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Stability of topological wall defects on spheres with n-atic order
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Topological point defects on orientationally ordered spheres and on deformable fluid vesicles have been
investigated, partly motivated by their potential applications in creating superatoms with directional bonds
through functionalization of the “bald spots” created by topological point defects, thus paving the way for
atomic chemistry at micron scales. We show that singular wall defects, topologically unstable “bald lines”
in two dimensions, are stabilized near the order-disorder transition on a sphere. We attribute their stability to
free-energetic considerations, which override those of topological stability.
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I. INTRODUCTION

The remarkable interplay between the curvature of a sur-
face and frustration of orientational order on it is strikingly
demonstrated by the Poincaré-Hopf index theorem [1]. Stated
informally, a hairy ball cannot be combed flat without creating
at least one hair whorl; a singular isolated disclination (vortex)
or isolated disclinations with total index (winding number)
2. For vector (1-atic) order disclinations have integer indices,
whereas for nematic (2-atic) order they are integer multiples
of 1/2. In a region surrounding a disclination (point defect
in two dimensions), deformations in the orientation field are
large enough to destroy orientational order. Disclinations are
topological defects characterized by their index and have
“molten” core regions of finite extent encompassing the discli-
nation points.

The study of point disclinations on ordered spheres [2] and
on deformable vesicles [3] is important for investigating the
interplay between geometry, topology, and elasticity, and for
its potential applications in materials science. It gained impe-
tus from the proposal that disclination cores on spherical parti-
cles such as micron-scale colloidal particles coated with liquid
crystals can be functionalized to create “superatoms” with
directional bonds [4]. This opened up new possibilities such as
self-assembly of superatoms by linking across functionalized
groups (including biomolecules such as DNA) and the devel-
opment of atomic chemistry at micron scales. Rigid spheres
have been prepared by molecular coating of ordered tilted
monolayer on metal nanospheres [5], leading to the antipodal
configuration of a source-sink pair of disclinations of index
1 each. These divalent superatoms spontaneously form long
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one-dimensional chains. Thin nematic shells consisting of a
nematic drop containing a smaller aqueous drop have been
obtained in double emulsions [6]. These can be engineered
to imitate sp-, sp’-, and sp® geometries of carbon bonds.
Deformable vesicles with orientational order can form facets.
These fascinating possibilities have led to rapid advances in
theoretical and experimental studies [7-11].

In this paper we address the energetics and stability of
topological wall defects (line defects in two dimensions) on
spherical fluid membranes with n-atic orientational order.
Singular wall defects in two- and three-dimensional ordered
systems are topologically unstable because they can be made
to disappear by making local changes in the orientational
order [12,13]. In three dimensions, removal of disclinations
lines with index 1 via “escape” of the nematic director in
the third dimension [12—16] is well known. However, close to
nematic-smectic transition the bend elastic constant diverges,
the escape configuration has a larger free energy than that of
the line disclination of index 1, and the disclination line is
stabilized.

We show that singular wall defects can be stabilized on a
sphere because of its Gaussian (intrinsic) curvature, and not
because of boundary conditions, externally imposed fields,
or divergences in certain elastic constants. They are stable
close to the order-disorder transition, over a finite range of
a dimensionless parameter 1. The parameter 7 is the ratio of
basic free energy scales corresponding to the destruction of
order in the defect cores to that of the elastic deformation
outside the core. Our results on vector and nematic orders are
summarized in Figs. 1-5. The extension of these results to
n-atic order is straightforward. Remarkably, we find that for
n-atic order, the lowest elastic free-energy configuration has
2n walls of index 1/n each, located such that the integral of
Gaussian curvature of the sphere between any two successive
walls is 27 /n. The one-dimensional closed loop walls that we
consider have an unusual feature—each loop is characterized
by a continuous disclination density along its length, with a
quantized index assigned to the entire loop [17]. To the best
of our knowledge, such defects have not been discussed in
condensed matter systems.
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https://orcid.org/0000-0003-4242-1535
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.023215&domain=pdf&date_stamp=2020-05-22
https://doi.org/10.1103/PhysRevResearch.2.023215
https://creativecommons.org/licenses/by/4.0/

SAICHAND, ALAGESHAN, ROY, AND HATWALNE

PHYSICAL REVIEW RESEARCH 2, 023215 (2020)

(b) ©

FIG. 1. Equatorial wall: (a) Side (8 = /2, ¢ = 7 /2) view of
the index 2, equatorial wall. The directed lines are the streamlines
of the vector field. The shaded region represents the disordered core,
within which vector order is completely destroyed, and cannot be
assigned a direction. The full field, including that shown within the
core region, corresponds to a wall with zero core size. Rounding off
the slope singularity of the field at the equator, the wall defect of
zero core size transforms into the antipodal configuration of a pair of
index 1 point disclinations. (b) Front view (6 = /2, ¢ = 0). (c) Top
view, showing that the polar regions are free of point disclinations.

II. THE MODEL

On curved orientationally ordered surfaces the free energy
takes the form of Ginzburg-Landau theory for superconduc-
tivity [3]. Apart from the metric tensor, the complex order
parameter is coupled to the shape through a gauge field arising
from the covariant derivative of the order parameter. For n-atic
order a disclination of index (p/n) where p is an integer, is
a singular point around which the phase angle of the order
parameter changes by 2w (p/n). In superconductors the total
vorticity is determined by an external magnetic field, whereas
for a surface the signed total index of the disclinations is fixed
by its topology. The free energy density of orientationally
ordered surfaces can be cast as

k
foL = g Wi+ % Wi+ S1@ iyl

where r = ro(T — T.), T and T, are the temperature, and
the critical temperature, respectively, u is assumed to be
temperature independent, and ¥ = Y/ (g) = ¥ (0)| €@ is
the complex order parameter. For n-atic order the angle « is
measured modulo 27 /n with respect to a local orthonormal
frame [&,(c), & ()] on the surface, where o = (o', o?) rep-
resent the internal coordinates parametrizing the surface. The

term with coefficient k£ describes the elastic free energy of de-
formations within the “one-constant” approximation [12—-14].
In this term 9 represents the flat-space gradient operator,
and A(a) is the local gauge field (the spin connection) that
corrects the flat-space gradient by accounting for membrane
curvature. The components of the spin connection are given
by A,(0) =@&(0) - 0,8,(0), where u € (o', 0?). In the term
with coefficient k, complex conjugates are contracted using
the metric tensor. The free energy For, = [ foL d A, where
the area element dA = ,/gdo'do?, and g is the determi-
nant of the metric tensor g,,. The condensation free energy
density (the free energy cost per unit area for destruction of
orientational order) fc = r?/(4u). It plays an important role
in determining the core size of topological defects [13]. The
elastic part of the free energy density (1) is

fo = 1K, Ba —A)* = 1K, (8,0 — A,)(3"a — A"), (2)

where K, = k |/|? in the mean field approximation. Mini-
mization of the elastic free energy Fy = f fe1d A leads to the
Euler-Lagrange equation of equilibrium (6F /) = —K, V -
(da —A) = 0, where the operator V- denotes the covariant
divergence. For flat surfaces the gauge field A = 0, and F
reduces to the elastic free energy density of the continuum xy
model. The Airy stress function x defined by 0o — A* =
y#v9, x, with the unit antisymmetric tensor density y*" =
€*/ /8, identically satisfies (8Fe/da) = 0. However, x has
to obey the compatibility condition [18-20]

VZx(e) = K(0) — S (0). A3)

Here, V? is the covariant Laplacian operator, K(g) is the
Gaussian curvature, and .¥ (o) is the disclination density [21].
In terms of the stress function x, the elastic free energy
density (2) can be written as

fo = 1Ko Qx)* = 3Ky (3, 00" x). @)

III. DEFECT CONFIGURATIONS

With this background we discuss the procedure followed
in calculating the free energies of point and wall defects on a
sphere of radius R. For vector order the free energy of the
antipodal configuration of (index 1) point disclinations has
been obtained for small core sizes r., where the dimensionless
cutoff ¢ = r./R < 1[2]. A larger core reduces the elastic free
energy F but increases the condensation free energy. Making
the simplifying assumption that order is destroyed over the en-
tire core region, the condensation free energy Fc = [ fcd A,
where the integral is over the core region [13]. In investigating
the energetics and stability of point as well as wall defects for
n-atic order the determination of optimal core sizes, without
the restriction { < 1, is crucial. In what follows, we minimize
the dimensionless total free energies Fr = (Fy + Fc)/K, with
respect to ¢ to obtain the optimal core size. We focus primarily
on vector and nematic orders, and discuss the antipodal-,
equatorial wall-, two-wall-, tetrahedral-, and four-wall config-
urations. We find that these configurations are ground states
in different ranges of n = fcR?/K,. To compare their total
free energies and ranges of stability, it is convenient to choose
the dimensionless condensation energy 4w 7 corresponding to
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the destruction of order over the entire sphere as the common
reference of free energy.

A. The antipodal configuration

Let us consider a unit tangent vector field m(6, ¢) =
cosa(f, p)ey +sina(6, p)é, on a sphere, where we use
spherical polar coordinates. For a sphere of radius R, the
Gaussian curvature K = 1/R2, Ag =0, Ay = —cos6, and
the components of the metric tensor are ggy = R?, 8op =
R? SiIl2 0, 809 = 8¢po = 0.

For the simplest case that describes the antipodal config-
uration, o« = 0 (streamlines of #m follow longitudes on the
sphere), with two point disclinations of index 1 each at the
poles. The elastic free energy of the vectorial texture outside
the core region is

Fe(lap) = 27K, [logcot(¢/2) — cos ], (3)

where the superscript (ap) stands for antipodal point disclina-
tions, and the dimensionless cutoff ¢ = r./R. For small r this
result reduces to that of [2]. We note that Fegap) depends solely
on ¢ and diverges logarithmically as { — 0. The condensation
free energy is

F™ = 4R fe (1 — cos £). (©6)

For antipodal points the optimum core size is
¢ = 2arctan[p(n)/q(n)], )

where p() = [1 + 29 — /2n(T+2) 1"/, and q(n) = [1 +
2n 4+ 201 + 27) 1"/2. The minimized total (elastic + con-
densation) dimensionless free energy of the antipodal config-
uration in units of K, is

F@) = 2720 — v/2h(n) + arctanh(~/2n/h(n))] — 471,
(8)

where h(n) = +/n(1 4+ 2n), and we have taken the dimension-
less condensation free energy 4mn for destruction of order
over the entire sphere as the reference. The expressions for the
optimized core size ¢ @ and the minimized total free energy
F@) of the antipodal configuration are plotted in Figs. 4 and 5
as functions of n. Within the mean field theory, n ~ (T, — T).

B. The equatorial wall configuration

We now consider a singular equatorial wall defect (at 6 =
7 /2), defined by the disclination density

So T
(ew) _ _
7 B 27'[\/@ 8<9 2>’ ®

where the superscript (ew) stands for equatorial wall. Thus
foh de [) S /gd6 = Sy, where S is as yet undeter-
mined. Given this disclination density, we seek a solution
to the compatibility condition (3) subject to boundary condi-
tions. The boundary conditions, discussed below, ensure that
there are no point disclinations at the poles (coordinate sin-
gularities) and that Sy = 47, vindicating the Poincaré-Hopf
index theorem [22].
The general solution to the compatibility condition (3) is

x(@) = —a;logtan(8/2) — logsin 6 + [So/(27)]
X [0 — (r/2)) — 1]logcot(6/2) + ay, (10)

where the symbol ©® is the Heaviside theta, and a;, a, are
constants. Setting a, = 0, we exploit the symmetry x(0) =
x (T —0) to obtain a; = —Sy/(4m). Note that Sy is as yet
undetermined. To ensure that there are no point disclina-
tions of index 1 each at the north and south poles, we
investigate the behavior of 9y x(0) at the poles. We note
that limg_dg x(0) as well as limy_,, dg x go to infinity
unless So = 4. With Sy = 4, both these limits go to zero.
Setting a; = —Sy/(4w) = —1 guarantees that there are no
point disclinations at the north and south poles and yields the
solution to the compatibility condition for the equatorial wall,

0 0
x & = 2|:®(«9 - %) log cot 3 log (x/icos 5)] (11)

We have thus constructed a wall defect with index 2, as
demanded by the Poincaré-Hopf theorem extended to non-
isolated zeros. The Heaviside ® in (11) has important con-
sequences for the stability of wall defects, as discussed
below. In terms of «, measured in the local orthonormal
frame [ey (0, @), 84(0, ¢)], the solution (11) is particularly
simple (Fig. 1): ) = —¢, if0 < 7/2; ™ = ¢, if 7 >
0 > /2 [23]. Substituting for (11) in (4), the elastic free
energy of the equatorial wall is

F{™ = 21K, {sin¢ — 4logsin[(£/2) + (x/4)] - 1}.  (12)

We note that the term with the Heaviside ® in (11), when
substituted in fq[x] (4), leads to a term involving (5[0 —
(7r /2)])? in the integrand. With ¢ = 0 at or within the limits
of integration, the integral is, strictly speaking, undefined.
However it diverges as 1/¢ [24], in contrast to the logarithmic
divergence encountered in the case of antipodal point disclina-
tions. We therefore expect the index 2 wall to become unstable
as ¢ approaches molecular size, within the coarse-grained
elasticity theory that we have used. This is borne out by the
minimization of the total free energy discussed below.
The condensation free energy is given by

F™ = 4n R fesing. (13)

The core size ¢©%) that minimizes the total free energy
Flew) — FT(ew) —4mnis

1—2n
24/2n
and is plotted in Fig. 4 as a function of n. We find that
¢ =0 at n = 1/2. Moreover, it crosses zero and is neg-
ative above n = 1/2, which is unphysical. Thus, the singular
equatorial wall is stable only for 0 < n < 1/2. The minimized
dimensionless total free energy of the equatorial wall (Fig. 5)

with reference to the dimensionless condensation energy
4y is

¢ = arctan (14)

F = 4 [log(1 + 2n) — 211, (15)

where we recall that n = (fCRZ)/Ka ~ |T —T.|. As in the
case of antipodal point disclinations, F©*) depends only
on 1.

C. The two-wall configuration

The equatorial wall is not necessarily the minimum energy
configuration (ground state for vectorial order) over its entire
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(b) ©

FIG. 2. Two-wall configuration: (a) Side view. The vector field
between the two index 1 walls follows the longitudes. The two-wall
configuration degenerates to the antipodal configuration by smoothly
sliding the walls towards the respective poles. (b) Front view. (c) Top
view.

range of stability. For vector as well as nematic order it can
split into two walls with index 1 each placed at 6 = wizw)

and a)ézw) =7 — a)(lzw), where a)(lzw) < /2. In terms of the
«a field, the solution to the compatibility condition (3) for the
two-wall configuration is «®) = (—¢, 0, ¢) in the order of
increasing 6 (Fig. 2). Following the same procedure as used
above for the equatorial wall, we find that the numerically
minimized total free energy of the two-wall configuration
determines the wall locations a)gzw)(n) and wézw)(n). The two-
wall configuration is stable only for 0 < n < 0.17. The angle
a)gzw)(n) is a monotonic increasing function with a)?w) (n=
0) = /4 (corresponding to destruction of order over the
entire sphere), and the angle corresponding to zero cutoff can
be analytically calculated to be w?w)(n =0.17) =n/3. At
the limit of stability (n = 0.17) the total (integrated) Gaus-
sian curvature of the spherical region between the two walls
Kt = 2m, leaving total Gaussian curvatures of 7 each for the
polar caps. We notice a similar trend for the division of total
Gaussian curvature between successive walls in the index 1/2,
four-wall configuration for nematic order (see below).

s

D. The tetrahedral configuration

We now discuss the tetrahedral configuration of point
disclinations of index 1/2, followed by the four-wall config-
uration (of index 1/2 each) for nematic order. It is known [2]
that for small core sizes the ground state has four disclinations
arranged on the vertices of a tetrahedron inscribed in the
sphere. For the tetrahedral configuration, we minimize the

U

(b) ()

FIG. 3. Four-wall configuration (for nematic order): (a) Side
view. (b) Back (0 >~ 7 /2, ¢ ~ 37 /2) view. (c) Top view. Eachwall in
this configuration has the index 1/2, with uniform linear disclination
density. Therefore the change in the angle per unit length across each
wall is small as compared to that for index 1 (and 2) walls. This should
be borne in mind, particularly while viewing the back view (b).

total free energy numerically, using equal cutoffs along the
0 and ¢ directions to obtain the optimized core size (Fig. 4)
and the total free energy (Fig. 5). Above ¢ ~ 0.96 (below
n(¢ = 0.96) ~ 0.05), cores of neighboring disclinations over-
lap each other at nonzero 5, and an adaptation of the approach
of Ref. [25] that treats the disorder to order transition is better
suited to address this problem. In this paper we do not pursue
this approach.

E. The four-wall configuration

The four-wall configuration (Fig. 3) has two walls lo-
cated at 6 = (0\"™, ™ > ") on the upper hemi-
sphere. The other two symmetry related walls are located
in the lower hemisphere, with the convention w{™ < w{™.
The solution to the compatibility condition gives a*") =
(—¢, —9/2, 0, ¢/2, ¢) in the five regions arranged in the
order of increasing 6. We find that this configuration is stable
only for 0 < 1 < 0.05. In minimizing the total free energy of

the pairs of walls we need to use two core sizes, {1(4W) and
£\ for the walls at ("™ and ©{"", respectively. The angles

a)i“w) and a)gw) are weakly monotonic increasing functions

of 1, with »{"™ (1 = 0.05) = 2arctan(1/+/7)(== 0.72), and
o™ (5 = 0.05) = 2arctan(/(3/5)(~1.32). We notice that
putting the exact values as limits of integration, we get Kt =
7, indicating a systematic division of total Gaussian curvature
between neighboring walls. In what follows we trace this trend
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FIG. 4. Optimized core sizes: The symbols ap and tp represent
the antipodal (index 1 each) and tetrahedral (index 1/2 each) config-
urations of point disclinations; ew, 2w, and 4w refer to the equatorial
(index 2), two-wall (index 1 each), and four-wall (index 1/2 each)
configurations, respectively. The inset depicts the two core sizes
required to minimize the total free energy for the 4w configura-
tion. Order is completely destroyed at ¢ = {7 /8,7 /4,7 /2, w/2}
for the {4w, 2w, ew, ap} configurations respectively. Above ¢ =
(1/2)arccos(—1/3) =~ 0.96, cores of neighboring disclinations of the
tp configuration overlap each other (see the text).

to the elastic part of the free energy and generalize it to n-atic
order.

We find that configurations involving intersecting walls
(for example, longitudinal walls along ¢ =0 and ¢ = 7 /2,
vectorial order) have higher free energies than the configura-
tions discussed above. This is because of the larger repulsive
interaction energy near their intersection points, where the
walls are close.

F. Wall defects: Feasibility of observation

Wall defects are stable in the range 0 < n < 0.5. We use
mean field theory to examine the extent to which wall defects
are realizable in experiments. This involves estimating the
radius R, the thickness &, and the temperature range AT =
T. — T over which stable wall defects are observable. We
recall that the scale of 1 in Figs. 4 and 5 is linear in AT .

For the sake of concreteness we consider the experiments
of Ref. [5], where molecules of the self assembled monolayer
(thickness & of order molecular length) on the sphere are tilted
with respect to the local normal to the sphere. The projection
of tilted molecules onto the local tangent plane to the sphere
imparts vectorial order to it. Within mean field theory the
correlation length diverges as £ = &, (AT /T,.)~!/?. The bare
correlation length & is of order 2 nm (molecular dimensions),
and K, ~ kg AT, leading to fc >~ kg AT /E2. Substituting for
£ in n, we get AT ~ T.(&/R)*n. For T, ~ 300 K, spheres
with R = 5 nm, and R = 10 nm (used in [5]), n = 0.1 cor-
responds to AT ~ 4.8 K and AT =~ 1.2 K, respectively, thus
establishing the temperature scale. For R ~ 35 nm, n ~ 0.1
corresponds to AT ~ 0.1 K. For R = 35 nm the equatorial
wall is stable between n >~ 0.16 (=AT = 0.16 K) and n =
0.5(= AT =0.5K); it is likely to be the simplest one to

0.0 0.1 0.2 0.3

0.4 0.5 0.6
n

FIG. 5. Minimized free energy F = Fr — 4mwn: We set the ref-
erence of the total free energy to the condensation energy 47 n of
the entire sphere. The dots indicate the n values beyond which wall
defects are unstable [¢ () = 0], see Fig. 4.

observe. Evidently, for large core sizes, point as well as wall
defects will not have a “valence” = 1, as is the case for the
antipodal disclinations of Ref. [5]. However, nanoparticles
with small radii of order 35 nm are faceted [26] and cannot
be reliably approximated as spheres. Thus the observation of
wall defects (as against antipodal point disclinations) using
nanoparticles may not yet be possible using available experi-
mental techniques.

G. Wall defects: Division of total Gaussian curvature

We now generalize, and make precise our remarks on
the systematics of the division of total Gaussian curvature
between neighboring walls. For core sizes ¢ — 0 the con-
densation energy is negligibly small, clearly implicating the
elastic free energy as the root cause of this phenomenon. By
minimizing the elastic free energy, we find that for n-atic order
on spheres the lowest elastic free energy configuration has
2n walls of index 1/n each, located such that the integrated
Gaussian curvature between any two successive walls

Wit]

KT(i,i+1)=2JT/ K./gd0 =2m /n, (16)

Wi

where i = {1, 2, ..., 2n — 1} labels the walls in the order of
increasing 6.

To derive this result, let us consider n-atic order on a
sphere with 2n walls of strength 1/n each and indicate the
positions of symmetry related pairs of walls by (wy, w_; =
T — wy), where k = 1,2, ...,n. Our aim is to minimize the
elastic free energy of such configurations with respect to
the angular positions of the symmetry-related pairs of walls.
The disclination density of this configuration is

1 n
" ; 86 —w) +8(0 —w_p)]. (17

To evaluate the elastic free energy of the configuration we use
the Coulomb gas form of the elastic free energy. The elastic
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energy Fg can be written as [7]
K, ,
Fa= —7// PO, )G, ¢; 0", ¢Hp®O', ¢ )dAdA,

(18)

where p(0,¢) = K@@, ¢) — L (0, ¢). The Green’s function
G(o, a’) for a spherical surface is

1 1 —Cs8,0;0, ¢
GO, ;6. ¢) = — log 2099901 1)
4 2
where
Cp(0, ¢; 0", ¢') = cosO cosb’ + sin 6 sin ' cos(¢p — ¢').

(20)

Given the azimuthal symmetry of the configuration (no ¢ de-
pendence), the Green’s function satisfies the Laplace equation
sin 50,0

sin 6 97G(0;6") + cos 0 3G(0;0') + — = ,
4 2

2y

with the following conditions: (i) G(0;60") = G(0’;0), and
i) G(r —0; T — 0") = G(0;60"). The solution of the above
equation is

1
G@6;0) = g[ log(sin @ sinf’) + (O(0" — 9)

, 0 0’
—0@ —0"))log| cot—tan — | [, (22)
2 2
where the Heaviside theta is defined as ®(x) = 1 if x > 0, and
Ox)=0ifx < 0.
The elastic free energy (18) can be written as Fy =
—(1/2)Ky (Fxkx — 2Fx.» 4+ F ), where

FKK = /. KG(@, 6/)Kd./4d./4/,
Fro = //KG(@; 0).7©)dAdA’, and

Foy = / Z0)GO;0). 7O )dAdA.  (23)

Substituting for G(6;0") and for . (#), and minimizing with
respect to the angular positions w;, we find that only the F &

term is important in determining ;. After some algebraic
manipulations, we find that the set of angular positions that
minimizes the elastic free energy is given by

2n—2i+1
2coswi=u 24)

n

and that the integrated Gaussian curvature between the
symmetry-related walls at w; and (7 — w;) is 2w (2cos w;) =
2,7”(2n — 2i 4 1). This directly leads to the result (16) on the
division of integrated Gaussian curvature.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have used a simplified version of the
Ginzburg-Landau theory to predict the existence of stable
topological wall defects (near the order-disorder transition)
on spheres with n-atic order. Simulations and experiments
can test our results. In our analysis we have ignored the
effects of thermal fluctuations. Fluctuation effects will be
important close to 7,. However, spheres are closed surfaces,
and the system size is very small, thus diminishing the effects
of fluctuations. The nature of order-disorder transition on
orientationally ordered spheres is not clear and needs to be
investigated. In particular, the transition may not be of the
Kosterlitz-Thouless type (see, e.g., Ref. [13]). Close to T,
interacting wall defects rather than point defects will dominate
the transition. A detailed analysis of fluctuation effects is be-
yond the scope of this paper. In addition to fluctuation effects,
it would be of interest to extend the theory to include the
effects of anisotropy of elastic constants and study the shape
changes of deformable vesicles, induced by wall defects. We
have investigated the stability of topological wall defects on
catenoids [27], which will be published elsewhere.
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