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During a pandemic, there are conflicting demands that arise from public health and socioeconomic costs.
Lockdowns are a common way of containing infections, but they adversely affect the economy. We study the
question of how to minimize the socioeconomic damage of a lockdown while still containing infections. Our
analysis is based on the SIR model, which we analyze using a clock set by the virus. This use of the “virus time”
permits a clean mathematical formulation of our problem. We optimize the socioeconomic cost for a fixed health
cost and arrive at a strategy for navigating the pandemic. This involves adjusting the level of lockdowns in a
controlled manner so as to minimize the socioeconomic cost.
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Introduction. The COVID-19 virus presents a global threat
to life and livelihoods and throws up challenges which soci-
eties across the world have to learn to deal with. Pandemics
are not new, and there are mathematical models which have
been developed over the years. The value of mathematical
models is that they give us a simplified picture of the pan-
demic and let us explore the effects of different containment
strategies without performing costly, and possibly fatal, so-
cial experiments. These models are the basis for a rational,
science-based social response to a serious threat. While mod-
els do have their limitations, they are steadily improving with
time, experience, and computational power.1 It is imperative
for us to understand the predictions of these models and com-
pare them with data and experience.

In this Letter we consider one of the simplest models of
disease spread, the SIR model [1]. Our focus here is to quan-
tify the social cost of a pandemic within the framework of the
SIR model. As a society we would like to use interventions in
order to minimize the damage caused by the disease.

By far the most important interventions are medical:
doctors, nurses, medical infrastructure, treatments (drugs),
preventive measures (vaccines), testing, and contact tracing.
When a pandemic breaks out, it takes time to develop some of
these interventions. Safe vaccines and drugs take time to test
and develop. If the infections get out of hand, contact tracing
too becomes impractical. We are then left with nonmedical
interventions, like lockdowns, which limit the spread of infec-
tion by changing the social behavior of the population. This is
the focus of the present paper. Lockdowns limit the spread of
disease by reducing social contact; however, they also prevent
the economy from functioning normally and thus come with a
socioeconomic (SE) cost. Like the health cost of a pandemic,

1It is worth emphasizing that models for weather prediction which
were unreliable a few decades ago have now come of age and give us
reliable predictions of the path a cyclone will take.

the economic cost of a lockdown can be debilitating: lock-
downs affect lives and livelihoods, cause physical and mental
trauma, and even deaths.

Extreme strategies are
(i) to ignore the SE cost and impose strict lockdowns (to

the grievous detriment of the economy) and
(ii) to ignore the health cost and keep the economy

running normally (which results in a large human cost of
suffering and death).

The SE cost and the health cost are like Scylla and Charyb-
dis of Greek mythology. We would like to have a rational
strategy of steering a course between these hazards, optimiz-
ing the extent and timing of lockdowns to minimize the total
cost to society. In order to do this, we need to model these
costs in mathematical terms. Before we do that we recall the
SIR model for disease spread.

The SIR model divides the population into three compart-
ments {S, I, R}, where {S, I, R} are respectively the fractions
of susceptible, infected, and removed populations. The re-
moved population includes recoveries as well as deaths. The
model assumes that the recovered population is immune to
the disease, that there is no possibility of reinfection. The
progress of the disease is described by a set of three ordinary
differential equations:

dS

dt
= −β(t )IS

dI

dt
= β(t )IS − γ I (1)

dR

dt
= γ I,

where we allow for the possibility that β varies with time,
as would happen when lockdowns are imposed and relaxed.
Evidently,

S + I + R = 1, (2)
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FIG. 1. The figure shows the susceptible (decreasing, blue),
infected (nonmonotonic, green), and removed (increasing, red) frac-
tions as a function of time in days. In this graph, for illustration we
have taken β = 0.5 and γ = 0.1. This corresponds to a reproductive
ratio of r = 5.

and the equations of the SIR model (1) maintain this condi-
tion. The progress of the disease can be described by a point in
a two-dimensional space, a plane (2) in the three-dimensional
{S, I, R} space.

The parameter β describes the rate at which the susceptible
population becomes infected due to contact with the infected
population. This parameter depends on how infectious the
disease is, as well as the degree of contact between people.
The effective infectivity β(t ) is a product β(t ) = u(t )β0 [2]
of the biological infectivity β0 (which depends on the dis-
ease) and u(t ), the degree of social contact between people.
β(t ) can be controlled by reducing social contact u(t ), for
example, by using lockdowns to ensure physical distancing
and using masks. γ is the rate at which infected individuals
either recover or die from the infection. Early detection and
good medical care can increase the recovery rate. β and γ ,
which appear in the equations (1), are parameters of the model
which are both positive. γ is assumed to be constant in time.
The model is characterized essentially by one parameter, the
reproduction ratio r = β

γ
. The independent time variable t can

be rescaled to set γ to 1.
The SIR model describes the evolution of the disease in a

fixed population and is one of the simplest models capturing
the essential features of disease spread. More detailed com-
partmental models have also been studied. Among these are
the SEIR model and its variants [3,4], which have more com-
partments to allow for asymptomatic infections, etc. There is
also a study [5] which questions the effectiveness of lock-
downs in preventing fatalities. A suggestion for mitigating
the SE cost of lockdowns has been made in Ref. [6]. The
independent variable in the SIR model is the time t measured,
say in days, and there are three dependent variables {S, I, R}
subject to a single constraint (2). Figure 1 shows the evolution
of the SIR fractions as a function of time.

This paper is organized as follows. We first summarize our
main results and then present a derivation of them, and finally,
we end with some concluding remarks.

Main results. Here we summarize the main results of the
study and describe the methods we use. Our objective is to
minimize the damage caused by the pandemic on two fronts:
the public health perspective and the economy. The demands

FIG. 2. Optimal lockdown profiles. Here we plot the reproduc-
tion ratio r(t ) = β(t )/γ as a function of human time. The different
curves correspond to τ f = 0.3, 0.5, 0.7, 0.9 from bottom to top, cor-
responding to the colors red, green, blue, and black, respectively. β̃

and τ0 (see main text) have been set to 0.25 and 0.0, respectively, and
γ to 0.1.

of public health force us to impose lockdowns, which ad-
versely affect the economy. The question of interest is when
and how much to lock down so that the damage to the econ-
omy is minimized. The question is complicated by the fact
that lockdown measures taken at a certain time can influence
the infection rates at later times. To understand this influence
requires the use of a model for the spread of infections. We
work with the simplest SIR model. In order to gain a long-
term perspective, we have to consider the entire duration of
the pandemic and account for the integrated health and SE
costs.

This is precisely the kind of problem which can be dealt
with using the calculus of variations. To give a familiar
example, the shape of a soap bubble is determined by the
requirement that its surface area is a minimum, subject to the
constraint that the volume of enclosed air is fixed. The shape
which achieves this optimization is the sphere. In the case of
the pandemic, the role of the “shape” is played by the profile
of lockdown characterized by β as a function of time, which
tells when and how much to lock down. The role of the “area”
is played by the total integrated SE cost of the lockdown. The
role of the fixed volume of the soap bubble is played by the
total health cost, measured by the fraction of people affected
over the duration of the pandemic. What emerges from this
study is the optimal profile for β(t ), i.e., that which minimizes
the SE cost for a fixed health cost. This is the analog of the
spherical shape of a soap bubble.

A crucial ingredient in our study is the use of a new time
variable. The time variable in the original SIR equations (1)
is human time. Human time is counted in days or weeks and
measured by the progress of stars in the sky. In contrast, virus
time τ = R is measured by the progress of the virus through
the population. The virus clock starts ticking at the beginning
of the pandemic (τ = 0, when R = 0), runs faster when there
are more infections ( dτ

dt = γ I), and ceases to tick when the
infections die out at the end of the pandemic.

The results of our study are presented in Fig. 2, which
shows the optimal lockdown as a function of human time.
These curves are the main results of this study. They represent
the optimal way to modulate the lockdown so that the impact
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on the economy is minimal. Each of these curves represents
a different fixed health cost in terms of the number of people
affected by the virus.

Next we discuss the main results of this paper. We express
the health and SE cost in mathematical form.

Socioeconomic cost. The parameter in the SIR model
which represents the effect of lockdown is β. We suppose
that when all measures which do not affect the economy (like
wearing masks, washing hands) have been imposed, we have
β = β̃. Further reduction in β can only come at an SE cost.
The SE cost is a function that decreases with increasing β until
β̃ and then drops down to zero. We make a simple choice of
this function: for β values less than β̃, the SE cost of a lock-
down is inversely proportional to β and directly proportional
to the number of days it lasts. We emphasize that we are not
interested in a detailed modeling of the economy. We only
wish to describe the damage caused to the economy by the
intensity and duration of the lockdown.

The total SE cost integrated over the duration of the pan-
demic is modeled as2

CE =
∫ ∞

0

dt

β(t )
. (3)

Note that the cost depends on the extent of the lockdown as
well as the duration measured in human time t . Values of
β above β̃ can be ignored as they come with no SE cost.
If controlling the pandemic does not require β less than β̃,
there is no conflict between the economic and public health
objectives: the economy can function normally. Below we
assume that we are always dealing with β values less than
β̃, i.e., there is a conflict between the twin objectives.

Health cost. We model the health cost as R f = R(∞), the
total fraction of people affected by the disease during the
entire course of the epidemic. Hospitalizations and deaths are
some fixed fractions of R f . Even some of those who do not
need hospitalization suffer long term after effects from the
ravages of COVID-19. We can therefore model the health cost
mathematically as R f , the final value of the removed fraction:
CH = R f . CH is a dimensionless number. Our objective is to
hold CH fixed at the value CH0 and find the lockdown profile
β(t ) which minimizes the SE cost. The fixed value CH0 of the
health cost is a choice one has to make. Needless to say, there
is a value judgment involved in making this choice. Choosing
a small value for CH0 gives more weight to the health cost and
a large value reverses the emphasis. Once this value judgment
is made, we can use our ability to modulate β over time,
varying the extent and timing of lockdowns to minimize the
SE cost.

The independent variable t in the SIR equations (1) is
the time measured in human time, for instance, days. This is
relevant to the progress of the epidemic in human terms. In
fact, the SE cost (3) grows with the duration of a lockdown,
measured in human time. We find it advantageous to use a new
time variable as set by the progress of the virus through the
human population. Accordingly, we set τ = R as the fraction

2We could write this equation more correctly by multiplying the
integrand by the Heaviside Theta function �(β̃ − β ). We have not
done so, as this may not be familiar to some readers.

of people affected by the epidemic and regard this to be the
“virus time.” We will use τ and R interchangeably, preferring
τ when we wish to emphasise its role as a “time” or indepen-
dent variable. The virus time increases monotonically,

dτ

dt
= dR

dt
= γ I � 0, (4)

with human time, the rate of progress given by γ I > 0, which
is proportional to the current infected fraction. As we will
see, using the virus time instead of the human time gives
us significant advantages in addressing our problem. First,
it gives us an exact parametric solution of the SIR model.
(This is equivalent to the parametric solutions given earlier
by [7,8]). Second, we get a clean mathematical formulation of
our problem of optimizing the total social cost. Letting the
virus set the clock is one of the crucial ingredients of our
approach.

Dividing the first of the equations [Eq. (1)] by the last, we
find that (expressing β as a function of τ )

dS

dτ
= dS

dR
= −β(τ )

γ
S, (5)

which is readily integrated. Using the constraint (2) immedi-
ately gives us an exact solution of the SIR model in parametric
form:

S(τ ) = S0 exp

[
−

∫ τ

τ0
β(τ ′)dτ ′

γ

]

I (τ ) = 1 − S0 exp

[
−

∫ τ

τ0
β(τ ′)dτ ′

γ

]
− τ (6)

R(τ ) = τ,

where the last equation is a tautology arising from the defini-
tion of τ . The virus time τ is measured from the beginning of
the epidemic. τ0 represents any fixed intermediate time. The
relation between the virus time and human time is given by
integrating the last of (1), where I (τ ) is given by the second
equation of (6):

t =
∫ τ

0

dτ ′

γ I (τ ′)
. (7)

Let us suppose that our lockdown response starts when the
virus time is τ0, when the susceptible fraction is S0. τ0 could
be when the pandemic is initially detected or any subsequent
time. Given a fixed value of the health cost R f , our problem is
to choose the function β(τ ) so as to minimize the SE cost.

Let us introduce a new variable,

y(τ ) =
∫ τ

τ0

β(τ ′)dτ ′, (8)

so that S(τ ) = S0 exp [−y(τ )/γ ] and β(τ ) = dy
dτ

= ẏ. Then
S f = S(τ f ) = S0 exp [−y(τ f )/γ ] and at the end of the pan-
demic, when infections cease (I = 0), we have from S f +
R f = 1,

S0 exp [−y(τ f )/γ ] + τ f = 1, (9)

fixing y f in terms of τ f ,

y f = y(τ f ) = −γ log (1 − τ f )/S0. (10)
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We now have a classic variational problem for y(τ ), where
y(τ0) = 0, y(τ f ) = y f are held fixed and we have to minimize
the SE cost,

CE =
∫ τ f

τ0

dt

dτ

dτ

ẏ
. (11)

From the parametric solution to the SIR equations (1), we
replace dt

dτ
by [γ I (τ )]−1, leading to the variational problem

of minimizing ∫ τ f

τ0

dτ

I[y(τ )]ẏ(τ )
, (12)

where we have dropped some constants. I[y(τ )] here is a func-
tional of y(τ ), which is found by solving the SIR equations
(1). Its explicit form is given by the second of (6). We now
have to minimize,∫ τ f

τ0

dτ

ẏ(τ )(1 − S0 exp [−y/γ ] − τ )
. (13)

We now vary y(τ ) in Eq. (13) and as is usual in the calculus of
variations, integrate by parts and discard the boundary terms,
since y is held fixed at both boundaries.

We can read off the Lagrangian appearing in Eq. (13):

L(y, ẏ, τ ) = 1

ẏ(1 − S0 exp [−y/γ ] − τ )
, (14)

and the resulting Euler-Lagrange equations can be rearranged
to give

ÿ(1 − S0 exp [−y]/γ − τ ) + ẏ2S0 exp [−y/γ ]

γ
− ẏ

2
= 0.

(15)
This equation can be integrated by expressing it as

dK (y, ẏ, τ )

dτ
= 0, (16)

where the constant of the motion K has the form

K (y, ẏ, τ ) = ẏ(1 − S0 exp[−y/γ ] − τ ) + y/2 = K0. (17)

These equations can be analytically solved by introducing
an integrating factor (y/2 − K )−3. The solution gives τ as
a function of y expressed in terms of elementary functions
including the exponential integral, which can be plotted to
show y as a function of τ . From this it is easy to extract the
quantity of interest, β(τ ) = ẏ, which determines the lockdown
profile.

In making Fig. 2, we have numerically integrated (17) in
the form

dy

dτ
= K0 − y/2

(1 − S0 exp[−y/γ ] − τ )
(18)

and noted that our boundary conditions imply that the value
of the constant is K0 = y f /2.

Figure 2 shows the optimal way of imposing lockdowns,
plotting r = β/γ as a function of human time. The optimal
solution consists of an initial sharp lockdown followed by a
gradual release of the lockdown. Intuitively, this is easy to
understand: premature release of lockdown results in flareups
of the disease, which then require further lockdowns which
contribute to the SE cost.

Concluding remarks. First, a disclaimer: The authors
of this paper are not epidemiologists. We are theoretical

physicists who have addressed a socially relevant interdisci-
plinary problem, which can be addressed using the methods
of our subject. As is common in theoretical physics, we work
with the simplest model that captures the phenomena of inter-
est. The conclusions we arrive at are not intended to be directly
transferred to any real world context. Nevertheless, the ideas
developed here can be developed further by introducing more
realistic models. The main message we have to offer is that
there is a competition between the twin social objectives of
public health and the economy. It is then advantageous to use
lockdown profiles derived from our formalism to minimize
the total damage from a pandemic. For example, the SEIR
model is a slightly more realistic model in which our analysis
can be carried out. In this case, a purely analytic solution is
not possible, but one can formulate the problem as we have
done here and derive results for the optimal lockdown using
numerical methods.

One of the main ideas introduced and used in this Letter
is that of “virus time.” At one level it is a convenient math-
ematical device. It leads to an exact parametric solution of
the SIR model. This solution is considerably simpler than the
existing ones [7]. At a conceptual level it is a more appropriate
measure of the progress of the disease than human time mea-
sured in days. For example, virus time elapses differently in
different countries. Some countries impose travel restrictions
(e.g., travel within 5 km of one’s house). In such cases virus
time elapses differently in different locations.

Our graphs show the optimal lockdown profile in terms
of the reproductive ratio β/γ , a quantity which is directly
measurable (by testing a random sample of the population)
and often used to describe the progress of a pandemic. One
could consider more complicated functional dependence on β

for the SE cost, for instance, one could consider the SE cost
per day to be inversely proportional to β2 and so on. We expect
the main qualitative conclusions to remain unchanged by such
a choice. It would take economists to realistically measure the
cost of lockdowns. This is a task we do not undertake here.

Across the world there have been many disparate govern-
ment responses to the COVID-19 pandemic. Sweden chose
not to lock down at all; New Zealand chose to lock down hard
and early. Many other nations adopted policies in between,
some responding to flaring infections as they broke out, as
firemen do with fires. After the pandemic is over, with the
clarity of hindsight we will learn which of these strategies was
most effective in preventing societal distress. Meanwhile we
can gain insights by working with simple models to evaluate
these different strategies. The work of this paper is a starting
point in considering the SE as well as health costs of a pan-
demic. We import methods from variational calculus (which
we illustrate by the example of soap bubbles) to arrive at
an optimal strategy to navigate the pandemic, keeping both
the SE and health costs in mind. A crucial ingredient in our
problem is the virus time, a natural parameter which has been
introduced to make the problem tractable. Our main result
is that the best strategy to follow is one in which a sharp
lockdown is imposed, followed by a gradual release. This is
indeed to be expected, if one understands exponential growth
of disease. However, our solution also prescribes when to
lock down and how much. An important choice to be made
in determining the strategy is the value of R f , the health
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cost. This choice will depend on the resources of the nation.
Nations which can afford a larger cost can opt for a lower
value of R f . Poorer nations will be forced to accept a higher
health cost. However, given these limitations, the strategy we
propose is optimal within the SIR model.
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