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ABSTRACT
We study mean field dynamo action in a background linear shear flow by employing pulsed
renewing flows with fixed kinetic helicity and non-zero correlation time (τ ). We use plane
shearing waves in terms of time-dependent exact solutions to the Navier–Stokes equation as
derived by Singh & Sridhar (2017). This allows us to self-consistently include the anisotropic
effects of shear on the stochastic flow. We determine the average response tensor governing
the evolution of mean magnetic field, and study the properties of its eigenvalues that yield
the growth rate (γ ) and the cycle period (Pcyc) of the mean magnetic field. Both, γ and the
wavenumber corresponding to the fastest growing axisymmetric mode vary non-monotonically
with shear rate S when τ is comparable to the eddy turnover time T, in which case, we also find
quenching of dynamo when shear becomes too strong. When τ/T ∼ O(1), the cycle period
(Pcyc) of growing dynamo wave scales with shear as Pcyc ∝ |S|−1 at small shear, and it becomes
nearly independent of shear as shear becomes too strong. This asymptotic behaviour at weak
and strong shear has implications for magnetic activity cycles of stars in recent observations.
Our study thus essentially generalizes the standard α� (or α2�) dynamo as also the α effect
is affected by shear and the modelled random flow has a finite memory.
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1 IN T RO D U C T I O N

Coherent large-scale magnetic fields and mean differential rotation
are two common features of most astrophysical objects, such as,
the Sun, stars, galaxies, etc. (Parker 1979; Zeldovich, Ruzmaikin
& Sokoloff 1983; Ruzmaikin, Shukurov & Sokoloff 1998; Jones
2011; Han 2017). Magnetic fields in these systems are maintained
by turbulent dynamo action where the standard paradigm for large-
scale component involves amplification of weak seed fields due to
helical turbulence in shear flows (Moffatt 1978; Krause & Rädler
1980; Brandenburg & Subramanian 2005). The α effect, which, in
idealized settings, is a measure of net kinetic helicity and arises
naturally in systems with rotation and stratification, plays a crucial
role in driving large-scale dynamos in a variety of systems (e.g.
Dormy & Soward 2007; Charbonneau 2010; Brandenburg, Sokoloff
& Subramanian 2012); see also Courvoisier, Hughes & Tobias
(2006), Hori & Yoshida (2008) for a more general description
of the α effect, where non-local and non-instantaneous effect are
considered in the expression of turbulent electromotive force (EMF)
by employing integral relation between EMF and mean field, unlike
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simplified standard dynamo models where the EMF depends on the
local and instantaneous value of the mean magnetic field.

Direct numerical simulations in galactic or solar contexts have
shown that the large-scale magnetic fields are naturally produced as
a result of a mean field turbulent dynamo in local as well as global
set-ups, where the mirror symmetry of turbulence is broken either
by having a helical driving or by enabling convection in a rotating
system (Brandenburg, Bigazzi & Subramanian 2001; Gressel et al.
2008; Käpylä, Mantere & Brandenburg 2012; Warnecke et al. 2014;
Käpylä et al. 2016, 2018). Mean shear is common to these studies
and the dynamo is thought to be of α�-type, or, more generally, of
α2�-type as the role of α-term in the generation of shear-wise
component may indeed be comparable to the �-effect (Viviani
et al. 2019); see e.g. Brandenburg & Subramanian (2005), for
different types of dynamos. It is known that the α-effect is a more
complicated tensorial object (Rädler, Kleeorin & Rogachevskii
2003; Brandenburg & Subramanian 2005), which might be much
different from the net kinetic helicity of the flow (Kleeorin &
Rogachevskii 2003; Chamandy & Singh 2017). Turbulent transport
coefficients, such as the α-tensor, are often numerically determined
in a variety of contexts (Sur, Brandenburg & Subramanian 2008;
Mitra et al. 2009).

Somewhat less common approach to study the large-scale dy-
namo is to directly solve for the evolution of mean magnetic
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field by determining the response function for a given smooth
random flow (Gilbert & Bayly 1992; Kolekar, Subramanian &
Sridhar 2012). Such a model is shown to faithfully represent a
fast or small-scale dynamo (SSD; Zeldovich et al. 1984; Bayly &
Childress 1988; Gilbert & Bayly 1992). Essentially all astrophysical
bodies are expected to host a SSD, which appears to be always
excited when the magnetic Reynolds number exceeds a critical
value (Zeldovich et al. 1983). There are concerns that its presence
makes the description of large-scale dynamo in terms of standard
mean field magnetohydrodynamics (MHD), or, say, α-prescription,
less straightforward (e.g. Schekochihin, Boldyrev & Kulsrud 2002;
Courvoisier et al. 2006).

Gilbert & Bayly (1992), hereafter GB92, chose random heli-
cal flows in their model where they also included the memory
effects, and showed analytically that the magnetic field develops
intermittency in time.1 They also found growing solutions for the
first moment or the mean magnetic field, and, in the limit of small
correlation times, they recovered the predictions of standard α2

dynamo for the growth rate. Kolekar et al. (2012), hereafter KSS12,
extended the work of GB92 to also include the effect of shear,
and showed quite generally, that the mean field dynamo action
is not possible so long as the flows are strictly non-helical. By
considering a particular model of random helical flow, they derived
a generalized response tensor, which yields, for fixed kinetic helicity
and small correlation times, the same dispersion relation as that
from a standard α2� dynamo. In paper II (Jingade & Singh, in
preparation), we consider flows with fluctuating kinetic helicity,
which has a renovation time greater than the velocity renovation
time, and show that the growth of mean-magnetic field is possible
even in the absence of negative turbulent diffusion (Kraichnan
1976a).

Following GB92 and KSS12, we adopt here a renovating flow
based model that allows us to describe the evolution of mean
magnetic field, without explicitly deriving any mean EMF, that is
essential in standard mean field MHD. In this model, one assumes
an exactly solvable flow field in terms of a single plane wave
that renovates itself after each time interval τ . Thus, the time is
split into equal intervals of length τ and the velocity fields in
different intervals are assumed to be statistically independent. The
evolution of magnetic field is then determined by the realization
of the velocity field only in a fixed interval. Such a model neither
involves any closure approximation, nor is it limited to low fluid
or magnetic Reynolds numbers. KSS12 in their analysis considered
forced overdamped shearing waves to model the renovating flows.
Here, we use plane shearing waves, which are time-dependent exact
solutions to the Navier–Stokes equations as derived by Singh &
Sridhar (2017). Shear induces anisotropy in the renovating flow,
which, in this work, is allowed to freely decay for the renovation
time τ , and it is resetted to the same amplitude at the beginning of
each renovation interval. Such a resetting essentially tries to capture
the effects of a random forcing after every τ .

In Section 2, we present the model of renovating flow in a
background linear shear flow and then discuss the helical shearing

1The term ‘memory effect’ is used in this work to indicate that the random
flow has non-zero correlation times. As clarified in Sridhar & Singh (2014),
this is equivalent to more usual notion of memory effects in dynamo theory
when the turbulent EMF is affected by the time dependence of the mean
magnetic field, whereas in the white-noise case, the generalized EMF with a
history term through a time-integral reduces to a simple expression leading
to an instantaneous relation with the mean magnetic field.

waves that are used in this work. Linear shear makes the induction
equation inhomogeneous in the lab frame; see equation (9). To
deal with this, we use shearing coordinate transformation and then
determine the Cauchy’s solution for ideal induction equation in
shearing frame. We then derive an expression for the average
response tensor governing the evolution of mean magnetic field in
Fourier space after suitably averaging over randomness of the flow.
Behaviour of non-axisymmetric modes of mean magnetic field is
presented in Section 3. In Section 4, we present our findings on
the axisymmetric mean field dynamos, where we explore various
properties of dynamo growth rate and its cycle period in detail, and
discuss the significance of new predictions from our model in light
of recent observations. We conclude in Section 5.

2 MODEL DESCRI PTI ON

We, now investigate the evolution of the mean-magnetic field in
the background shear flow along with the turbulence. Such systems
are common in astrophysical scenario such as the Sun, Galaxies,
accretion disc, etc. Let (e1, e2, e3) be the orthonormal unit vectors
in the Cartesian coordinate system in the lab frame, where X =
(X1, X2, X3) is a position vector. We choose mean shear to be acting
in the e2 direction (azimuthal direction), varying along X1 linearly,
which is a local shearing–sheet approximation to the differential
rotation of the discs (Goldreich & Lynden-Bell 1965; Brandenburg
et al. 2008). The model velocity field U can be written as, U(X, t) =
S X1e2 + u(X, t), where u is the turbulent velocity field, and the
shear rate S is a constant parameter.

2.1 Renewing flows in shearing background

Let us consider the inviscid Navier–Stokes equation in the back-
ground linear shear flow for the unit mass density:(

∂

∂t
+ SX1

∂

∂X2

)
u + Su1e2 + (u· ∇)u = −∇p,

with ∇· u = 0, (1)

where we have also assumed the flow u to be incompressible. We
look for the single helical wave solution of the form

u(X, t) = A(St, q) sin( Q(t)· X + �)

+h C(St, q) cos( Q(t)· X + �), (2)

where Q(t) is a shearing wave vector having the form Q = (q1 −
Sq2(t − t0), q2, q3), q = (q1, q2, q3) is the wave vector at initial time
t0, and � denotes the phase of the wave. This particular form of
wave vector arises because of the inhomogeneity of the equation (1)
in the variable X1. A(St, q) and C(St, q) are the amplitudes of the
sheared helical wave and h controls the relative helicity of the flow.
The above velocity field is supplemented by

Q(t)· A(t) = 0 and Q(t)· C(t) = 0 (3)

because of the incompressibility condition of velocity field. This
also leads to the constancy of phase of the wave, i.e. Q(t)· X =
q· x0, where x0 is the initial position of the fluid particle. Because
of this, we can easily integrate (either numerically or analytically)
equation (2) to obtain the Lagrangian trajectory of the fluid particle,
later to be used in the Cauchy’s solution given in equation (17),
which is an integral equation. Such single scale flows are used in
many studies exploring the intermittency, small-scale, and large-
scale dynamos (Gilbert & Bayly 1992; Kolekar et al. 2012; Bhat &
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Subramanian 2015). One of the advantages of such a procedure is
that it bypasses the closure schemes that are somewhat limiting the
mean field dynamo theories.

2.1.1 Shearing waves

When we substitute equation (2) in equation (1), the non linear
term (u· ∇)u vanishes, whereas the term SX1(∂u/∂X2) is non-zero
describing the interaction of large-scale motion (background shear)
with the turbulent velocity field u. Therefore, we get time-dependent
wave vectors and amplitude modulation by shear in the helical wave
as shown in equation (2). We adopt the following expression for the
velocity amplitudes (A, C) that were derived in Singh & Sridhar
(2017):

[A1(q, t), C1(q, t)] = q2

Q2(t)
[a1, c1], (4)

[A2(q, t), C2(q, t)]

= [a2, c2] + q2

q2
⊥

(
q2

3

q2 q⊥
M(q, t) − q2 N (q, t)

)
[a1, c1], (5)

[A3(q, t), C3(q, t)]

= [a3, c3] − q2 q3

q2
⊥

(M(q, t)

q⊥
+ N (q, t)

)
[a1, c1], (6)

where

M(q, t) = arctan

(
Q1(t)

q⊥

)
− arctan

(
q1

q⊥

)
and

N (q, t) = Q1(t)

Q2(t)
− q1

q2
,

where (a, c) are amplitudes of the velocity field at initial time t0.
The vectors (q, a, c) form an orthogonal triad. The time-dependent
wave vector is given by

Q2(t) = Q2
1(t) + q2

⊥; Q1(t) = q1 − S (t − t0) q2, q2
⊥ = q2

2 + q2
3 .

(7)

These solutions represent the local disturbance of the velocity field
in shear flows. The amplitudes (A1, C1) decrease with time, whereas
(A2, C2) and (A3, C3) increase with time and then saturate. These
helical–sheared waves rotate towards X1-direction (or negative X1-
direction, depending on the initial value of q) in the X1 − X2 plane
as they propagate, due to the dependence of wave vector component
Q1 on shear (see Singh & Sridhar 2017, for details).

The helicity H of the turbulent velocity field is defined as
(following KSS12)

H = h C(t)· ( Q(t)×A(t)) . (8)

The parameter h takes values in the range [−1, 1] and it controls
the strength of the helicity; h = ±1 corresponds to maximally
helical flow. From the amplitudes given in equations (4)–(6), it
can be shown after straightforward and tedious algebra that H =
h c· (q×a). Even though the amplitudes A(St, q) and C(St, q) are
function of shear S, helicity H of the fluid particle in this flow is
independent of shear S, which is rather intriguing.

Let us construct the random flows using shearing waves that
we just introduced. In the renovating flow model, time is split
into the equal intervals of length τ . The time τ is defined as
the renovation time of the random process u(X, t). The velocity
field over these intervals is assumed to be distributed randomly
and independently. The statistical distribution of random flow is

assumed to be invariant to the shift of shearing coordinate x, a
natural symmetry of shear flows (Singh & Sridhar 2011). These
distributions are also assumed to be constant over the intervals [(n
− 1)τ , nτ ]; n = 1, 2, 3. . . . Such ensembles simplify the dynamo
problem considerably (Kraichnan 1976b; Krause & Rädler 1980).
These velocity fields are stationary over the discrete times τ , 2τ ,
3τ . . .. Hence, these can be approximated as a stationary random
process over a long time (�τ ) with exponentially decaying time
correlations (Molchanov, Ruzmaikin & Sokolov 1984). It is known
that such velocity field together with ensemble can give rise to fast
dynamo action (Molchanov, Ruzmaikin & Sokolov 1985; Finn &
Ott 1988).

We employ the same ensemble as in GB92, KSS12: where � is
randomnly distributed from 0 to 2π , this preserves the homogeneity
in the shearing coordinates,2 whereas in the absence of shear, it
would give usual homogeneity condition; the direction of wave
vector q is distributed randomly over the sphere of radius q, and
this is assumed to take random direction in the successive intervals;
a and c are distributed over the circle of radius a, perpendicular to
the wave vector q. At the beginning of every time interval, the wave
vector Q, and the amplitudes (A, C) are reset to its initial values.

2.2 Evolution of mean-magnetic fields in renovating flows

The evolution of the magnetic field in the background shear flow
with the velocity field U(X, t) = SX1e2 + u(X, t) is given by(

∂

∂t
+ SX1

∂

∂X2

)
B + (u· ∇)B − S B1e2 = (B·∇)u + η∇2 B.

(9)

As our interest is in the mean-magnetic field whose scale is much
larger than the energy injection scale of turbulence, we safely ignore
the diffusion term in equation (9), in this work. We note, however,
that this would eliminate the threshold for the SSD in a kinematic
study like this, and would lead to the growth of smaller scale
magnetic structures; see e.g. Molchanov et al. (1985) and Du &
Ott (1993) to also note that the growth rate of SSD is independent
of microscopic resistivity as η → 0. Thus, while magnetic fields are
expected to be produced at small scales in each realization of the
ensemble, these small-scale structures would average to zero in the
ensemble average, by definition, that we adopt here to study only
the mean magnetic field. Henceforth, we focus only on the evolution
of the first moment of the magnetic field; the second moment that
will be suitable for studying the SSD will be explored elsewhere.

Equation (9) is inhomogeneous in the coordinate X1 therefore it
can be best solved in shearing coordinates (Sridhar & Singh 2010).
The shearing transformation is obtained by solving

dX
dt

= SX1e2, (10)

which gives

X1 = x1; X2 = x2 + S(t − t0)x1; X3 = x3, (11)

where x is the Lagrangian coordinate of fluid element carried along
by the background shear flow, and t0 is the initial time. We can
write the above transformation in compact form, if we introduce

2The velocity correlator are independent of the shift of the shearing coordi-
nate x:

〈
vi (X, t)vj (Y , t ′)

〉 = fij ( Q(t)· X − Q(t ′)· Y ) = fij [q· (x − y)],
where fij’s are some function.
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4560 N. Jingade and N. K. Singh

γij = δij + S (t − t0) δi2δj1. Then, we can write equation (11) as

Xi = γij (t − t0) xj . (12)

Let us write equation (9) in this new Lagrangian coordinates x and
time s = t − t0. Also, let us introduce new vector functions for
the magnetic field, H(x, s) = B(X, t) and for the velocity field,
v(x, s) = u(X, t). Then, equation (9) becomes

∂ H
∂s

+ (v· ∇)H − S H1e2 = (H·∇)v, with ∇· v = 0,

∇· B = 0, (13)

where ∇ = ∂

∂x
− S s e1

∂

∂x2
is a time dependent operator.

Equation (13) differs by the original induction equation by the
term −S H1e2. We can eliminate this term by transforming to a
new magnetic field variable hj that is defined from Hi = γ ij(s)hj

(similar to transformation given in equation 12). Then, we can write
equation (13) in component form as(

∂

∂s
+ [γjk(−s)vk]

∂

∂xj

)
hi = hk

∂

∂xk

[γij (−s)vj ]. (14)

Here, we have used the property γ ij(s)γ jk(− s) = δik. Equation (14) is
similar to the induction equation except for the velocity field, where
we have obtained in its place, the transformed velocity field vj −
Ss δj2v1. We can then write the Cauchy’s solution to equation (14;
Lundquist 1951) as

hi(x, s) = Jij (x, s)hj (x0, 0), (15)

where x = x0 + ∫ s

0 (v − Ss ′e2v1) ds ′ and

Jij = ∂xi

∂x0j

= δij +
∫ s

0

(
∂vi

∂x0j

− S s ′δi2
∂v1

∂x0j

)
ds ′. (16)

Here, x0 is the initial position of the particle at time t = t0. The
magnetic field Hi in the shearing frame:

Hi(x, t) = γij (t − t0)Jjk(x0, t − t0)Hk(x0, t0). (17)

Since velocity fields are assumed to be uncorrelated on the suc-
cessive intervals of the renovating flow model, we can write the
evolution of magnetic field in the general interval [(n − 1)τ , nτ ] as

Hi(x, nτ ) = γij (τ )Jjk(x0, τ )Hk(x0, (n − 1)τ ). (18)

We would now wish to calculate the response tensor for the average
magnetic field. Since, we assume, the sheared renewing flow is
homogeneous in the shearing coordinate x, which is a natural
symmetry in shear flows (see Singh & Sridhar 2011), we can define
the Fourier transform for the average of magnetic field 〈Hi(x, nτ )〉
in terms of the shearing waves as

H̃i(k, t) =
∫

〈Hi(x, t)〉 exp(−ik· x) d3x, (19)

where k = K (t0) is the initial wave vector at time t0, which for each
interval we take to be the time (n − 1)τ . Here, the phase of the
Fourier mode is conserved in time, i.e. k· x = K (t)· X , where we
take t to be the time nτ . Therefore, the relation between K (t0) and
K (t) is given by ki = γ ji(t − t0)Kj (see Sridhar & Singh 2010, 2011
for details). We can see that the wave vectors depend on the interval
of choice, which is the important distinction compared to the case
when the shear is absent, where wave vectors are time independent.

Substituting equation (18) in equation (19), we get

H̃i(k, nτ ) =
∫ 〈

γij (τ )Jjk(x0, τ )Hk(x0, (n − 1)τ )
〉

x

× exp(−ik· x)d3x. (20)

Since we are in the kinematic regime, where the strength of initial
magnetic field is assumed weak, there is no back reaction on the
velocity field (no Lorentz force). In such a scenario, the velocity field
statistics become independent of the statistics of the initial magnetic
field. In the following, we carry averaging in two steps: first, it is
performed over the initial randomness of the magnetic field, which
we denoted here by overbar in equation (20); and second, it is carried
over the statistical ensemble of the velocity field denoted by angle
brackets. This averaging is equivalent to averaging over the energy
injecting scale of turbulence q, and it would introduce the effective
turbulent diffusivity and smoothen the field over the scale q (Hoyng
1987). Hence, small-scale magnetic structures would vanish after
the ensemble average and if there is any large-scale structure, it
would reveal itself as a mean field. The notation 〈 〉x indicates
that the averaging is carried over that trajectory, in each realization,
which reaches a fixed point x at time nτ . By homogeneity of velocity
field statistics in the shearing coordinate x, the averaging becomes
independent of spatial point x. The initial magnetic field need not be
homogeneous and its spatial dependence can be taken into account
by the Fourier transform as defined by equation (19). Thus, using
all the ingredients, we obtain3

H̃i(k, nτ ) = Gik(k, τ )H̃k(k, (n − 1)τ ), (21)

where

Gik(k, τ ) =
〈
γij (τ )Jjk(x0, τ )e−i k· (x0−x)

〉
. (22)

Here, k = K [(n − 1)τ ] as defined before. Here, we have Ki(nτ ) =
γ ji(− τ )Kj[(n − 1)τ )]. Thus, we can note that K at (n − 1)τ is
related to the wave vector at nτ by inverse shearing transformation
described in equation (11). Note here that the response tensor
Gij depends on the time-step (n − 1)τ through K , where K is
continuously sheared till the time (n − 1)τ . Since we have neglected
diffusion term in the induction equation, we will always have the
growth of the magnetic field H(x, t) in a single realization of the
ensemble. However, to know the growth at large scale, we have
defined the ensemble averaged mean field 〈H(x, t)〉, which may
or may not grow. For example, if h = 0, the mean field 〈H(x, t)〉
will decay (see Section 2.4), whereas H(x, t) might grow at small
scales due to SSD. Here, we are only concerned with the growth of
mean magnetic field, or the first moment.

2.3 Growth rate and cycle periods of the magnetic field

We can say, a given velocity field will lead to dynamo, if there is an
exponential growth of magnetic field in time (Dittrich et al. 1984;
Molchanov et al. 1984). In the renovating flow, we are interested
in the behaviour of the magnetic field at longer times, i.e. as n
→ ∞. Because, the flow is stationary in the discrete translation
of times nτ , n = 1, 2, 3. . . , we can consider velocity field as
stationary for long times (nτ � τ ). Hence, it became possible to

3The mean-magnetic field in Fourier space at mode k has contribution only
from the initial magnetic field at mode k, which is an important simplification
that has occurred, because of the homogeneity condition in the shearing
coordinate x.
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Mean field dynamo action in shear flows 4561

construct the eigenvalue problem in any interval ([(n − 1)τ , nτ ])
for the evolution of the mean-magnetic field (see equation 21) in
previous subsection. The magnetic field will grow, if the magnitude
of the leading–complex–eigenvalue of the response tensor (given in
equation 22) is greater than unity. And the final magnetic field will
be the eigenvector of response tensor corresponding to that leading
eigenvalue, irrespective of the magnitude and direction of the initial
magnetic field. If σ is the leading eigenvalue, we can define the
exponential (exp (λt)) growing exponent λ as

λ = 1

τ
ln σ (k, τ ) = 1

τ
ln |σ | + i

arg(σ )

τ
. (23)

Since, the response tensor depends on the interval in which magnetic
field growth is considered, eigenvalues will also depend on the
corresponding interval through k = K [(n − 1)τ ]. This will lead to
the important conclusion, i.e. non-axisymmetric modes will decay
eventually, which will be elucidated in Section 3. The real part
will define the growth rate of the magnetic field, whereas the
imaginary part will define frequency of the wave, which will be
used to calculate the cycle period of the dynamo wave. Next, we
give expressions for both:

γ = 1

τ
ln |σ |, Pcyc = 2πτ

arg(σ )
, (24)

where arg(σ ) = 0 represents the standing wave and arg(σ ) 
= 0
indicate the travelling dynamo wave.

2.4 Method of averaging

To compute the Green’s tensor given in equation (22), we need
to obtain the Jacobian of transformation between fluid particle
at position x at nτ with it’s initial position x0 at time (n −
1)τ . For general velocity field, we need to solve for x from the
equation dx/dt = v(x, t), which itself is a formidable task. Since
the velocity field considered in equation (2) has constancy of phase
( Q· X = q· x0) due to the incompressibility condition (∇· v = 0),
we can integrate the velocity field to obtain the Jacobian of the
transformation as

Jij = ∂xi

∂x0j

= δij + qj [ãi(t, q) cos(q· x0 + ψ)

−h c̃i(t, q) sin(q· x0 + ψ)], (25)

where

ã(t, q) =
∫ nτ

(n−1)τ
[A − S(t − t0)A1e2] dt (26)

c̃(t, q) =
∫ nτ

(n−1)τ
[C − S(t − t0)C1e2] dt . (27)

Here, t0 = (n − 1)τ . We can easily average the Green’s tensor in
equation (22) over the phase � (see KSS12 for details) to get

Gij (k) = γik(τ )

〈
δkj J0 (�) − ih

qj

[
k×(ã×c̃)

]
k

�
J1 (�)

〉
q,a

,(28)

where � =
√

(k · ã)2 + h2(k · c̃)2 and, J0 and J1 are the Bessel
functions of order zero and one, respectively. Because, we have
J0(y) ≤ 1, ∀ y, the term that is relevant for the dynamo action would
be the second term in equation (28) containing the parameter h,
which characterizes the kinetic helicity. When h = 0, i.e. strictly non
helical case, there is no mean field dynamo as already pointed out

in KSS12. We have chosen h = 1, which corresponds to maximally
helical flow, throughout this work.

We perform remaining averages – over (q, a, c) – numerically.
We know that, q, a, and c vectors form orthogonal triad. Using the
three Euler angles for the rigid body rotation, we can relate the triad
(q, a, c) to the direction of magnetic field wave vector (k1, k2, k3)
at time equal zero. We use Gauss quadrature methods to perform
all the integrals. Further details will be given in the paper II, which
focuses on the role of helicity fluctuations on the growth of mean
magnetic field. We numerically determine the eigenvalues of the
response tensor Ĝ that governs the evolution of mean magnetic
field. The growth rate and cycle period can then be obtained
from equation (24). Next, we discuss the non-axisymmetric and
axisymmetric mean field dynamos. We present our findings in the
non-dimensional units, henceforth. All the quantities are suitably
normalized with respect to eddy turnover time of the flow at the
beginning of each interval, T = 1/qa, and the wave vector q.
Quantities with overtilde are made dimensionless in this way, e.g.
k̃ = k/q, γ̃ = γ T , α̃ij = αij /a, and so on.

3 D E C AY O F N O N - A X I S Y M M E T R I C MO D E S
OF MEAN MAGNETI C FI ELD

We show in this section that the non-axisymmetric mode of the
mean-magnetic field decays asymptotically. Since shearing flows
are anisotropic in all three directions, the eigenvalues of the response
tensor for the magnetic field will also be anisotropic in the directions
of k1, k2, and k3. We have decomposed the magnetic field in
the shearing waves (see equation 19), where we have used time-
dependent wave vector. If (k1, k2, k3) be the wave vector of the
magnetic field at time t = 0, then at t = nτ , it would become
(k1 − n Sτ k2, k2, k3).

Let us denote the magnetic field by the column vector Ĥ and
response tensor by the square matrix Ĝ (see equation 21). Let Ĥ0

be the initial magnetic field at t = 0, then the magnetic field at t =
nτ is given by

Ĥn = Ĝn . . . Ĝ2Ĝ1Ĥ0, (29)

where Ĝn indicates the response tensor in nth interval with sheared
wave vector (k1 − n Sτ k2, k2, k3).

We now describe the procedure to determine Ĥn iteratively. At
the end of the first interval, we get Ĥ1 = Ĝ1Ĥ0. We find that one of
the eigenvectors of Ĝ1 does not satisfy k· H0 = 0. Let V̂01 and V̂02

be the eigenvectors (with corresponding eigenvalues being σ 01 and
σ 02), such that, they are orthogonal to the direction of k. We can
now express the initial magnetic field in terms of the eigenvectors
as

Ĥ0 = C01V̂01 + C02V̂02, (30)

where C01 and C02 are some complex constants. The quantity Ĥ1

thus becomes

Ĥ1 = C01 σ01V̂01 + C02 σ02V̂02. (31)

For the next iteration, that is at t = 2τ , we have Ĥ2 = Ĝ2Ĥ1. The
response tensor Ĝ2 is modified because the magnetic field wave
vector (k1, k2, k3) would shear to (k1 − Sτ k2, k2, k3). Hence, V̂01 and
V̂02 will not anymore be the eigenvectors of Ĝ2. We need to express
the eigenvectors V̂01 and V̂02 in terms of the eigenvectors of Ĝ2.
Similarly, let V̂11 and V̂12 be the eigenvectors (with corresponding
eigenvalues being σ 11 and σ 12) of the response tensor Ĝ2 orthogonal
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4562 N. Jingade and N. K. Singh

Figure 1. Contours of the magnitude of leading eigenvalue σ in k1 − k2 at k3 = 0.5, obtained at the end of first (left), third (middle), and fifth (right) interval
n; time increases from left to right as n = t/τ .

Figure 2. (Left) Magnitude of the leading eigenvalue and (right) cumulative product of the maximum eigenvalues as a function of n = t/τ , i.e. the interval of
the renovating flow.

to the direction of (k1 − Sτ k2, k2, k3). Then, we have

V̂01 = C
(1)
11 V̂11 + C

(1)
12 V̂12 and V̂02 = C

(2)
11 V̂11 + C

(2)
12 V̂12, (32)

where C
(1)
11 , C

(1)
12 , C

(2)
11 , and C

(2)
12 are again some complex constants.4

Using equation (32) in equation (31), we get

Ĥ2 = (. . . σ01σ11 + . . . σ02σ11)V̂11 + (. . . σ01σ12 + . . . σ02σ12)V̂12,

(33)

where ellipsis indicates pre-multiplied factors, such as multiplica-
tion of complex coefficients. As we continue to iterate in the above
manner by expressing the preceding eigenvectors in terms of the
current eigenvectors (such as in equation 32), we get 2n + 1 terms
for the magnetic field Ĥn at the end of nth interval; at every interval,
the number of terms are doubled. Of the two relevant eigenvectors
at any interval, let us say that we have, |σ n1| > |σ n2|, then in
those 2n + 1 terms, there will be a term of the kind σ 01σ 11σ 21. . . σ n1

whose magnitude will be the largest compared to other terms. To
demonstrate that non-axisymmetric modes decay eventually, it is
enough to show that this term decays after some interval of time.

In Fig. 1, we have shown the magnitude of the largest eigenvalues
σ n1 in the k1 − k2 plane for k3 = 0.5 at the end of first (t = τ ), third

4Note here that we have suppressed the third component of V̂01 and V̂02

because at every interval we need to satisfy the solenoidality condition
(∇· H = 0).

(t = 3τ ), and fifth (t = 5τ ) interval. We have highlighted the area
where |σ n1| > 1, which represents the transient growth region. As
time is increasing, the wave vector is continuously sheared in the k1

direction, the transient growth region is stretched in the k1 direction,
and it diminishes in the k2 direction. As time continues, the growth
region aligns with the k2 = 0 axis, and eventually vanishes. To
make this point clear, let us consider the wave vectors, which lie
close to maxima of the contours shown in Fig. 1, i.e. (0,0) in k1

− k2 plane. In the left-hand panel of Fig. 2, we have shown the
largest eigenvalue as the function of intervals for three different
values of k2. When k2 = 0 (axisymmetric mode), the magnitude
of the largest eigenvalue remains constant as the wave vector (k1,
0, k3) remains same across the intervals. Therefore, the cumulative
product of the magnitude of the eigenvalues |σ 01σ 11σ 21. . . σ n1| =
|σ 01|n, increases monotonically leading to the exponential growth of
the axisymmetric mode of the magnetic field (see Fig. 2: right-hand
panel, the black solid line). For k2 
= 0, the wave vectors are time
dependent. As time increases, the value of k1 − St k2 increases (for
negative S), eventually the wave vector moves out of the transient
growth region, i.e. the region where |σ n1| > 1 (see Fig. 1). As
shown in Fig. 2 (left-hand panel), for k2 = 0.01 (k2 = 0.02), the
magnitude of eigenvalue falls below unity around t = 80τ (t = 40τ ).
The magnitude of the cumulative product of the largest eigenvalues
|σ 01σ 11σ 21. . . σ n1| increases for some time (see right-hand panel in
Fig. 2) and then it starts to decrease, and falls below unity leading to
the decay of the mode. Hence, non-axisymmetric modes will only
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Mean field dynamo action in shear flows 4563

Figure 3. Contours of growth rate γ̃ ≥ 0 in k1 − k3 plane for axisymmetric (i.e. k2 = 0) mean field dynamos. Shear increases from left to right, with τ /T = 1
(top) or τ /T = 2 (bottom). Regions outside the outermost (blue) contour do not support a dynamo instability.

have transient growth before decaying eventually. Even though,
the analysis of this section is made with the particular velocity
field, its validity remains general. Because, essential argument
to show the asymptotic decay needs only two ingredients: the
magnetic wave vector is time dependent, which is a consequence of
background shear flow; and the growth region is limited in the k-
space, which is the consequence of the finite correlation of velocity
field rather than its particular choice. Therefore, in the kinematic
dynamo regime, non-axisymmetric mode has no active role to
play.

4 G ROWTH O F AXISYMMETRIC MODES O F
MEA N M AGNETIC FIELD

From now on, we focus only on the axisymmetric solutions for
which k2 = 0, as the non-axisymmetric modes are expected to decay
as discussed above. Since for axisymmetric modes the eigenvalues
and eigenvectors are constant in time, we just need to consider
its growth rate in a single interval (see the black solid line in the
left-hand panel of Fig. 2). With σ being the leading eigenvalue of
the response tensor, we find that the magnetic field at the end of
the nth interval is given by Hn = σ nH0, where H0 is the initial
magnetic field, also assumed to be the corresponding eigenvector.
Fig. 3 shows contours of normalized growth rate γ̃ = γ T , with its
positive values indicating exponentially growing solutions in k1 – k3

plane for axisymmetric mean field dynamos, as functions of the two
parameters, the shear rate S, and the renovation time τ . Note that T
= 1/qa is the eddy turnover time of the random helical flow at the
beginning of each interval. Regions enclosed within the outermost
(blue) contours in Fig. 3 are referred as dynamo regions.

For zero shear, dynamo regions are circularly symmetric about
the origin k1 = k3 = 0; see leftmost panels in Fig. 3. The other

panels there reveal that the dynamo regions gets bifurcated for
non-zero shear. Note that the maximum growth occurs along k3

axis when k1 = 0. Therefore, without any loss of generality,
and in order to capture the branch containing the fastest growing
mode, we set k1 = 0 henceforth. We also find from this figure
that the growth rate is symmetric about the point k3 = 0, and
therefore we consider only positive values of k3 to explore its
behaviour as a function of wavenumber. Thus, we have now set
k1 = k2 = 0, which is equivalent of taking average over entire
X1 − X2 plane, i.e. the plane of background shear, and we study
one-dimensional mean field dynamo modes propagating along X3

direction.
Interestingly, the wavenumber corresponding to the fastest grow-

ing mode, denoted by k∗, varies non-monotonically with the strength
of shear |S| when the renovation time τ , which is the same as
the correlation time of the flow, becomes comparable to the eddy
turnover time T. This is better shown in Fig. 4, where various
curves correspond to different choices of τ /T. However, when τ /T
� 1, i.e. when the memory effects are unimportant as the random
flow is nearly of white-noise type, the maximum growth occurs
at progressively smaller spatial scales (∼ k−1

∗ ) with increasing
shear strengths; sufficiently strong shear produces magnetic field
preferentially at scales smaller than the eddy size given by q−1,
i.e. k∗/q > 1, as may be seen from the dash–dotted curve. It is
only when τ /T becomes of order unity, the shear gets some time to
act and it changes the scenario even qualitatively; see also Sridhar
& Subramanian (2009). It promotes a genuine large-scale dynamo
as k∗/q < 1 for a whole range of shear, i.e. in this case, the mean
magnetic field grows maximally at scales larger than the eddy scale.
Also, note that at fixed shear, k∗ systematically decreases when τ

increases; see also Appendix (A) where we show a comparison with
a case when non-shearing waves are used to model the renovating
flow.

MNRAS 495, 4557–4569 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/495/4/4557/5827646 by R
am

an R
esearch Institute user on 23 July 2020



4564 N. Jingade and N. K. Singh

Figure 4. Dependence of k∗/q (wavenumber corresponding to the fastest growing mode) on shear for different choices of τ /T.

4.1 Growth rate

In Fig. 5, we show the behaviour of normalized growth rate γ̃

of the mean magnetic field as a function of wavenumber k3. We
have chosen two large values for the correlation time τ in the
two panels, where different curves in each panel correspond to
different values of shear rate S; τ /T = 1 and 2 in left-hand and
right-hand panels, respectively. Regardless of the strength of the
shear, including its zero value, the growth rate first increases from
zero as a function of k3, attains a maximum, then it decreases
to become negative at sufficiently large wavenumbers. Note again
that the maximum lies at wavenumbers that are smaller than
the one corresponding to random eddies, and magnetic fields at
sufficiently large wavenumbers are always suppressed. Looking
first at the more reasonable case with τ /T = 1, we find that the
growth rate increases at all the wavenumbers shown, when the
shear parameter S̃ is increased from zero to a moderately large
values; see left-hand panel of Fig. 5 where 0 ≤ S̃ ≤ 2.5. However,
the behaviour is more complicated when τ /T = 2, as, at fixed
k3 � q, shear leads to suppression of mean magnetic fields; see
the right-hand panel. Nevertheless, the peak of the growth rate
remains at much smaller wavenumbers, thus enabling a large-scale
dynamo.

Now, we turn to the dependence of the growth rate of mean field
dynamo on the shear. We saw earlier in Fig. 4 that the wavenumber
(k∗) corresponding to the fastest growing mode is itself a function
of shear. Therefore, in Fig. 6, we show the shear dependence of
the growth rate γ̃ at k∗. Remarkably, the growth rate shows a non-
monotonic trend with the shear strength in more realistic regime
when the correlation time τ of the random helical flow becomes
comparable to the eddy turn over time T; see e.g. the dotted or
solid curves in Fig. 6. The growth rate here is always positive, even
when shear approaches zero, due to the fact that we have chosen
maximally helical random flow (h = 1). Initially, the growth rate
remains constant as shear increases, and this constant is a function
of correlation time. For τ̃ = 0.1, we have γ̃ � 4 × 10−3 and for

τ̃ = 2.0, we have γ̃ � 6, 5 × 10−2 (see Fig. 6); dynamo becomes
more efficient at a fixed weak shear as correlation time increases. As
shear strength increases, the growth rates starts to increase, as can
be seen from Fig. 6. The growth rate varies as γ̃ ∼ S2/3 for τ̃ = 0.1
and as γ̃ ∼ S0.4 for τ̃ = 2.0, in the intermediate shear range. As the
shear strength further increases, the growth rate starts to decrease as
γ̃ ∼ S−0.1 after reaching the maximum. This decrease is happening
at large shear because, the transport coefficient like αij is a function
of shear and decreases as the shear strength increases (see Fig. 7).5

This results in quenching of the dynamo at strong shear. Our results
are in agreement with the work of Leprovost & Kim (2008) who
also reported dynamo quenching due to strong shear. Note that this
is unlike more popular expectation based on standard kinematic α�

dynamos, where the dynamo efficiency increases monotonically
with shear. Such expectations have resulted in common notion that
the regions with strongest shear in a system, e.g. the tachocline
in case of the Sun, must be the best reservoirs of magnetic fields.
We envisage that the dynamo quenching being reported here in the
strong shear regime will be helpful for a better understanding in this
direction.

4.2 α-effect

By adapting to a standard textbook definition of αij, we make
an attempt to determine the components of α tensor based on
the random velocity fields we have chosen in our model. This
may provide useful insights for key mechanisms that govern the
properties of the large-scale dynamo action we study in this work.
More precisely, it may help us understand the reason for dynamo

5See also Appendix (A) for the behaviours of γ and k∗, for the case when
flow amplitudes are constant, i.e. independent of shear. In such a scenario,
transport coefficients also become independent of shear.
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Mean field dynamo action in shear flows 4565

Figure 5. Normalized growth rate γ̃ as a function of wavenumber k3, for τ /T = 1 (left) and τ /T = 2 (right). Different curves in each panel correspond to
different values of shear rate S.

Figure 6. Growth rate of fastest growing mode as a function of shear for different choices of velocity correlations times τ .

quenching at large shear as shown earlier in Fig. 6. We have chosen
the following definition (see Moffatt 1978, Section 7.10):

αij (τ ) = 1

τ

∫ τ

0
dt

∫ t

0
dt ′α̂ij (t, t ′)

with α̂ij (t, t ′) = εilk

〈
vl(x0, t)

∂vk(x0, t
′)

∂xj

〉
. (34)

Here, the velocity field v is given from equation (2) in terms
of time-dependent shearing waves with fixed helicity (Singh &
Sridhar 2017). This evolves for the renovation time interval τ that
represents one single realization. The average is then taken over
many such realizations, or equivalently, over time t = nτ with n →
∞. The second integral is taken to average the α-tensor over the
interval from 0 to τ . Note that while the velocity v gets randomized
after every τ , the kinetic helicity associated with it stays constant

for all times in the present work. Following Rädler et al. (2003),
we symmetrize the αij defined in equation (34) as αS

ij = (αij +
αji)/2; the antisymmetric part corresponds to the turbulent pumping
that we ignore in this study. In Fig. 7, we show the behaviour of
non-zero components of dimensionless quantity α̃S

ij as a function
of shear; other components vanish identically for our choice of
random velocity field. While α11 shows an increase with |S|, α22 and
α33 are significantly quenched when shear becomes too large. The
behaviour of α̃S

12 is more involved as may be seen from the Fig. 7.
The trace of α-tensor, i.e. α11 + α22 + α33 is also a decreasing
function of shear. Note that the helicity as defined by equation (8)
is independent of shear rate S. Also, at a fixed value of shear,
magnitudes of all the components increase with τ̃ = τ/T , where
we note again that τ and T represent velocity correlation and eddy
turn over times, respectively. Thus, we find that the α-tensor is
strongly affected by the presence of shear, with effect being more
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4566 N. Jingade and N. K. Singh

Figure 7. Behaviour of non-zero components of symmetric tensor α̃S
ij with |S̃|. Different curves correspond to different choices of τ̃ .

pronounced when velocity correlation times τ are comparable to
the eddy turn over time T.

4.3 Cycle period of dynamo waves

Another important quantity is the cycle period of the growing
dynamo wave. This is denoted by Pcyc and defined in equation (24).
Its behaviour at k∗ as a function of shear is shown in Fig. 8.
It falls with shear as |S|−1 for all τ when shear is weak, but
this scaling becomes shallower at larger values of shear rate.
Interestingly enough, Pcyc becomes nearly independent of shear,
when normalized absolute shear |S̃| � 1 and τ/T ∼ O(1). Thus,
our present model yields, for a dimensionless quantity 1/(|S|Pcyc)
(see the inset of Fig. 8), a scaling of (i) |S|0, i.e. independent of
shear, at weak shear, and (ii) |S|−1 when shear becomes sufficiently
strong.

Note that the standard α� (α2�) dynamo predicts a uniform
scaling, Pcyc ∼ |S|−1/2 (|S|−1), with shear. It is intriguing to note
here that Olspert et al. (2018), based on their observational analysis,
found evidence of two distinct population of stars, inactive and
active, which reveal different scalings in a stellar magnetic activity-
rotation diagram. Standard dynamo models fail to explain the
existence of these branches in such a diagnostic diagram, which
provides a sufficient motivation for further work on this topic of
turbulent dynamo action due to helicity and shear; see Olspert

et al. (2018), and references therein, to appreciate the importance
of studying the cycle periods of dynamos, as this offers a unique
opportunity to test model predictions. We believe that the new
scaling laws that we find in this work will have implications for
the interpretation of the observations of magnetic activity cycles
seen in Olspert et al. (2018).

5 C O N C L U S I O N S

In this paper, we have studied the problem of generation of large-
scale magnetic field due to random flows with fixed kinetic helicity
and finite correlation times in a shearing background. We employed
a pulsed renewing flow based model, where flow field renovates
itself after every time interval τ , called here the correlation time
of the inviscid random helical flow. We used single plane shearing
waves with fixed kinetic helicity to model the renovating flow. These
are time-dependent exact solutions to the Navier–Stokes equations
as derived by Singh & Sridhar (2017). Thus, we self-consistently
included the anisotropic effects of shear on the flow itself, which in
turn governs the evolution of magnetic fields. We constructed the
suitable ensemble of realization for the velocity field, later to be
used in the averaging of magnetic field. By making a suitable use
of shearing coordinate transformation, we wrote the ideal induction
equation in a shearing frame that translates with the background
linear shear flow. The evolution of magnetic field is determined in
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Mean field dynamo action in shear flows 4567

Figure 8. Cycle period of dynamo wave as a function of shear for different values of τ . Inset: Dimensionless quantity Psh/Pcyc as a function of shear, where
Psh = 1/|S|.

terms of Cauchy’s solutions in a fixed interval τ that represents a
single realization. Because of discrete time-translational symmetry
of renovating flow in nτ , we could construct the eigenvalue problem
for the mean magnetic field in Fourier space in any interval. The
Green’s function or the propagator (or simply average response
tensor), which maps the mean field at (n − 1)τ to nτ is obtained after
performing an average over many realizations, or equivalently, over
time t = nτ with n → ∞. The eigenvalues of the average response
tensor determine the dispersion relation, which yields the growth
rate (γ ) and cycle period (Pcyc) of growing mean field dynamo
wave. Next, we first list some key properties and assumptions of
our model:

(i) Shear rate S and velocity correlation time τ are the arbitrary
parameters. We have ignored the diffusion term from the induction
equation in this work to keep the analysis simpler.

(ii) Helical shearing waves that were used to model the renovat-
ing flow freely evolve for the renovation time interval τ , and are reset
to the same amplitude at the beginning of each renovation interval.
The parameters of the flow take random values in different intervals
such that the velocity field becomes completely uncorrelated after
time τ . Such a model of the flow tries to capture the effects of
stochastic helical forcing after every τ .

We studied the properties of growth rate and cycle periods of
growing large-scale magnetic fields that are obtained by a mean
field dynamo action due to helical stochastic flows in a background
linear shear. We focused in the regime when memory effects become
important, i.e. when the response tensor or the turbulent EMF
is affected by the time dependence of the mean magnetic field.
As clarified in Sridhar & Singh (2014), this is equivalent to the
case when the random flows are correlated for non-zero times, as
in the white-noise case the generalized EMF with a history term

through a time-integral reduces to a simple expression leading to an
instantaneous relation with the mean magnetic field. Our study thus
essentially generalizes the standard α2� dynamo model to now also
include the memory effects, and tensorial nature of α while treating
the shear non-perturbatively.

(a) Non-axisymmetric (k2 
= 0) modes: We found that the
non-axisymmetric modes eventually decay in time and therefore
are unimportant for late time structures of mean magnetic field.
However, these modes decay in an interesting manner in that the
contours of the growth rate γ form an ellipse with properties
resembling the one for resistive Green’s function that is derived
by Sridhar & Singh (2010) for non-zero η after ignoring the
advection term. As we have ignored η in this work, the resem-
blance points to a notion of turbulent diffusivity ηt that typically
augments η. The decay of such non-axisymmetric modes may thus
be used to determine ηt and this will be attempted in a future
work.

(b) Axisymmetric (k2 = 0) modes: These are the only modes
that survive and will determine the late time evolution of mean
magnetic field. Comparing our results of axisymmetric mean field
dynamo with the predictions of standard α� dynamos, we find
that the behaviours of γ and Pcyc with shear strength |S| are even
qualitatively different when τ/T ∼ O(1). Some notable findings
in the regime when memory effects become important, i.e. when
τ/T ∼ O(1), are highlighted as follows:

(i) The growth rate γ and the wavenumber (k∗) corresponding
to the fastest growing mode vary non-monotonically with |S|; see
Figs 4 and 6. We find the quenching of the dynamo when shear
becomes sufficiently strong. This is in agreement with the work of
Leprovost & Kim (2008), who also reported dynamo quenching due
to strong shear. Common notions that the regions of strongest shear
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in an astrophysical object are the ideal reservoirs of magnetic fields
may thus need to be revised.
In order to understand the cause of such a quenching of growth rate
(γ ), we made an attempt to determine the α tensor by adapting to its
simplified textbook definition. We found that the magnitude of the
more relevant component α22 is significantly suppressed at larger
shear and this may have affected the growth of mean magnetic field.

(ii) At fixed S and τ , γ first increases from zero as a function of
wavenumber, reaches a maximum, and turns negative at much larger
wavenumbers. The quantity k∗ is smaller than q, which is the eddy
wavenumber determining the injection scale (q−1) of kinetic energy,
for a whole range of shear. Also, at fixed shear, k∗ systematically
decreases when τ increases. This promotes a genuine large-scale
dynamo as magnetic fields grow maximally at scales (k−1

∗ ) that are
larger than eddy size (q−1).

(iii) Dynamo cycle period Pcyc exhibits different scaling relations
with shear depending on the strength of the shear parameter:
Pcyc∝|S|−1 when shear is small, and it becomes independent of
shear when shear becomes sufficiently strong. This is very different
from the predictions of standard α� dynamo model that leads to a
uniform scaling, Pcyc ∝ |S|−1/2, with shear.

Recent observational study by Olspert et al. (2018) on stellar
magnetic activity cycles reveal two branches, active and inactive,
in a diagnostic activity-rotation diagram. More work is needed to
fully understand the origin of these branches, e.g. whether these
trace two distinct population of stars or are somehow related to
multiple cycles from the same star. Nevertheless, such studies
emphasize the need to focus on the dynamo cycle period Pcyc

as this may have direct implications for these observations. This
motivated us to explore in detail the properties of Pcyc in our model.
Interestingly enough, we find two asymptotic branches when we
look at the dimensionless quantity 1/|S|Pcyc; see the inset of Fig. 8.
This quantity is independent of shear when shear is weak, and varies
as |S|−1 in the strong shear regime. It is useful to note that the model
predictions and scaling relations such as the ones reported here are
often based on kinematic analysis, whereas the observations relate
to the non-linear stage of stellar dynamos. Therefore, it is important
to investigate numerically how the scalings of Pcyc are affected in
the non-linear stage. Nevertheless, we envisage that the new scaling
laws being reported here will be useful in the interpretations of
observations of the magnetic activity cycles of stars.
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APPEN D IX: COMPARISON W ITH
N O N - S H E A R I N G WAV E S O F TH E
R E N OVAT I N G FL OW S

We choose the turbulent velocity u same as in GB92,

u(X, t) = a sin(q· X + �) + h c cos(q· X + �), (A1)

which is a single helical waves with constant wave vector q and
constant amplitudes a and c. We call them non-shearing waves since
both the amplitudes and the wave vector are independent of shear.
This velocity field is used instead of equation (2) to obtain the growth
rate (γ ) and maximum growing wavenumber (k∗). Such velocity
field give, isotropic transport co-efficient–α, if we use equation (34).
This velocity fields are used, so that we can make the comparison
between the cases, when α is tensorial and a function of shear, with
isotropic α – independent of shear – in this appendix. The effect of
shear on the turbulent eddy is not considered in the non-shearing
waves as it is usually the case in α� (α2�) dynamo.

We show such comparisons in Fig. A1 at τ /T = 1 and 2, when
memory effects are important. As may be seen from Fig. A1 (left-
hand panel) that the behaviour of the wavenumber k∗ corresponding
to the fastest growing dynamo mode is qualitatively different. When
we model renovating flows in terms of non-shearing waves, k∗

increases with |S|, producing magnetic fields predominantly at
small, sub-eddy spatial scales at intermediate to large values of shear
(the red lines). However, as discussed before based on Fig. 4, when
we consider amplitude modulated shearing waves in the model, we
find that k∗ remains small at all shear, thus producing magnetic fields
preferentially at large, super-eddy spatial scales (the black lines).
Note that the background shear operates at all times, regardless of
which one of the two, shearing or non-shearing, waves we use to
model the renovating flows.

In Fig. A1 (right-hand panel), we show the comparison for shear
dependence of the dynamo growth rate again at τ /T = 1 and 2. While
the growth rate γ̃ (k∗) increases monotonically with shear strength
|S| when non-shearing waves are used in calculations, it shows a
saturation and even quenching at large enough values of shear when
we utilize time-dependent shearing waves to model the renovating
flows; dynamo quenching in strong shear regime is more clearly
seen in Fig. 6 where shear strength is shown on a logarithmic axis.
Here, we have considered the growth of mean field by the single
eddy with and without the effect of shear on it’s amplitudes along
with the background flow. Therefore, the effect of shear on the
turbulence is non-trivial that cannot be neglected and it is more
pronounced at strong shear regime.

Figure A1. Normalized growth rate γ̃ (k∗) and normalized maximum growing mode k∗ of growing dynamo are shown in left-hand and right-hand panels,
respectively. Black: shearing waves; red: non-shearing waves; τ /T = 1 (solid), and 2 (dashed).
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