

p
¼ 1

3
: (50)

Thus, the variances of Z and P are ðDZÞ2CL ¼ 4=45 and
ðDPÞ2CL ¼ 1=3, leading to

ðDZÞ2CLðDPÞ2CL � 4=135: (51)

Stationary-state solutions of a quantum bouncing particle17

are obtained by solving the time-independent Schrödinger
equation,

� �h2

2m

d2wnðzÞ
dz2

þ mgzwnðzÞ ¼ EnwnðzÞ; (52)

with the boundary condition

wnð0Þ ¼ 0: (53)

In terms of the characteristic gravitational length17

lg ¼
�h2

2m2g

� �1=3

; (54)

it is convenient to define dimensionless quantities

E0n ¼
En

mglg
; z0 ¼ z

lg
� E0n; (55)

so that the Schrödinger equation (52) takes the standard form

d2wnðz0Þ
dz02

¼ z0wnðz0Þ; (56)

which is the Airy differential equation. The solutions of Eq.
(56) are two linearly independent sets of Airy functions,
Aiðz0Þ and Biðz0Þ. However, the function Biðz0Þ diverges as
its argument increases, and so it is not a physically admissi-
ble solution. The stationary state solutions of a quantum
bouncer are thus given by

wnðz0Þ ¼ NnAiðz0Þ; z0 
 �E0n; n ¼ 1; 2; 3;…; (57)

where Nn is a normalization constant. From the boundary
condition (53), one obtains Aið�E0nÞ ¼ 0, indicating that the
(scaled) energy eigenvalue E0n is minus the nth zero of the
Airy function. (The zeros of the Airy function are all nega-
tive). The first few energy eigenvalues E0n of the quantum
bouncing ball are given in Table I.

Identifying the classical turning points An associated with
the energy eigenvalues En of the quantum bouncer to be

An ¼
En

mg
¼ lgE0n; (58)

we define appropriately scaled position and momentum oper-
ators [which are quantum counterparts of Z and P defined in
Eq. (46)] as

Ẑ ¼ ẑ

An
¼ ẑ

lgE0n
; P̂ ¼ p̂ffiffiffiffiffiffiffiffiffiffiffi

2mEn

p ¼ lgp̂

�h
ffiffiffiffiffi
E0n

p : (59)

Further, substituting Eqs. (54) and (55) in Eq. (59), we may
express the configuration representation of the operators Ẑ
and P̂ in terms of z0 and E0n as

Ẑ ! 1

E0n
ðz0 þ E0nÞ; P̂! �iffiffiffiffiffi

E0n
p d

dz0
: (60)

The expectation values hẐiQM and hẐ2iQM can be evaluated
analytically18 for the eigenstates (57) of the quantum bounc-
ing ball

hẐiQM ¼
1

E0n

ð1
�E0n

dz0ðz0 þ E0nÞjwnðz0Þj
2

¼ N2
n

E0n

ð1
�E0n

dz0ðz0 þ E0nÞAi2ðz0Þ ¼ 2

3
; (61)

hẐ2iQM ¼
1

E02n

ð1
�E0n

dz0ðz0 þ E0nÞ
2jwnðz0Þj

2

¼ N2
n

E02n

ð1
�E0n

dz0ðz0 þ E0nÞ
2
Ai2ðz0Þ ¼ 8

15
: (62)

These agree exactly with the corresponding moments in a
classical ensemble of bouncing balls [see Eqs. (47) and (48)].

The expectation value hP̂iQM is

hP̂iQM ¼
�iffiffiffiffiffi

E0n
p ð1

�E0n

dz0w	nðz0Þ
dwnðz0Þ

dz0

¼ �iN2
nffiffiffiffiffi

E0n
p ð1

�E0n
dz0Aiðz0Þ dAiðz0Þ

dz0
¼ 0; (63)

Table I. The first few scaled energy eigenvalues E0n of the quantum bounc-

ing ball.

n E0n

1 2.3381

2 4.0879

3 5.5205

4 6.7867

5 7.9441
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where the last step follows from integration by parts. Finally,
we evaluate the expectation value hP̂2iQM as follows:

hP̂2iQM ¼ �
1

E0n

ð1
�E0n

dz0w	nðz0Þ
d2wnðz0Þ

dz02

¼ � 1

E0n

ð1
�E0n

dz0w	nðz0Þz0wnðz0Þ

¼ �N2
n

E0n

ð1
�E0n

dz0z0Ai2ðz0Þ

¼ 1� hẐiQM ¼
1

3
; (64)

where we have used Eq. (56) in the second line and Eq. (61)
in the fourth line.

The expectation values hP̂iQM and hP̂2iQM match identi-
cally with the corresponding moments (49) and (50) of scaled
momentum variables in an ensemble of classical bouncing
balls. This is indeed a novel identification, bringing forth the
deep-rooted unifying features of the classical and quantum
realms.

From Eqs. (61)–(64), we obtain the variances of Ẑ and P̂
for the stationary states to be ðDẐÞ2QM ¼ 4=45 and ðDP̂Þ2QM
¼ 1=3. Hence, the uncertainty product is

ðDẐÞ2QMðDP̂Þ2QM �
4

135
; (65)

which exactly matches that of the classical ensemble of
bouncing balls [see Eq. (51)].

It may be noted that the commutation relation

½Ẑ; P̂� ¼ ẑ

lgE0n
;

lgp̂

�h
ffiffiffiffiffi
E0n

p
" #

¼ i

ðE0nÞ
3=2

(66)

would lead to the uncertainty relation ðDẐÞ2QMðDP̂Þ2QM


 1=4ðE0nÞ
3
. In the large-n limit 1=E0n ! 0 (as the energy

eigenvalues obey the scaling relation16 E0n / n2=3 for large
n), thus resulting in the classical limit on the variance prod-

uct ðDẐÞ2QMðDP̂Þ2QM 
 0. Equation (65), on the other hand, is

exact for the energy eigenstates.

IV. CONCLUSIONS

Emergence of classical behaviour from the corresponding
quantum world has remained an enigmatic topic ever since
the inception of quantum theory. It is shown here that in
three specific examples of one-dimensional bound systems—
harmonic oscillator, infinite square well, and bouncing
ball—the uncertainty products of position and momentum
evaluated for stationary quantum states agree with those of
the corresponding constant-energy classical ensembles. This
identification points towards a deep underlying connectivity
between the two formalisms, despite their mathematical and
conceptual differences.

The uncertainty principle is one of the intrinsic trademarks
of quantum theory and is not a feature of the classical
deterministic motion of single particle. However, recent
investigations12—motivated by Gromov’s non-squeezing
theorem13—have shown that there indeed are intrinsic uncer-
tainties governed by the symplectic geometry of Hamiltonian
phase space flows associated with classical ensembles. Our

work establishes a remarkable agreement between the uncer-
tainty product for quantum stationary states and the classical
microcanonical ensemble of constant energy, for the three
specific examples considered here. This agreement could be
a reflection of subtle aspects of symplectic toplogy. It would
be interesting to investigate the nature of quantum-classical
uncertainties from a unifying point of view based on phase
space topology.12

According to the Eherenfest theorem, the dynamical equa-
tions of motion for the average values of the position and mo-
mentum coincide with the classical equations for linear and
quadratic potentials. The three specific examples analyzed
here focused on stationary-state solutions associated with lin-
ear and quadratic potentials, and this raises the question of
whether the agreement between classical and quantum uncer-
tainty products happens to be an indirect reflection of Ehren-
fest theorem itself.19 Yet another reason why the classical and
quantum uncertainty relationships coincide might be because
the quasi-classical (WKB) approximation is exact for the
potentials considered.20 It is therefore important to extend our
results to the case of non-quadratic potentials, which we will
take up in a forthcoming communication.
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