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Abstract. Geometrical theory of diffraction (GTD) is an alternative model of diffraction
propounded first by Thomas Young in 1802. GTD has a long history of nearly 150 years
over which many eminent people enriched this model which has now become an accepted
tool in the calculation of diffraction patterns. In the conventional Helmholtz—Kirchhoff theory
the diffracted field is obtained by computing the net effect of the waves emitted by all points
within the area of the aperture. But GTD reduces this problem to one of computing the net
effect of waves from a few points on the boundary of the aperture or obstacle, thus simplifying
considerably the labour involved in computations. Also the theory can easily be modified:
to include polarization effects. This has been done specifically by Keller (1962) who exploited
the Sommerfeld solution of diffraction of electromagnetic waves at a half plane, making the
theory more versatile than the Kirchhoff scalar wave theory. Interestingly the geometry of
diffracted rays is predictable from a generalized Fermat principle. According to this the total
path chosen by light from the source to the point of observation via the diffracting boundary
is an extremum. Historically it should be stated that many of the salient features of GTD
were established by a school led by Raman which was active from 1919-1945. Later when
Keller (1962) revived GTD independently, he and others who followed him rediscovered
many of the results of the Raman school. We have stressed wherever necessary the
contributions of the Indian School. We have also discussed certain geometries where GTD
can be effectively used. We get some new and interesting results, which can be easily
understood on GTD, but are difficult to interpret on the conventional theory of diffraction.
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1. Introduction

Maxwell’s electromagnetic theory is undoubtedly the most important contribution
to our understanding of light. At one stroke it could easily explain the phenomena
of interference, diffraction and polarization of light. In particular, the study of
polarization and diffraction got a new impetus. Since light obeys Maxwell’s equations,
many great physicists from Lord Rayleigh to Sommerfeld tried to get everything
about light from these equations. In these attempts both the power as well as the
limitations of this approach became quickly obvious. For all their mathematical
beauty, the partial differential equations of Maxwell were not easy to solve in every
given problem. The practical difficuities forced many to think of other ways of solving
some of the formidable problems particularly in the domain of optical diffraction.

The fact that light in many ways behaved like sound was exploited by a few to
break new ground in this field. For example, the first mathematical theory of light
diffraction is due to Fresnel. He reaffirmed the wave nature of light and gave a theory
of half-period zones with which he could calculate diffraction patterns in simple
geometries. This gave remarkable agreement with experiments.

Kirchhoff’s theory of diffraction of sound waves was extended to the domain of light.
This exercise was not without its failures. It leads to many computational difficulties
when applied to even slightly complicated geometries. Using Kirchhoff’s integral we
can in principle calculate the diffraction patterns of apertures and obstacles. The
procedure is tedious and time-consuming. In figure 1 we show the diffraction patterns
obtained on a computer with this technique, for equilateral triangular apertures at
fixed distance from the screen. It clearly brings out the experimentally observed
features. Also we do recognize the gradual transition from a Fresnel pattern of
three-fold symmetry to a Fraunhofer pattern of six-fold symmetry. But purists were
constantly besieged by the fact that it was a scalar wave theory and was thus strictly
speaking incapable of handling electromagnetic waves.

It is these technical difficulties that make diffraction problems hard to solve. And
wherever one got answers, a physical understanding was still elusive. This became
apparent even in one of the earliest problems, viz., diffraction at a circular disk.
Though Poisson predicted from Fresnel’s theory a bright spot at the centre of the
shadow of a circular disk, he refused to believe it and used the result as an argument
to reject Fresnel’s theory of diffraction. Fortunately, Arago’s experimental demonstra-
tion of this phenomenon saved Fresnel’s theory.
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Figure 1. Diffraction intensity contour maps of an equilateral triangular aperture calculated
using Kirchoff theory at a distance of 100cm. Triangular apertures are of side (a) 1 cm,
(b) 0-06 cm, (c) 0-01 cm.

Only against such a background we can appreciate the alternative model of
diffraction, which was first propounded by Thomas Young (1802). Young’s theory
evolved out an interesting experimental observation. Even from deep within the
shadow, a straight edge appears as a luminous line, and diffraction fringes associated
with edges are seen only outside the shadow region. Young argued that these two
facts can be explained by assuming that the edge emits waves in all directions. Outside
the shadow boundary it interferes with the main geometrically transmitted wave,
resulting in a fringe pattern and inside the shadow one gets a monotonic decrease in
intensity. Though Young laid the foundations of a new theory of diffraction, it took
many decades to work out the details that were necessary for its application to objects
of arbitrary shape. It also became very important to make contacts with the Kirchhoff
theory in view of its successes in the early years of diffraction theory. In addition,
the inclusion of the polarization of the electromagnetic waves was neither easy nor
straightforward. One had to appeal to typical solutions of Maxwell’s equations to
incorporate polarization effects. All this ultimately lead to the establishment of the
geometrical theory of diffraction (GTD). In essence it is a recapitulation of Young’s
idea, viz., diffraction is a manifestation of interference between the directly transmitted
light waves and waves emitted by the boundary of the diffracting object.

From the point of view of mathematical computations this theory is quite simple
and straightforward. Also it is possible to easily and physically account for many
strange and peculiar facts associated with diffraction patterns. For example, the
Poisson spot associated with a circular disk is due to a constructive interference at
the centre of the waves emanating from the circular boundary. In spite of all these
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attractive features, GTD is still an approximate theory and it does not go over to
the Fraunhofer diffraction limit. Its power lies in its utility as a tool to get quickly
and to a reasonable accuracy the Fresnel diffraction patterns of objects and apertures
of arbitrary shapes. It should be emphasized that caiculations based on the Kirchhoff
theory are very cumbersome since they involve oscillatory integrals. This results in
substantial cancellations to the net effect. In GTD these cancellations isolate the
points that make the important contributions to the diffraction pattern.

GTD has played a very important role in the computation of fields diffracted from
macroscopic objects due to incident radio waves. In many radio engineering problems
like antenna design we need to know the strength and structure of the scattered field.
Since a solution based on electrodynamic equations is not easily obtainable, GTD
techniques come in handy. This has recently been dealt with exhaustively by
McNamara et al (1990). In this article, however, we shall not dwell upon these
engineering problems but will confine ourselves to situations that arise in the region
of wavelengths small compared with the size of the diffracting screen. Also we present
some interesting results that have emerged out of the application of GTD to certain
optical problems.

It is also of historical importance to notice that many of the essential steps of
GTD were rediscovered by many succeeding investigators. In this context particular
mention should be made of the contributions of the school lead by Raman. Over a
period of nearly thirty years they worked out the important aspects of GTD. But all
these investigations appear to have gone unnoticed by the later workers who revived
Young’s theory of diffraction. We have emphasized elsewhere the work of the Indian
School in this field (Sunil Kumar and Ranganath 1991).

2. Boundary wave theory of diffraction

Young’s model of diffraction proposed in 1802 lay dormant for nearly the next hundred
years. This may partly be due to Fresnel’s criticism that Young’s theory was not
amenable to quantitative analysis. But in 1888 Maggi showed that the Kirchhoff
diffraction integral (which is a superior mathematical formulation of diffraction to
Fresnel’s theory of half period zones) may be reduced to a sum of (i) a wave propagating
according to the laws of geometrical optics called the geometrical wave, and (ii) a
wave originating from every point on the boundary of the obstacle or aperture — called
the boundary wave. This is reminiscent of Young’s theory. In 1896, Sommerfeld,
without being aware of Maggi’s work, solved the problem of electromagnetic
diffraction at a perfectly conducting half plane in the framework of Kirchhoff theory.
Interestingly he got a solution similar to the one obtained by Maggi. The field at any
point can be looked upon as the sum of a geometrically transmitted wave and a
cylindrical wave diverging from the straight edge. Sommerfeld gave a new life to
Young’s theory and many followed him in elaborating on this boundary wave theory
of diffraction. In view of their significance we shall briefly present here the various
important problems solved by different workers.

2.1 Diffraction by a straight wedge

Let Z axis be along the edge of a wedge. The wedge is described by a sector of interior
angle (2n — p) (see figure 2). The incident ray is along ¢ = ¢,. The geometrically
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Reflected ray (¢=T"-do) Incident ray($ =do)

Transmitted " Diffracted my
ray (=Tr+d)

Figure 2. Diffraction geometry for rays incident on a straight wedge at a glanching angle
of ¢ = ¢o. Angle of the wedge is 2n — f).

reflected and the directly transmitted rays are respectively along ¢, =7 — ¢, and

4’::75‘*'4’0-

Then the electromagnetic field in all space is given by

u(r, @) = ov(r, @ — ¢o) + v(r, ¢ + @)

with negative sign for the electric vector parallel to the edge and the positive sign for
the electric vector perpendicular to the edge. The function v can be shown to be

o(r, 0) = v,(r, 0) + vy(r, 0).

Here v, represents the incident or the reflected wave as given by geometrical optics
and v, represents the diffracted wave originating from the edge of the wedge. At
distances r (from the edge) large compared to the wavelength it is given by

sin(n?/B)
cos(n?/B) — cos(nb/p)

vy(r,0)= exp[i(kr + m/4)]

T
B(Qnkr)t/?

[cos(nj) — cos<ﬂ> :Iz > 1
B B kr’

“Hence for a half plane (8 = 2n)

provided

1 . 1
by= — m)ﬁe"p[l(kr +m/4)] s for cos 6/2 »W
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when'kr « 1
vy =2(2/m)'? exp(— in/4)(kr)!/*sin(¢,/2)sin 6/2

showing that the field is continuous at r = 0.

We can also calculate using Maxwell’s equations the magnetic field of the diffracted
wave. For kr» 1 we find H, = — E, and H, =0 while for kr « 1, H, and H, diverge
like 1 /\ﬁ excepting at ¢ = n at which H, = — sin ¢yexp(ikr cos ¢,) and at ¢ =0, 2n
when H, = 0.

Also it can be shown that for the electric vector parallel to the edge the diffraction
field vanishes on the two surfaces of the conducting wedge, i.c., at ¢ =0 and ¢ = .

We can also get directly from Kirchhoff's integral the structure of the edge radiation
diffracted at angle of @ for a straight edge. This turns out to be

cos 0 exp(ikr)
tan ﬁ ’
which is not the same as the Sommerfeld solution.

The Sommerfeld solution, however, is not valid in the close neighbourhood of the
incident shadow boundary and reflection shadow boundary, ie., ¢ =7 + ¢, in view
of the divergence in the diffraction field v,. These difficulties of edge diffraction were
overcome in the uniform theory of diffraction which was developed in 1974 by
Kouyoumjian and Pathak. They found by an asymptotic analysis that by multiplying
v, by a transition function the diffraction fields can be bounded across the boundaries
¢ =n + ¢q. For a half plane we get

exp(— in/4) | F[kra(¢ — ¢o)] +F [kra(¢ + ¢o)] } {eXp(ikr)}
2Q2mk)'? | cos(@ — o2 cos(¢ + do)/2 Jro)

v exp(— in/4)

=l

Ud(r’ d’) =

Here

a(¢ £ ¢o) = 2cos*(¢ + ¢,)/2
F(x) = Transition function = 2i\/; exp(ix) Iw_ exp(— io?)dw.
Jx

When the diffracted ray is not close to ¢ = n + ¢, F(x) — 1 and we get the Sommerfeld
solution.

The fact that v, has a factor exp(ikr)/ﬁ indicates that it resembles a cylindrical
wave emitted by the edge of the wedge. The trigonometric factor indicates a phase
jump of 7 as we cross the shadow boundaries. This led Banerji (1919) to conclude
that there is an edge dislocation in the wavefront pattern of the cylindrical wave.
Kalaschnikov (1912) showed that these rays can be photographed. He inserted pins
into a photographic plate which he then placed at an angle to the ray directions.
A long exposure revealed radially directed shadows of these pins on the plate.

Though the Sommerfeld solution could account for the experimentally observed
diffraction pattern at a straight edge, it did not give the right polarization features
associated with such a phenomenon. Raman and Krishnan (1927) argued that this is
due to its inherent assumption that the diffracting screen is made of a perfect conductor
(infinite conductivity). They accordingly modified the Sommerfeld theory by writing

u(r,¢) as
u(r, @) = vy(r,  — ¢o) + Ruy(r, d + ¢,)-
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Here R is the complex reflection coefficient of the metal of which the diffracting screen
is made. Interestingly this simple correction completely accounted for the experimentally
observed polarization features. Later experimental work of Savornin (1939) further
established the validity of this modification.

2.2 Diffraction by a thin edge of arbitrary shape

A similar electrodynamic boundary wave model of diffraction at boundaries of
arbitrary shape is yet to be developed. However, much progress has been made in
the case of scalar wave diffraction at such boundaries. This is largely due to the fact
that the starting point for such models has been the Kirchhoff’s theory which can be
used for an aperture or an obstacle of any shape. Maggi (1888) was the first to realize
that the Kirchhoff’s surface integral over the aperture could be reduced to a line integral
over the boundary of the aperture together with a contribution corresponding to the
geometrically transmitted wave. In fact this work precedes the Sommerfeld analysis
but unfortunately remained unnoticed by majority of later workers. Rubinowicz (1917,
1924) independently came to the same conclusions many years later.
With incident spherical waves the Kirchhoff surface integral becomes:

_1 explikr) 0 exp(ikp) _exp(ikp) 0 exp(ikr) do
T 4n ), r dn p p On r

where 7 is the outward surface normal to ¢ the surface spanning the aperture, r and
p are the distances of the point of integration from the point of observation P and
the light source P, respectively. The surface ¢ together with the diffracting screen
will separate the region containing P from that containing P,.

One point to be noticed in Kirchhoff’s theory is that the surface o can be entirely
arbitrary excepting for the condition that it is limited by the curve ‘s> which forms
the boundary of the aperture. Hence the above integration depends only on ‘s’ and
not on ¢. We now consider the cone formed by the rays emitted by the source and
the boundary of the aperture. Let T be this conical surface with surface element dZ.
Then it is easy to show that for points within the volume defined by o and £

,,=9X_PM_LJ'NE
p 47

and for exterior points

l ’

I' is the integrand in the Kirchhoff’s integral.
Further the surface integral on X can be simplified to a line integral on ‘s’ the edge
of the aperture. This is given by

1 exp(ikp) exp(ikr) cosf, .
— sin @, »ds.
4r ) p r 14cosf,
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The first factor gives the wave incident on the edge and the second factor corresponds
to the spherical wave reflected by the edge. Also

0, = Angle of reflection at the cone surface,
#, = Angle of incidence at the curved element of the edge,
8, = Angle of reflection at the edge.

Rubinowicz (1917, 1924) further simplified the contour integral by the method of
stationary phases. A substantial contribution to the line integral comes from only
those points on the contour at which the phase is stationary with respect to a movement
on the curve ‘s’. The phase factor [k(r + p)] remains constant on the contour only when

dp  dr
ds ds
ie.,
cos 6, = — cos 05.

This is often referred to as the reflection condition. Each of such points at which phase
is stationary contributes considerable intensity to the point of observation. The rays
that are diffracted by the edge obeying the above reflection condition have been
depicted in figure 3, for normal and oblique incidence of incident rays. The cone of

Ditfracted
rays

.

Incident Screen Incident

ray ray
/ Edge Screen

P I

(a) (b)

Figure 3. Diffracted rays in Rubinowicz reflection condition. (a) Diffracted rays will be on
a cone symmetric about the edge for an oblique incidence, (b) diffracted rays will be on a
disk perpendicular to the edge for normal incidence.
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diffracted rays in the case of oblique incidence has been seen experimentally by Maey
(1893).

In this context it is important to mention that Raman (1941) obtained essentially
the same result by a far simpler procedure. By ignoring the obliquity factor of Kirchhoff’s
theory, an approximation quite valid in real situations, we get

_ AJ' exp[i(kr)]
v=—| ——do.
P r

Then it can be shown that

A sin ¢ .
v= — E smexp(zkr)ds +

exp(ikp)
p

Here ¢ is the angle that the line element ds at B makes with the plane P,BP and 0
is the angle between the incident ray reaching the line clement at B and the diffracted
ray reaching the point of observation from this line element as shown in figure 4.
The boundary disturbance can be looked upon as being due to light sources of
strength (A sing)/(2nsin6) having a phase opposite to that of direct light at the
boundary. The maximum contribution to v comes from the line elements for which
sing is a maximum. Therefore the diffracted radiations principally originate at points
on the edge where the line element ds is perpendicular to the rays reaching the points
of observation.

Hence this analysis indicates that at any point of observation we get spherical
waves from a finite number of points on the boundary of an aperture. This fact was
experimentally demonstrated by Raman (1919). It is necessary to point out that
radiations from these special points which Raman referred to as poles are added with
appropriate phases at the point of observation. In addition we need also add the
geometrically transmitted ray if it also happens to reach the point of observation.

Thus Young's model of diffraction can be theoretically justified within the
framework of the Helmholtz-Kirchhoff scalar wave model. It should be mentioned in

Figure 4. Geometry of diffraction at an aperture.
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passing that a similar exercise is also valid for Fraunhofer diffraction. Laue (1936)
showed that the Fourier transform integral over the aperture can be reduced to an
integral taken round the boundary of the aperture. The Fraunhofer diffraction

amplitude is given by
+ oo
v= f S(x, yyexplitk,x + k,y)]dxdy.

If f(x,y) =1 over the aperture then

+ 0 +
v= J' exp[i(xk, + yk,)]dxdy = j Ydxdy.

-

It can be easily shown that

%y %y
e —_r k2 k2 =0.
Fs; +6y‘ + (ks + k) =0
Hence
1 + a0
v=—3| V2 dxdy
where

k= (k2 + k2)M?

From Green's theorem in two dimensions, we get

1 +°°5q/1
V= “k—zf_w:a;‘“
l +
= ‘“i(‘z— kn exp(ik'r)ds

Here k, is the component of k that lies in the surface and is normal to the line element
ds of the boundary of the aperture.

Laue (1936} used this result to easily account for the observed Fraunhofer diffraction
patterns of triangluar and hexagonal apertures. Ramachandran (1944) using Raman’s
method arrived at the same answer. He using the stationary phase approximation
further simplified the contour integral to contributions from a finite number of points
on the boundary. Using a very similar procedure, Mitra (1920) worked out the
Fraunhofer pattern for a semicircular aperture.

2.3 Phases of pole radiations

We may get an impression that the diffraction pattern can be worked out completely
once poles where the phases are stationary have been located. But this is far from
true. It was pointed out by Ramachandran (1945) that in principle contributions from
the points in the immediate neighbourhood of these poles should also be considered.
He employed the Cornu spiral method to work out the net contribution from all
such neighbouring points. He got a very important result as regards the phases of
these pole radiations. Radiation from a pole will have a phase advance of n/4 or
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Figure 5. Diffraction at an aperture of an arbitrary shape. The vector p is in the direction
of incident light. At point Q' where p = — p, the vector potential W becomes singular.
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phase lag of n/4 (all these extra phases are with reference to the phase of pole radiation
calculated previously) depending upon whether the pole is one of maximum or

minimum path with respect to the point of observation.
Miyamoto and Wolf (1962) interestingly arrived at the same conclusion using

KirchhofP's integral as explained below. The geometry is depicted in figure 5. The
Kirchhoff’s integrand for any incident vibration u is given by
1 = . .
_ _[uv<exp(1kp)) __exp(ikp) Vu].
4n p P
Since V-1 vanishes we can write I as a curl of a vector potential W. For any incident field
u(r') = A(r')exp[iky(r)], we get
W r) = u(r,)exp(lkp) pxp
4np 1+ pp

where p is a unit vector along p and p=V'(y) and r’ and r are the position vectors
of a point on the aperture and the point of observation. Then

P

vg=uP(r)+ Z;F;(r)

with
ub(r) = Jw-ds
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and

C;

C/’s being small circles surrounding singularities of W on the aperture.

It can be shown that u®(r) gives the boundary radiation and F;s contribute only
when the point of observation is in the illuminated region where they give the direct
beam.

When u®(r) is evaluated using the stationary phase method we get in the asymptotic
approximation

B(r) = exp(+ m/4)z exp tkpl)[ 2n 12(p x p)-ds
" f i dnp; | P*(p+y)os*]; 1+pp’

We take the positive or the negative sign according as [0%(p + ¥)]/8s? is positive or
negative. This gives essentially the Ramachandran phase + n/4 for the poles.

2.4 Corner radiation

In the case of obstacles and apertures having sharp corners it is not enough to work
out the pole contribution. The procedure used for locating poles, i.e., the method of
stationary phases fails when there are sudden changes in curvature. But contributions
from such points cannot be ignored either. Kathavate (1945) concluded on experimental
grounds that such sharp points act as point sources emitting spherical waves. It
should be remarked that many years later Miyamoto and Wolf (1962) arrived at the
same conclusion by using the Kirchhoff's integral. In the neighbourhood of such points
we find the corner radiation to be given by*

) _ iAsiny cos(n,r) xp(— ikr) 72
" 4n r : d,d,

¥ = angle between the two local tangents to the boundary at the corner

z = the perpendicular distance from the point of observations to the source

d,,d, = components of the vector joining the foot of the perpendicular to
the corner.

2.5 Surface diffraction

So far we have considered diffraction at infinitely thin apertures and obstacles. But
in reality the lateral thickness cannot be ignored. In examples involving three-
dimensional objects like cylinders and spheres this lateral dimension will very
significantly alter the diffraction phenomena. Raman and Krishnan (1926) were
probably the first to draw attention to the fact that spheres and discs behave differently
in diffraction. Similarly diffraction at cylinders is very different from diffraction at
strips of equal width.

*We are thankful to Prof. R. Nityananda for discussion on corner radiation.
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It is well known that in the shadow of a circular disk we get a bright central
spot—the Poisson spot. A very similar bright spot is also seen behind a sphere. But
Raman and Krishnan found that the central bright spot obtained in the case of the
sphere is always less intense than Poisson spot of a circular disk of equal diameter.
Only at very large distances the two intensities are nearly equal. These authors
accounted for this observed feature by postulating that light rays creep around the
spherical surface, always leaving the surface along the local tangent. Thus at any
point on the axis behind the sphere we get light from a circle on the sphere which
is the rim of the tangent cone to the sphere from the point of observation. The ratio
of the intensity of the central spot of a disk to that of the sphere of equal diameter
decreases exponentially to unity as we recede from the sphere. By employing the
Riemann-Weber (1927) analysis of electromagnetic waves propagating around the
earth, these authors quantitatively explained this exponential decrease in intensity.
According to this model the amplitude damping of the electromagnetic wave after it
has a creep angle of 6 is given by exp[ — (0-70)8(2nR/2)*'3].

Many years later Keller (1956) independently attacked the same problem and got
a very similar answer. The amplitude damping term is in the form of a series given by

z (Dn)z exp( -y Re)‘

n=1

R 1/3
aﬁ:%(%) exp(in/6)

With

(D,)? = (/dn?)!2 (ﬂ)l/sexp[— i(2/12)]
7 A= an)1?

for the electric vector parallel to the surface and for the electric vector perpendicular
to the surface

R

(D,)? = A (aR\'? exp(—in/12)
TN\ ) Ao

Here g, is a zero of the Airy function Ai(x) and ¢, is zeros of the derivative of the
Airy function A’(x). We easily recognize the Raman and Krishnan solution obtainable
as the leading term of the series.

’ R 1/3
o, = 4n <7r/_> exp(in/6)

3. Generalized Fermat principle

Keller (1962) suggested an interesting way of unifying all the above different cases.
In geometrical optics, the light ray obeys Fermat’s principle choosing in refraction
or reflection a path for which f,uds is an extremum. In a similar way Keller accounted
for the above results by postulating that the light ray is always so diffracted that the
total path from the source to the diffracting boundary and from there to the point
of observation is an extremum. The path of the diffracted ray can thus be easily
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worked out. This generalization of Fermat principle naturally leads to cylindrical or
conical edge waves at straight edges. At sharp corners it predicts spherical waves.
Even light creeping at surfaces is a consequence of this principle. Also this process
predicts that on a cylindrical object light will creep on an helix for oblique incidence.

But a complete solution of the problem of diffraction not only needs the paths
taken by the diffracted rays but also their amplitudes. Keller appeals to the results
of the previous section, in particular the Sommerfeld edge diffraction, to get in each
case these strengths of diffracted rays. For example the diffracted rays for a parallel
beam incident at an anlge «, on a straight edge are given by

exp(ikr)
U=U;D,
r
with \/_
_ exp(— in/4) 1 T 1
°" 2(2nk)'*sina |cos[($ — ¢o)/2] * cos[(d + ¢o)/2]

and U; is the incident wave.

The diffracted rays will be travelling on the surface of a cone symmetric about the
edge (figure 3). Keller also worked out the diffraction when the edge is not straight
but has finite curvature. He argued that a local cylindrical wave will be emitted by
the boundary. Thus the emerging wave front will also be locally curved parallel to
the edge. From light flux conservation Keller showed that the diffracted rays in such
a case are given by

exp(ikr) 7

O]

where p, denotes the distance from the edge to the caustic of diffracted rays measured
negatively in the direction of propagation. Hence as we cross the caustic U gets an
extra phase of 7/2, and the expression itself is not valid at and near the caustic.

We can also easily understand why only a few selected points of the boundary should
contribute to the net diffraction field at any given point. The path from the source
to the point of observation via the boundary will be an extremum only at these points
on the boundary. Hence the generalized Fermat’s principle naturally leads to the
notion of pole radiations. It is for these reasons the boundary wave theory of diffraction
has come to be known as the Geometrical Theory of Diffraction (GTD).

Thus the problem of diffraction reduces to finding the extremum paths for the
diffracted rays and then incorporating the amplitude for each such diffracted rays.
At any point of observation we add with appropriate phases all these diffracted rays
to get the net vibration.

U=DOUi

4. Applications of GTD

It was said earlier that the Kirchhoff-Helmholtz diffraction is not amenable to
calculations even in simple geometries. It is in this context that the GTD acquires a
new significance. Though in the beginning GTD was considered as a different model
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of diffraction, later developments and refinements evolved out of the realization that
GTD could be an effective and powerful method in calculating diffraction patterns.
However here we will be using GTD not to highlight these features but to account
for peculiar features associated with certain diffraction patterns and to suggest
solutions in situations where the Kirchoff theory is virtually powerless.

4.1 Transparent and semitransparent laminae

We have already mentioned the work of Raman and Krishnan (1927) on metallic
screens wherein they generalized the Sommerfeld solution. Later Raman and Rao
(1927) extended the same theory to account for diffraction at thin transparent laminae.
This problem naturally arose out of earlier experimental work of Raman and Ghosh
(1918) on the diffraction at boundaries of mica and of Raman and Banerji (1921) on
the colours of mixed plates. They considered the geometry where light fell normally
on the diffracting edge. There will be three regions in the light field: 1. Region of light
transmitted by lamina alone; 2. Region of incident light; 3. Region of superposition
of incident and reflected light.

They constructed a solution which not only satisfied the wave equation but also
smoothly and asymptotically reached the solutions at the previously mentioned
regions. Their solutions for the electric vector parallel and perpendicular to the edge
respectively are given by

_i”zexp(—ikr)[ 1-(C+iD)  A+iB :l
T An(r/AY? | cos(d—o)/2  cos(d + ¢o)/2
32 exp(—ikr)[ 1 —(C' +iD") A +iB
T (/)" [COS(¢ — ¢0)/2 * cos(¢ + ¢o)/2 J
Here (A +iB) and (C + iD) are the reflection and transmission coefficients of the

lamina. In calculating these quantities multiple reflections are taken into account.
They are given by (for normal incidence)

ifu? — )sin kt
i(u® + 1)sin kt + 2ucos kt

A+iB=A"+iB =

2u(cos kot + isinkgyt)

C+iD=C+iD = -
' : i(u? + Vsinkt + 2ucos kt

= refractive index, t = lamina thickness, k = 2nu/A, ko, = 2n/A.

Interestingly the very same solution was arrived at very recently by Burnside and
Bergener (1983), who were unaware of the earlier work.

Ananthanarayanan extended the above theory to metallic films by making u
complex (Ananthanarayanan 1940). He used this to account for his experimental
observations on the diffraction at thin metallic films. In this case he not only found
a fringe system in the shadow region, but they were also of better clarity compared
to fringes in the light region. He explained this observation by arguing that the
cylindrical edge wave emanating from the straight boundary interferences with the
wave weakly transmitted by the metallic film. The higher contrast is due to the fact
that these two waves are nearly of comparable intensity. On the illuminated side
the main beam is far more intense compared to the intensity of the cylindrical edge
wave resulting in fringes of low visibility.
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4.2 Apertures and obstacles with straight edges

We have already solved the diffraction problem at a straight edge. We now extrapolate
the results obtained there to apertures and obstacles bounded by straight edges. When
a plane wavefront, i.c., parallel beam of light falls on such an object, each of the
straight edges will emit cylindrical waves, i.e., rays radiating out in all directions but
normal to the edge. Any point within the shadow gets these cylindrical waves. They
will have to be added with strengths (i.e., the diffraction coefficient) given by D, and
with appropriate phases to get the net vibration. Since the diffracted rays are normal
to the straight edges, any point of observation gets edge radiation only from a few
points, i.e.,, poles on the boundary of the object. These poles are located at the feet
of the perpendiculars drawn to the straight edges, from the point of observation. As
the point of observation changes the location of the poles also will change. For points
in the illuminated region we have to have in addition the main wave as well.

As Kathavate (1945) pointed out, this geometrical exercise can be further simplified
to work out the diffraction pattern in these problems. On the plane of observation
we locate the geometrical shadow boundary of the object. From the point of
observation, which is on this plane, we drop perpendiculars to the shadow boundaries.
The feet of these perpendiculars on this projected plane correspond to the projection
of poles on the shadow boundary. It is a matter of elementary algebra to work out
the path differences between the various pole radiations reaching any point of
observation. We get some interesting results in the diffraction of a plane bonded by
two straight edges, but at an angle. When this angle is acute every point in the shadow
regions gets two pole radiations one from each edge. Hence we have hyperbolic fringes
in the area of the geometrical shadow. On the other hand, if the angle between the
edges is obtuse, then only in a smaller sector of an acute angle (which is complementary
to the obtuse angle) within the shadow we get at any point, radiations from both the
edges. Outside this region, but within the shadow boundaries, we have only one side
sending out radiations to the point of observation. Hence in such obtuse angle
geometries we get hyperbolic fringes inside the inner acute angle sector surrounded
by weak field. In the case of a parallellogram, however, we find a small inner
parallellogram (defined by the area between the perpendiculars drawn to the four
boundaries) within which all the four sides, i.e., four poles, contribute. Then there is
a region with only two pole contributions. In addition, near the tips of obtuse angular
edges we have only one pole radiation. Hence the central parallellogram shines out
with a network of fringes. Kathavate (1945) beautifully demonstrated these features
of diffraction in such geometries.

All such objects which are bounded by straight edges, also have sharp corners. We
have already mentioned that such corners act independently as sources of spherical
waves diverging in all directions. Hence we have to add the cylindrical waves
from poles and spherical waves from corners. But in certain regions of the diffraction
pattern, we can clearly see the effect of corner waves. In the case of a square sector,
near an edge, the pole radiations and corner raditations interfere to give a
fringe pattern perpendicular to the edge. In fact Kathavate, who experimentally found
these features, suggested corner spherical waves to account for his observations. In
figure 6 we give Kathavate’s construction for a rectangular sector. This accounts for
the appearance of fringes perpendicular to an edge. Also in certain illuminated regions
we find the corner wave to yield circular fringes due to its interference with the main
wave. In these regions we have no pole radiations.
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Figure 6. Kathavate's geometrical construction for a rectangular sector in the shadow
region. The lines parailel to the edges are the lines of equal phase difference for the cylindrical
waves from the edges. The circles are the lines of equal phase difference for the spherical
wave from the corner. The broken lines perpendicular to the edge indicate the position of
the dark fringes due to the interference between the corner waves and the edge waves.

We show in figure 7a the diffraction pattern computed using GTD for an equilateral
triangular aperture, with pole radiations only. In figure 7b we show the same but
with effects due to corner waves.

4.3 Apertures and obstacles with curved edges

In these geometries an incident plane wavefront falling normally on the object results
in a local cylindrical boundary wave which is also laterally curved due to the curvature
of the edge. Here also the edge diffracted waves will diverge in directions that are
normal to the local tangent. Hence there will be concentration of light along the
evolute to the boundary to which these boundary diffracted rays are tangential. In
the diffraction pattern this evolute will stand out conspicuously. Raman (1919, 1941)
who was probably the first to study them, called them Diffraction Caustics in view
of the similarity they bear with normal caustic formation in geometrical optics. Mitra
(1919) made a detailed study of these caustics in different cases like apertures and
disks with corrugated boundaries. In each case he accounted for their existence by
invoking boundary radiations, and argued that the diffraction caustics are to be found
along the evolute to the boundary. Coulson and Becknell (1922) arrived at the same
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conclusions by studying opaque disks of various shapes. Many years later Nienhuis
(1948) undertook a similar study for apertures of different shapes and found diffraction
caustics to result from boundary radiations. It may be remarked that for circular
boundaries the evolute degenerates to a bright point at the centre, first predicted
by Poisson.

In addition to these bright lines there are other features associated with the
diffraction pattern which can again be easily accounted for by GTD. For example.
in the case of a circular disk at points away from the centre but within the shadow,
we find two boundary radiations emanating from the diametrically opposite poles
on either side. They have to be added with their proper phase differences. While doing
this addition we must also include the Ramachandran phase of + n/4 at each pole.
Thus we can expect a system of concentric bright circular fringes. On any one such
circular fringe the two pole radiations are in phase. In the case of an elliptic disk we
find 4 poles to contribute to any point within the evolute while for points beyond
the evolute but within a shadow boundary we have two pole radiations. Using Keller's
diffraction coefficient D we can get the diffraction pattern for any object with a curved
boundary. In figures 8 and 9 we have presented our calculated diffraction pattern
using GTD for an elliptic disk and elliptic aperture. We find a network of fringes
within the evolute. Our calculations are in qualitative agreement with the observations
of Kathavate (1945).

All the above arguments are valid if and only if the curvature changes smoothly
over the boundary of the obstacle. If however there are sudden changes in curvature
then such points act like additional sources of light emitting spherical waves. The
diffraction coefficient is again given by the formula worked out earlier for corners.
Sharp points where curved edges meet have the value of the diffraction coefficient
same as that obtained for a corner with straight edges.

4.4 Poisson spot

We have already mentioned the existence of a bright central spot in the case of circular
disks. This arises due to the constructive interference of the boundary waves at the
centre. With the diffraction coefficient D given previously for curved edges we get an
infinite intensity at the centre. Keller (1962) has overcome this difficulty by correcting
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Figure 8. The simulated diffraction pattern for an elliptic disk (major and minor diameters
Icm and 0-4cm respectively) at a distance of 100 cm.
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Figure 9. The simulated diffraction pattern for an elliptic aperture of the same dimensions
used in figure 8.

D which gives good agreement with the exact theory in the far field, ie., Fraunhofer
limit.

In other geometries also we get a central spot whose features can be worked out
using GTD. Firstly we get an infinite number of rays reaching such a spot only for
circular boundaries. For any other shape of the boundary we find a finite number of
points on the boundary contributing to the centre. Hence the central spot in every
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other geometry will be weaker than the classical Poisson spot. This accounts for the
experimental observation of English and George (1988) who found the central spot
in the case of a square disk to be far weaker than what one finds for a circular disk.
In this case four poles situated respectively at the centres of the four edges send out
cylindrical waves to the centre. In addition, we also have four corner radiations. Thus
only eight points on the boundary contribute to the central spot. It is also important
to realize that the four pole radiations are in phase at the centre and the four corner
radiations are also in phase at the centre. But the pole and corner radiations need
not be in phase. The exact phase difference depends upon where we are on the central
axis. In principle they will successively be in and out of phase as we recede from the
plane of the square disk, thus resulting in fluctuations in the central spot intensity.
In practice, however, this may not be conspicuous due to the fact that the corner
radiations fall of as 1/r2 in intensity while the pole radiations fall off as 1/r in intensity.

However, an interesting possibility exists for rectangular and elliptic disks. In both
the cases we have four pole radiations contributing to the centre. In the case of the
rectangle we also have the corner radiations. But their contributions can be ignored
due to their weak strengths. Thus in both the geometries we have four pole radiations.
Two of the opposite pole radiations are in phase at the centre. Similarly the other
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Figure 10. Dependence of Poisson spot intensity with distance from the diffracting screen
for (a) rectangular obstacle with length 1cm and breadth 0-99 cm. (b) elliptic disk of major
dia 1-0cm and minor dia 0:99 cm.

set of opposite pole radiations are also in phase. But these two pair of pole radiations
will be in and out of phase as we recede from the plane of the object resulting in
central spot intensity fluctuation. The same phenomenon will be observable at any
given point as the ratio of sides (or axes) changes continuously. We now consider a
rectangular disk and an elliptic disk of equal dimensions [i.e., length (breadth) of the
rectangle is equal to the major (minor) diameter of the ellipse]. Similar poles in
the two cases are situated at the same distances from the central axis. Hence we may
conclude that the central spot intensity should be identical in the two cases at any
given point on the axis. But a careful study of diffraction coefficients will show that
this is not the case. For the rectangle we use the diffraction coefficient D, while for
the elliptic disk we have to use D which includes the local radius of curvature. Hence
the Poisson spot intensities are quite different in the two cases. Also for the elliptic
disk one pair of pole radiations will have n/2 extra phase compared to the other pair
of pole radiations since for this pair the central spot will be beyond the radius of
curvature at the pole. Thus in many respects the Poisson spots are different in the
two cases. In figure 10 we have given calculations pertaining to this comparison
between elliptic and rectangular disks.
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Figure 12. Visibility of the fringe system for a strip and a cylinder. Upper and lower curves
are the visibility of the fringe system of a cylinder at a distance of 4 cm and 2 cm respectively.
The middle curve shows the fringe visibility of the strip at these two distances. In this case
the visibility is independent of the distance from the strip. :

Hence the interference pattern obtained in this case would be quite different from that
of a strip.

We show in figure 11 results of our calculation of the fringe pattern for the incident
electric vector parallel to the edges. We find many interesting differences between the
two cases. Firstly fringe spacing and fringe intensities are very different in the two
cases. Secondly the visibility of the fringe system is not a constant over the pattern.
Also the visibility of the pattern in the case of a cylinder as compared to that of the
strip behaves very unexpectedly with distance. This is shown in figure 12. We see the
visibility curves to cross over indicating a reversal in the clarity of fringes of a cylinder
compared to that in a strip. It should be quite clear from these results that the
usual text book argument that the fringe system in the case of cylinder is due to two
line sources placed at its outermost edges is a oversimplified picture. Only at large
distances do the two fringe patterns agree.

S. Diffraction symmetry

The geometrical symmetry of an aperture or an obstacle influences strongly the
symmetry of the diffraction pattern. In addition, the conditions under which one



482 P B Sunil Kumar and G S Ranganath

studies the diffraction pattern also influences the diffraction symmetry. For example
symmetry in the Fraunhofer limit is higher than that one gets in Fresnel limit and
is obtained by adding a centre of symmetry. The well known example is that of an
equilateral triangular aperture. In the Fresnel limit the three fold symmetry of the
aperture gets imposed on the diffraction pattern. Thus the Fresnel pattern is
non-centrosymmetric. However, in the Fraunhofer limit the same equilateral triangle
results in a diffraction pattern of six-fold symmetry which is centrosymmetric. In fact
as a general rule, following from the Fourier transform technique, we can say that
the Fraunhofer diffraction is always centrosymmetric. In many examples Raman and
his students studied this transition from Fresnel to Fraunhofer pattern as the aperture
dimension is decreased. This smooth transition from Fresnel to Fraunhofer pattern
can also be qualitatively demonstrated using GTD. In figure 13 we have given our
calculated diffraction pattern for an equilateral aperture. The transition from 3-fold
to 6-fold is clearly evident. However, it should be emphasized that GTD is strictly
not valid in the Fraunhofer limit.

Interestingly the diffraction symmetry is also strongly influenced by the polarization
of the incident radiation. This special feature of diffraction patterns is easily obtainable
from GTD while a rigorous theoretical calculation could be mind boggling. We shall
take a square disk as an example to illustrate this point. When the incident wave is
linearly polarized parallel to one pair of opposite edges it will be orthogonal to the
other pair of edges. From our expression for D, we can immediately conclude that
the strength D is different for the two pairs of opposite edges. Hence the pattern is
not strictly 4-fold symmetric but is 2-fold symmetric. This polarization asymmetry is
due to the second term in D, whose sign depends on the polarization of incident
vibration relative to the edge. In reality, this term contributes significantly only at
very small distances from the diffracting screen. Hence the 2-fold symmetry is realizable
only at such distances. It must be remarked that the diffraction symmetry is also
sensitive to the azimuth of the incident linear vibration. When it is along the diagonal
all the four sides will become equivalent resulting in a 4-fold symmetric diffraction
pattern. However, for incident unpolarized light the diffraction pattern will have
polarization features which will have a 4-fold symmetry for a square lamina. These
features are again calculable from GTD.

6. Multiple edge diffraction

The GTD as presented so far is incomplete. The incident wave results in edge waves
and corner waves. These waves again travel towards the other edges and corners to
result in a second diffraction. This process could go on and on. Hence from each
edge or a corner we have a multiplicity of waves. Keller (1957) has calculated these
higher order diffraction coeflicients. Calculations based on these higher orders indicate
that in most cases of interest these higher order diffraction coefficients are unimportant.

7. Diffraction at thick screens

So far we have discussed diffraction at obstacles and apertures of infinitesimally small
thickness. In such cases, in principle, we can calculate the diffraction pattern using
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Figure 14. Gceometry depicting diffraction at a thick screen with sharp edges.

the Kirchhoff theory. But it is not within the scope of Kirchhoff's theory to yield
answers when the screens are of finite thickness. Interestingly, GTD can be effectively
used to work out the implications of this lateral thickness of the screen. We shall
illustrate this with a few examples.

1.1 A knife edge

In this geometry the diffracting edge has a lateral dimension as shown in figure 14a.
It has two sharp straight edges seen as A and B in cross section. When a plane
wavefront falls normally on the kinfe edge with A turned away from the light rays
as in figure 14b, then the edge B acts as a source of cylindrical waves. This cylindrical
wave will also reach the other edge A which after receiving this wave will act as a
secondary source of cylindrical waves. These secondary waves will be of weaker
strength. Hence there are three regions in the diffraction pattern. The region beyond
the plane AB has only the wave from A while the region between AB and the normal
at B to the front surface has waves from A and B. This results in an interference
pattern very much like that in a strip. In the region of geometrically transmitted
wave, we have in addition to the cylindrical wave from B, a secondary cylindrical
wave from A. Thus the diffraction pattern is truly quite complex yet amenable to
analysis by GTD. It must be remarked that if the edge A were to face light as in
figure 14a the waves from A will not reach the classical geometric shadow. Secondly
B will be a source of two cylindrical waves one due to the direct beam and another
cylindrical wave excited by the cylindrical wave from A. Similarly A is also a source
of a secondary cylindrical wave. Hence region II of the previous geometry is absent
here. Also the shadow region will be brighter since two cylindrical waves both starting
from B reaches it. In the region of geometrically transmitted light we have two further
regions. One as in the previous geometry with two cylindrical waves in addition to
the main beam. Second one has in addition to these three contributions another from
the wave reflected by the face AB.
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The excitation of the secondary cylindrical wave is a very sensitive function of the
polarization of incident light. We can clearly see from the Sommerfeld diffraction
coefficient D, that the amplitude of the wave vanishes along AB for the electric vector
parallel to the edge. Hence for this polarization we do not get the secondary cylindrical
wave.

7.2 Round edges

In figure 15 we show a straight edge with a round lateral extension which smoothly
goes over to another plane face parallel to the front face of the thick screen. When
a plane wave point falls on the face with the flat face towards light, then A acts as a
source of cylindrical wave. This wave creeps along the smooth surface and sends light
at all angles of diffraction. Hence diffraction pattern will be very similar to that of a
thin straight edge excepting for the fact that the shadow region gets light through a
creeping of the cylindrical wave. Hence it will be less luminous.

If the object is turned around so that the smooth surface is turned towards light
then we have only cylindrical waves diverging from A. It will be exactly like that of
a stright edge in the shadow region. But in the region of light we have the direct
light, the cylindrical wave from A, reflection by the smooth surface. The pattern will
therefore be very complicated but can be easily computed using GTD. For oblique
incidence the cylindrical wave at A arises due to creeping of light.

We can use similar arguments in other geometries. The procedure is analogous to
the multiple diffraction technique of Keller (1957) which we discussed previously.

8. White or polychromatic light diffraction

To get diffraction patterns in white light all that we need to do is to add the intensitites
of the diffraction patterns due to the individual components of the incident light. In
view of its simplicity one can do this far more quickly with GTD than with Kirchhoff’s
theory. Also the effects of polarization of incident light can be easily incorporated
using GTD.

In figure 16 we show the calculated diffraction pattern of a square disk, with
a polychromatic source. It has been compared with the pattern obtained for
monochromatic light. In many respects we find a good agreement with the experimental
observations of Kathavate (1945) on white light diffraction.

9. Effect of finite conductivity

Raman and Krishnan (1927) introduced in a simple way finite conductivity of the
diffracting screen. The second term of the Sommerfeld solution gets multiplied by a
complex reflection coefficient. This simple modification neatly accounts for the
experimental observations in the case of straight edges. The implications of this
modification on the nature of the diffraction pattern will be briefly discussed in this
section.
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b

Figure 16. The simulated diffraction pattern in the shadow of a square obstacle of side
0-2cm at a distance of 50cm for (a) for a monochromatic light of 650 nm, (b) polychromatic
light composed of wavelengths 450 nm, 500 nm, 600 nm and 650 nm.

9.1 Straight edge

As Raman and Krishnan (1927) pointed out, the diffracted light is strongly polarized
in this situation. And for a general azimuth of incident linear vibration, diffracted
light will be in general elliptically polarized. Another interesting aspect of diffraction
pertains to fringe formation. In principle according to this theory the phase of the
Sommerfeld wave for the electric vector parallel to the edge is not the same as its
phase when the electric vector is perpendicular to the edge. As a consequence the
fringe positions will be different in the two cases.

9.2 Poisson spot

In the case of a square disk we pointed out that the central maximum, i.e., the Poisson
Spot can exhibit fluctuations in intensity as we recede from the screen. But it was
also emphasized that these fluctuations would generally be too weak to be observable
due to the weak contribution from corners. If finite conductivity is taken into account,
then with a linear vibration parallel to one pair of edges, we find the two pairs of
edges wave to diverge out with different phases. Hence due to this alone one must
have intensity fluctuations in the central spot.

9.3 Thick screens

In problems involving thick screens we meet situations where the Sommerfeld wave
undergoes a second diffraction at another edge or corner. When conductivity is infinite
such a processes would be absent for the electric vector parallel to the first edge at
which the primary wave was generated. However, in the case of finite conductivity
this is not so. Hence the diffraction patterns are in generally different in this case.

10. Conclusions

We have reviewed the basic concepts and results of the geometrical theory of
diffraction. This approach to problems involving diffraction is not widely known or
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appreciated even though it has many technical advantages over the conventional
theories. In addition, it offers simple and elegant explanations for many of the
interesting features associated with diffraction patterns. We have applied this technique
to a few geometries to bring out the power of this method.
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