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1. THE POINCARE SPHERE

In the early forties, I was interested in the effect of birefringence on measurements of magneto-optic
rotation. My research supervisor C. V. Raman brought to my notice a paper in which Becquerel'
had measured the Faraday Rotation in a birefringent crystal in a direction away from the optic
axis®. It was while reading this paper along with my colleague V. Chandrasekharan (who is now
known for his work on Brillouin scattering in anisotropic crystals) that I first came across the
Poincaré representation of polarised light. It is my view that the Poincaré Sphere gave an impetus
and a new dimension to optics research in India (see references).

We require two parameters to describe a general (elliptic) state of polarisation — (a) the azimuth
i.e. the orientation of the major axis of the ellipse, and (b) the “ellipticity”, i.e. the ratio of major
to the minor axes b/a(b < a), o = tan"'b/a — one uses positive and negative w’s for left and right
rotating ellipses (figure 1a).

Poincaré (1892) took the remarkable and imaginative step of representing these states on the
surface of a sphere by using 2w and 2\ as the latitude and longitude (this also makes it obvious
that the sphere has the right topology for representing polarised light). Figure 1b represents the
Poincaré sphere, L and R, the poles represent the left and right circular vibrations and the

(o) (b)

Figure 1(a). Elliptically polarised light. Two parameters are required to describe
a general state: azimuth A\, 0 < A\ < = and ellipticity b/a, —1 < b/a < 1 and
-7/4 < = tan”' bla < w/4. (b) The Poincaré Sphere: A point (P) of
longitude 2 A\ anf latitude 2  represents an elliptic vibration of azimuth A\
and ellipticity w. The points on the equator represent plane polarised light;
north pole and south pole represent left handed and right handed circular light.

1154 CURRENT SCIENCE, VOL. 59, NOS. 21 & 22, 25 NOVEMBER 1990



THE POINCARE SPHERE AND THE PANCHARATNAM PHASE - SOME HISTORICAL REMARKS

equator HCVD represents linear vibrations, H and V being horizontal and vertical linear polarised
light. Every other point on the sphere represents an elliptic vibration.

The Poincaré representation is ideally suited to deal with the case of the state of polarisation
of a beam of light traversing an anisotropic medium. When there is no absorption the beam splits
up into two orthogonal opposite states, (two linear in the case of a linear birefringence, two circular
in the case of optical activity, two opposite (orthogonal) elliptic states in the case of birefringence
and optical activity). The coherent superposition of these two orthogonal states gives points on a
great circle joining them. Changing the relative phase is equivalent to a rotation of the sphere
about the axis joining the two opposite states.

When S. Pancharatnam at the age of 19 came to Bangalore in 1953 to work as a research
student, we are told that C. V. Raman gave him specimens of two minerals from his collection
— iolite and amethystine quartz. Iolite is an absorbing biaxial crystal while amethyst is an absorbing,
birefringent, optically active crystal. Raman told him that the optics of these crystals was little
understood, and they were sure to exhibit many new unexpected phenomena. “The understanding
of the propagation of light in these crystals will not only advance the science of crystal optics but

(a) (b)

(c) (d)

Figure 2. Motion of the state of polarisation on the Poincaré Sphere - four
cases. (a) Linear birefringence, i.e. phase difference between H and V. The
motion is a simple rotation (unitary i.e. intensity preserving transformation).
(b) Linear dichroism i.e. differential absorption between two orthogonal linear
polarisations, inclined at 45° and 135°. (c¢) Superposition of (a) and (b) with
dichroism weaker than birefringence. Note that the two states which are
preserved by the combined operation are non-orthogonal. (d) The singular
case which results when the dichroism equals the birefringence and has principal
axes inclined by 45°. Only one (circular) state is left unaltered and there is
a dipole-like flow pattern resulting from the coalescence of the two normal modes.

Cases (b), (c) and (d) all correspond to nonunitary transformations. When
the two modes have unequal coefficients of absorption (as when the angle is
not 45°) the motion of the representative point is a spiral expanding from the
more absorbed state and converging on the less absorbed one.
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will go a long way in revealing some aspects of the properties of light itself”. Many years later
Pancharatnam was to quote this to indicate the intuitive feel Raman had for physical problems.

A few months after he joined the Raman Research Institute we happened to talk of our research
problems. 1 discussed with him my specific interest on the differential absorption of X-rays with
wavelength in a crystal. He told me that the problem he was tackling was slightly different, i.e.
differential absorption with polarisation and the changes in the states of polarisation due to this in
a biaxial crystal (with and without optical activity). I knew little about this field but referred him
to Perrin’s paper* wherein he points out the advantages of using the Stokes’ parameters for
representing polarised light. I was particularly impressed with the simple relationship Perrin brought
out between these parameters and the Poincaré Sphere which had been of so much use to me in
my studies of magneto-optic rotation and birefringence. I could see that Pancharatnam was struck
by the power of this method but he just asked me “why are these beautiful ideas kept out of
standard treatises?”. Almost immediately Pancharatnam put the Poincaré Sphere to use to design
an achromatic quarter wave plate (1955)° for his experimental study on amethyst'.

The beauty of the Poincaré Sphere is that changes in polarisation as light travels through a
crystal. acquire a simple geometrical significance. Thus if the vibration along X and that along Y
have different refractive indices one can depict it as a rotation of the sphere. Figure (2a) shows
this operation as a vector field. Pancharatnam® introduced the effect of differential absorption into
the Poincaré Sphere. The vector field due to a differential absorption between X' and Y’ (45° to
X and Y) is as shown in figure 2b (note that it is not a rotation!) Pancharatnam discovered that
by superposing the two examples given here, one could get remarkable effects (figure 2¢ & d). In
crystal optics (or even in quantum mechanics) one is normally familiar only with orthogonal modes.
But when absorption comes in, these modes are no more orthogonal and more dramatic effects
can also occur. These modes may even coalesce to only one state (figure 2c) depending on the
relative magnitudes of the absorption and birefringence. With the right balance between absorption
and birefringence one can get a single circular state which is left unaltered, and all other states
flow to it along a dipole-like pattern.

PANCHARATNAM AND THE GENERALISED THEORY OF INTERFERENCE

Pancharatnam next went on to consider the generalised theory of interference. This deals with
the cases when light is in two distinct modes which can interfere without the need for an analyser.
When these vibrations interfere, how does one define the phase difference between them?
Pancharatnam gave an experimental definition: the two modes are in the same phase when the
intensity of the superposed state reaches a maximum. The meaning of this can be pictured easily
in the case of a circular and linear vibration. For example, a circular state is in phase with a
linear state when the directions of the E vectors agree at the maximum amplitude. Likewise
two linear states making an acute angle are in the same phase if they reach the maximum at
the same time (figure 3b). (The cases of an ellipse and a linear vibration or two ellipses are
slightly more difficult to visualise.)

Pancharatnam discovered that in traversing a closed circuit (i.e. say a state A goes to B and
then to C, and finally returns to A, figure 3a), there is a phase deficit which is half the spherical
excess of the triangle ABC (i.e. the solid angle subtended by ABC at the centre). When A is
circular, B and C linear (acute to each other this deficit can easily be understood from figure 3b).
This was a new result in optics. 1 know that when Pancharatnam discovered it he was first surprised
(and elated). He also felt that there was something of much deeper significance to physics in this.
However, he dealt with it in a most pragmatic manner as a direct and simple result from classical
optics. He used it in his own experiments on the interference of polarised light traversing absorbing
biaxial crystals (without and with optical activity), and showed that this extra phase term does exist

* My knowledge of Stokes’ parameters came from reading Francis Perrin**, who was perhaps amongst the earliest to call
g p 8 I s perhap: ong
them by that name. The parameters M, C and S are the rectangular coordinates of the point P on the Poincaré Sphere.

+ Of this work, G. W. Series’ has said “The achromatic quarter wave plate and circular polariser may well find use in
contemporary laser technology”. Commercial versions of these are made in Germany for use in optical astronomy.
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PHASE
DEFICIT

(a) (b)

Figure 3. The Pancharatnam Phase. (a) When a state A is analysed along B,
B along C, and then C along A, there is a phase change equal to half the
solid angle subtended by the spherical triangle ABC at the centre. (b) A
simple illustration of the Pancharatnam Phase when A represents circular
polarisation, B and C linear polarisations at some angle to each other. The
open circles on the path of the electric vector represent a given phase of the
oscillation.

with the calculated magnitude, and is essential to explain the observed phenomena
(Pancharatnam®)*.

THE BERRY'S PHASE AND THE PANCHARATNAM PHASE

I religiously attend the Journal Club meetings of the Raman Research Institute (and am also known
to snooze there). At one of these meetings, Berry’s Phase’ was discussed by two speakers (Joseph
Samuel and Chandrakant Shukre). When I heard these talks I got the (deja vu) feeling that all
this had been said thirty years before in another context by Pancharatnam. I mentioned to Rajaram
Nityananda and V. Radhakrishnan that Berry’s Phase-and the spherical excess theorem Pancharatnam
talked of in his generalised theory of interference appeared to me to be identical. I also felt that
the adiabaticity condition of Berry may not be an essential one since it is not essential in
Pancharatnam’s derivation.

Once he had overcome some initial scepticism, it did not take Rajaram long to verify the
relationship between Berry’s Phase and the solid angle theorem and this was written up in Current
Science [Ramaseshan and Nityananda''].

Thanks to Berry’s own efforts,'? the connection between Pancharatnam’s optical work in the fifties
and the more recent flood of papers on “Berry’s Phase” is widely recognised among workers in this field".

* Since then many elegant theorems on the Poincaré Sphere have been proved. One such is that it is impossible to define
a continuous phase convention which is globally valid over the entire Poincaré Sphere [Nityananda']. For example,
Pancharatnam’s convention breaks down at the antipode of the state used as phase reference, since the interference of
two such orthogonal states gives the same intensity regardless of the phase.

+ It started with Berry’s detailed paper entitied “The adiabatic phase and Pancharatnam’s Phase for polarised light (1987).
I had the pleasure of meeting Prof. Michael Berry again in 1987 when he came to Bangalore and of presenting him with
my personal copy of Pancharatnam’s “Collected Works”.
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