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Abstract

Spiral structure in disk galaxies could arise from transient modes that create conditions conducive for their
regeneration; this is the proposal of Sellwood and Carlberg, based on simulations of stellar disks. The linear
response of an axisymmetric stellar disk, to an adiabatic nonaxisymmetric transient mode, gives a final distribution
function (DF) that is equal to the initial DF everywhere in phase space, except at the Lindblad and corotation
resonances where the final DF is singular. We use the nonlinear theory of adiabatic capture into resonance to
resolve the singularities and calculate the finite changes in the DF. These take the form of axisymmetric “scars”
concentrated around resonances, whose DFs have simple general forms. Global changes in the physical properties
are explored for a cool Mestel disk: we calculate the DFs of scars and estimate the changes in the disk angular
momentum, surface density, and orbital frequencies leading to shifts in resonances. Resonant torques between disk
stars and any new linear nonaxisymmetric mode are suppressed within a scar, as is epicyclic heating. Because all
resonances of a linear mode with the same angular wavenumber and pattern speed as its precursor lie inside the
scars of the precursor, it suffers less damping. Hence, scars filter the spectrum of noise-generated modes,
promoting the renewal of a few select modes. Relic scars sustained by a galaxy disk, due to past tidal interaction
with a passing companion, may still be active enablers of nonaxisymmetric modes, such as the two-armed “grand
design” spiral patterns.

Key words: galaxies: kinematics and dynamics – galaxies: spiral – Galaxy: disk – Galaxy: kinematics and
dynamics

1. Introduction

The spiral structure of disk galaxies is presumably caused by
density waves, the origin and maintenance of which have been
discussed for a long time; see, e.g., the reviews by Toomre
(1977), Athanassoula (1984), Bertin & Lin (1996), Binney &
Tremaine (2008), Sellwood (2014), and Shu (2016). It has been
argued that a spiral density wave could be a quasi-stationary
mode of an underlying smooth axisymmetric disk of stars and
gas (Lin & Shu 1966; Bertin & Lin 1996; Shu 2016), but there
is not much support for this notion from either linear
perturbation theory or numerical simulations of initially
axisymmetric stellar disks with a smooth distribution of stars
in phase space (see Sellwood 2014 and references therein). In a
purely stellar disk, the wave decays due to the excitation of the
epicyclic oscillations (“heat”) of disk stars, accompanying
angular momentum transport across the disk. As the disk heats
up, it becomes less efficient at sustaining the nonaxisymmetric
mode. When gas is also present, energy is dissipated through
shocks in the perturbed gas flow. Even though the gas mass is
smaller than the stellar mass, it is important for the secular
evolution of the disk through new star formation.

A tightly wound spiral density wave packet in a Q�1
stellar disk propagates inside/outside the corotation resonance
(CR) radius with the inner/outer radial boundary located at the
inner and outer Lindblad resonances (ILR/OLR), where it is
absorbed as a short trailing wave (Toomre 1969; Mark 1974).
A more global approach considers a spiral perturbation (a spiral
“mode”) of fixed spatial form and pattern speed but with a
time-varying amplitude. Lynden-Bell & Kalnajs (1972)
showed that a nonaxisymmetric perturbation extracts angular
momentum from the disk stars at the ILR and deposits it at the
OLR, while heating up stars at both Lindblad resonances.
There is no heating at the CR but angular momentum exchange

can be of either sign, causing radial mixing of stellar orbits
(Sellwood & Binney 2002). A spiral density wave can undergo
swing amplification as it unwinds from a leading to a trailing
one, but this is a transient phenomenon (Goldreich & Lynden-
Bell 1965; Julian & Toomre 1966; Toomre 1981). Global
numerical linear theory computations by Toomre and Zang
(Toomre 1981) displayed striking swing amplification of an
initial leading spiral wave packet localized near the ILR. But
this growth is transitory, and the wave unwinds until it is
absorbed as a short, trailing wave packet at the ILR. The
“local” (e.g., Toomre 1969) and “global” (Lynden-Bell &
Kalnajs 1972) linear theory calculations are complementary
points of view of the same physical process. In the former, the
focus is on the conservation of the radial flux of angular
momentum, which is the sum of the fluxes due to gravitational
torques and advection, in the regions between the CR and ILR/
OLR. In the latter, the focus is on the total angular momentum
budget, with lasting exchanges occurring only at the
resonances.
Transient spiral patterns appear abundantly in numerical

simulations of stellar disks (see, e.g., Miller et al. 1970;
Hockney & Brownrigg 1974; James & Sellwood 1978;
Sellwood & Carlberg 1984; Sellwood & Lin 1989; Roškar
et al. 2012), produced by swing amplification of shot noise.
They have the intriguing property that they can be reborn, a
line of thought that goes back to Sellwood & Carlberg (1984)
and Sellwood (1989). As noted in Sellwood (2012, p. 2),
“Kthe decay of one spiral feature might change the back-
ground disk in such a manner as to create conditions for a new
instabilityK.” The transient patterns are mode like, with
approximately constant spatial form and pattern speed but time-
varying amplitudes; complex patterns seen in the simulations
could be superpositions of a few spiral modes (Sellwood &
Carlberg 2014, hereafter SC14). The dynamical origins of this
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phenomenon, explored over decades of numerical simulations,
are our central concern.

Plan of the paper: spiral perturbations mainly affect in-plane
stellar motions, so we focus on planar dynamics, as has much
of the essential analytical and numerical work in this field cited
above. In Section 2, we discuss the decay of linear modes of a
smooth axisymmetric distribution function (DF) from the point
of view of Lynden-Bell & Kalnajs (1972). The emphasis is on
the angular momentum transfer at the Lindblad and CRs, with
the associated excitation of epicyclic motions. In Section 3, we
take up the problem of the DF changes due to the passage of a
single nonaxisymmetric transient mode on an unperturbed,
axisymmetric galactic disk. Linear response theory (Carlberg &
Sellwood 1985) predicts that, for an adiabatically varying
transient, the change in the DF is singular at resonances.
We use the nonlinear theory of adiabatic capture into reson-
ance (Sridhar & Touma 1996, hereafter ST96) to resolve the
singularities. The posttransient (or final) DF is a simple
function of the pretransient (or initial) DF. The final DF is
more “flattened” near a resonance when compared with the
initial DF because of mixing due to the separatrix crossing of
stellar orbits; this has important consequences for mode
renewal, as discussed in Sections 5 and 6. The DF of a “scar”
is defined as the difference between the final and initial DFs. It
is localized around resonances and is the basic quantity
required to calculate changes in all physical quantities. We
derive an expression for the angular momentum absorbed from
the transient by resonant stars.

The DFs of scars are calculated in Section 4 for a cool
Mestel disk. This allows us to make quantitative estimates,
guiding the rest of the paper. These DFs provide a phase-space
picture of mass shifts across resonant surfaces, which
determine the angular momentum absorbed from the transient,
and the surface density profiles of scars. Simple expressions are
derived for both quantities, together with numerical estimates.
In Section 5, the results of the previous sections are gathered
together to prove that the linear responses of the initial and final
DFs are very different to a new perturbation with the same
angular wavenumber and pattern speed as the original transient
mode. The flattening of the DF inside resonant scars suppresses
resonant torques in the final disk.

In Section 6, we address the problem of mode renewal in the
final disk, by first showing that suppressed torques in the final
disk also result in suppressed epicyclic heating. The suppres-
sion factor between the final and initial disks is small for linear
modes with the same angular wavenumber and pattern speed as
the transient. But it is likely to be of order unity for some other
linear mode, the resonant curves of which do not lie within the
scars of the final disk; these modes will, generically, have a
different angular wavenumber or pattern speed. We propose a
model of mode renewal and compare it with the simulations
of SC14. Their physical insights regarding the growth, decay,
and renewal of nonaxisymmetric modes generated by shot
noise are interpreted in terms of our model, wherein scars act as
sharp filters of a noisy generator, favoring the growth of linear
modes with the lowest dissipation rates. We conclude in
Section 7 with a brief consideration of the limitations and
desirable extensions of our model of mode renewal, possible
numerical tests, prospects for seeing them in the second Gaia
data release, and speculation on the role of relic scars on the
evolution of galactic disks.

2. Decay of Linear Modes

2.1. Disk Dynamics

The galactic disk consists of stars orbiting in a plane under
the combined actions of their mutual self-gravity and external
gravitational sources. Let (R, f) be the polar coordinates of a
star, and (pR, pf) be the conjugate momenta; =p RR

˙ is the
radial velocity and f=fp R2 ˙ is the z-component of the orbital
angular momentum per unit mass. We use Γ=(pR, pf; R, f)
to denote phase-space location and fG = fd dp dp dR dR
for phase volume. The mass of stars at time t in Gd is

G Gf t d,( ) , where f�0 is the mass DF with ò G G =d f t,( )
disk mass. The total gravitational potential acting on a star is

fF = F + F + FR t, , , 1adisk halo ext( ) ( )

òfF = - G¢
G¢
- ¢R R

R t G d
f t

, ,
,

, 1bdisk( ) ( )
∣ ∣

( )

is the mean self-gravitational potential due to disk stars, where
f=R R,( ) and f¢ = ¢ ¢R R ,( ) are position vectors in the disk

plane. Φhalo(R) is the potential of a dark halo in the disk plane,
and Φext(R, f, t) is a given external perturbation. The
Hamiltonian governing the dynamics of a star is the energy
per unit mass,

fG = + + Ff t
p p

R
R t,

2 2
, , . 2R

2 2

2
( ) ( ) ( )

The time evolution of the DF is governed by the collisionless
Boltzmann equation (CBE):
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is the Poisson Bracket. Equations (1)–(3) determine the self-
consistent evolution of the DF.
The unperturbed galactic disk is assumed to be stationary

and axisymmetric, with Hamiltonian

= + + Ff
f R p p

p p

R
R, ,

2 2
, 4R

R
0

2 2

2 0( ) ( ) ( )

where Φ0(R)=F0
disk(R)+Φhalo(R). Both = E0 and

pf=Lz are constant along a stellar orbit. The radial and
angular frequencies of the orbit are functions of (E, Lz) and are
generally incommensurate. So, a generic orbit describes a
“rosette,” as it goes through many periapse and apoapse
passages, eventually filling an annular disk between the
pericenter radius b1(E, Lz) and the apocenter radius b2(E, Lz).
Because the unperturbed DF is time independent, Equation (3)
and the Jeans theorem imply that it must be of the form f0(E,
Lz). Let f1(Γ, t) be a small perturbation to f0. In the limit of an
infinitesimal perturbation, f1 satisfies the linearized CBE
(LCBE):

¶
¶

+ + F =
f

t
f f, , 0, 51
1 0 0 1[ ] [ ] ( )

where Φ1(R, f, t)=F1
disk+Φext is the total potential

perturbation.
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2.2. Linear Modes

We are interested in nonaxisymmetric modal perturbations
of the form

f e g fF = F - WR t t R t, , exp , , 6aa1 p p( ) ( ) ( ) ( )

e g fG = - Wff t t f p p R t, exp , , , . 6ba R1 p p( ) ( ) ( ) ( )

Here, 0<ep=1 is a small parameter, Wp is a constant pattern
speed, and γ>0 for a perturbation that is applied gradually in
time; γ can be taken to zero at the end of the calculation.

Following Kalnajs (1971), we introduce the action-angle varia-
bles, (JR, Jf; θR, θf), to study perturbations. The momenta are (JR,
Jf=Lz), where òp= - F -J dR E R L R1 2 2R b

b
z0
2 2

1

2( ) ( ( ) )
is the radial action. JR is a measure of the departure from a circular
orbit: JR=0 for a circular orbit, and the amplitude of radial
excursions increases with increasing JR for given Lz. The conjugate
coordinates are (θR, θf), the radial and angular phases. The
Hamiltonian governing the unperturbed time evolution of the
action-angle variables is E(JR, Lz), the orbital energy per unit mass.
This implies that JR and Lz are constant along an orbit (which is
expected), whereas their conjugate angles advance uniformly with
time at the rates

q q= W =
¶
¶

> = W =
¶
¶

f f
E

J

E

L
0, . 7R R

R z

˙ ˙ ( )

We rewrite the unperturbed DF as f0(E, Lz)=F0(JR, Lz) and
expand the mode functions of Equation (6) as Fourier series in
the angles:

å q qF = F + - Wfi ℓ m texp , 8aa
ℓ m

ℓm R
,

p{ ( ( )} ( )

å q q= + - W~
ff F i ℓ m texp , 8ba

ℓ m
ℓm R

,
p{ ( ( )} ( )

where the Fourier coefficients, F = F- -ℓm ℓ m, *( )  and

=
~ ~

- -F Fℓm ℓ m, *( ) , are functions of (JR, Lz), and the sums are
over all integer pairs (ℓ, m).

Using Equations (6) and (8) in the LCBE, we obtain the
linear response as

g w
=

¶
¶

+
¶
¶

F
+

~
F J L ℓ

F

J
m

F

L

i J L

i
,

,
, 9ℓm R z

R z

ℓm R z0 0
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )


where w = W + W - Wfℓ mR p{ ( )}. A stationary DF corre-
sponds to a marginally growing mode, obtained in the limit
γ→0+:

w
pd w

¶
¶
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¶
¶

+ F~
F ℓ

F

J
m

F

L
i

1
, 10ℓm

R z
ℓm

0 0
⎛
⎝⎜

⎞
⎠⎟{ }( ) ( )

where δ( ) is the Dirac delta function. Both terms within the { }
are singular at resonances in action space, where

w = W + W - W =fℓ J L m J L, , 0. 11R R z R z p( ) { ( ) } ( )

For a given Wp, an (ℓ, m) resonance is a curve in action space.
Away from the resonance, the response of Equation (10) is
nonsingular and the δ-function does not contribute; mode
structure may be studied by solving integral equations (see,

e.g., Kalnajs 1971; Evans & Read 1998). For a tightly wound
spiral density wave, the self-consistent problem becomes “local”
and can be solved to obtain the well-known Lin–Shu–Kalnajs
dispersion relationship (Lin & Shu 1966; Kalnajs 1965); see
Binney (2013) for a nice derivation.

2.3. Angular Momentum Budget

The δ-function part of the response of Equation (10) can be
thought of as a “van Kampen” mode (see, e.g., Binney &
Tremaine 2008). But it is a particular type of van Kampen
mode and plays a fundamental role in determining angular
momentum exchanges between the mode and resonant stars
(Lynden-Bell & Kalnajs 1972). The total torque exerted by the
mode on disk stars,

ò òf f
= - G

¶F
¶

+ = - G
¶F
¶

 d f f d f , 121
0 1

1
1{ } ( )

is second order in the perturbation. Because the Poisson
Bracket is invariant under canonical transformations,

f¶F ¶ = F = Ffp L, , z1 1 1[ ] [ ]. Using Equations (6), (8), and
(10) in Equation (12)—see Section 2.4 of Kaur & Sridhar
(2018) for a simple derivation in the context of an unperturbed
spherical galaxy—we obtain the Lynden-Bell & Kalnajs (LBK)
torque formula:

å å=
=-¥

¥

=

¥

  , where 13a
ℓ m

ℓm
1

( )

òp e

d

=-
¶
¶

+
¶
¶

´ W + W - W Ff

 m dJ dL ℓ
F

J
m

F

L

ℓ m J L

8

, . 13b

ℓm R z
R z

R ℓm R z

3
p
2 0 0

p
2

⎛
⎝⎜

⎞
⎠⎟

( { })∣ ( )∣ ( )

The ℓ<0 and ℓ>0 resonances are the ILR and OLR,
respectively; the principal ones are the ILR (ℓ=−1) and the
OLR (ℓ=1), and ℓ=0 is the CR.
For the mode to be stationary, every = 0ℓm ; for, if any
¹ 0ℓm , the exchange of angular momentum with resonant

stars will make the perturbation time dependent. Indeed,
¹ 0ℓm as Lynden-Bell & Kalnajs (1972) demonstrated for

“epicyclic” disks, which are reasonable first approximations to
cool galactic disks in which radial speeds are much smaller
than circular speeds. An epicyclic DF, F0(JR, Lz), has
(∂F0/∂JR)<0 and ¶ ¶ ¶ ¶F J F LR z0 0∣ ∣ ∣ ∣ . Then,

¶ ¶ + ¶ ¶ ¶ ¶ℓ F J m F L ℓ F JR z R0 0 0( )  at all Lindblad reso-
nances, and =m∂F0/∂Lz at the CR. Using this in
Equation 13(b), we can conclude:
a. < 0ℓm at all ILR, and > 0ℓm at all OLR.1

b. At the CR, the sign of  m0 is opposite to that of ∂F0/∂Lz,
so the angular momentum exchange can be of either sign.
If, instead of a marginally growing mode, one considered a

growing mode with γ>0, then the δ-function in
Equation 13(b) would be replaced by a Lorentzian function
of width γ. For γ not too large, the signs of the  ℓm would not
change. Hence, we may expect the conclusions of items (a) and
(b) to be still valid. Moreover, the process is accompanied by
the excitation of epicyclic motions at all Lindblad resonances

1 In the complementary local approach, angular momentum is transported by
wave packets traversing the regions between the resonances, where the radial
flux of angular momentum is the sum of gravitational and advective (“lorry
transport”) fluxes. The wave angular density is negative/positive inside/
outside corotation (Binney & Tremaine 2008, Section 6.2.6).

3

The Astrophysical Journal, 884:3 (22pp), 2019 October 10 Sridhar



(see footnote 2). Therefore, we expect nonaxisymmetric linear
modes of a smooth DF F0(JR, Lz) to be generically transient.

3. Resonant Deformation Due to an Adiabatic Transient

What changes does an axisymmetric DF F0(JR, Lz) suffer due
to a transient, nonaxisymmetric mode? Carlberg & Sellwood
(1985) calculated the changes to eO p

2( ) for a transient spiral
mode whose amplitude grew as g texp 1( ) for t�0 and decayed
as g- texp 2( ) for t>0. In the limit of slow growth and decay,
g g  +, 01 2 , the DF shows no lasting changes anywhere in
phase space, except at the resonances where the linear response
is singular. The singularities can be resolved only through an
intrinsically nonlinear treatment of the CBE of Equation (3).
We calculate the finite changes in the DF near a resonance,
using the nonlinear theory of adiabatic capture into reso-
nance (ST96).

When there is not much overlap of resonances—which is
indeed true for a cool Mestel disk; see Section 4.2.1 and
Figure 3—the dynamics near a resonance can be reduced to the
standard pendulum form (Chirikov 1979; Monari et al. 2017),
whose derivation is given in Section 3.1. In Section 3.2, we use
the results of ST96 to determine the posttransient (or final) DF,
which has the simple form given in Equation (27). The final DF
is finite and differs from the initial DF only inside a region of
width eO p( ) around a resonance. The changes in the disk are
concentrated around resonances, which may be thought of as
resonant scars left behind in phase space by the transient. In
Section 3.3, we define the DF of a scar, which is the basic
physical quantity required for calculating changes in disk
properties. Equation (30) for the DF of a scar shows that it
varies by eO p( ) over a region of width eO p( ) in action
space. We derive an expression for the angular momentum
exchanged between the transient mode and resonant stars. In
contrast to the eO p

2( ) change of the linear theory (see
Section 2.3), the change in the angular momentum within the
scar is eO p

3 2( ), which is larger. The global change in disk
properties is explored for a cool Mestel disk in Sections 4
and 5.

3.1. Resonant Dynamics

The unperturbed orbits of stars in action-angle space are
governed by the Hamiltonian, E(JR, Lz), with orbital frequen-
cies, ΩR(JR, Lz) and Ωf(JR, Lz), given by Equation (7). The
orbits are perturbed by a transient, adiabatically time-varying,
nonaxisymmetric mode with a fixed angular wavenumber
m>0 and pattern speed Wp. The gravitational potential
perturbation of the transient is

e e f cF = F - W +A t R m t Rcos . 14a atr p p( ) ( ) { ( ) ( )} ( )

Here, 0<ep=1 is a small, but not infinitesimal, measure of
the perturbation strength; A(εt)�0 is a dimensionless O(1)
time profile function, where 0<ε=1 is the ratio of the
orbital periods of stars to the timescales over which A varies;

and Φa(R) and χa(R) are the radial profile and phase functions,
respectively.
Φtr can be rewritten in terms of the action-angle variables,

(JR, Lz; θR, θf), as

åe e q qF = F + - W

+

f
=-¥

¥

A t i ℓ m texp

complex conjugate . 15
ℓ

ℓm Rtr p p( ) [ { [ ( )]}

] ( )



Here, F J L,ℓm R z( ) are complex Fourier coefficients that can be
calculated from Φa(R) and χa(R). The perturbed orbits of stars
are governed by the total Hamiltonian

q q= + F fH E J L J L t, , , , , . 16R z R z Rtot tr( ) ( ) ( )

Resonances occur on curves in the (JR, Lz) plane, on which
Equation (11) is satisfied. We assume that the resonant curves
for different ℓ, for the given m>0, are well separated. For
dynamics near some chosen (ℓ, m) resonant curve, the dominant
contribution to Φtr comes from the term qF +i ℓexpℓm R[ { (

q - W +fm t c.c.p( ) ].
The resulting resonant dynamics is conveniently described in

terms of new canonical variables, which rotate with the
perturbation at its pattern speed Wp. These are the “fast” and
“slow” actions and angles, (Jf , Js; qf , qs):

= - =J J ℓ m L J L m, ; 17aR z zf s( ) ( )/ /

q q q q q= = + - Wfℓ m t, . 17bR Rf s p( ) ( )

In the corotating frame, every orbit acquires an extra regression
of qsat the rate mWp, so the unperturbed dynamics is described
by the (Jacobi) Hamiltonian

= + - WH J J E J ℓJ mJ m J, , . 18r0 f s f s s p s( ) ( ) ( )

The fast angle advances at the O(1) rate,
q = W = ¶ ¶ = W >H J 0Rf f r0 f
˙ ( ) . The slow angle varies at
the rate q = Ws s

˙ , where the slow frequency is

W =
¶
¶

= W + W - WfJ J
H

J
ℓ m, . 19Rs f s

r0

s
p( ) ( ) ( )

The resonance condition of Equation (11) is identical to Ωs(Jf ,
Js)=0, so Ωs is small near the resonance. Solving this, we can
obtain the equation of the resonant (ℓ, m) curve in the (Jf , Js)
plane as

= W =J J J J J J, where , 0. 20s f s f f* *( ) ( ( )) ( )

For galactic disks, we generally consider J*>0.
The Hamiltonian governing dynamics near J*(Jf) is obtained

by adding the potential perturbation, qF +iexp c.c.ℓm s[ ( ) ] , to
the Hr0 of Equation (18). We write xF = - F -i1 2 expℓm p( ) ( ) ,
where F J J,p f s( ) and ξ(Jf , Js) are real O(1) functions. Then, the
resonant Hamiltonian is

e e q x= - F -H H J J A t, cos . 21r r0 f s p p s( ) ( ) ( ) ( )

Because Hr is independent of qf , =J constantf even though Hr

is time dependent.2 Resonant dynamics has been reduced to
that of a system with 1.5 degrees of freedom, where (Js, qs)
dynamics is governed by Hr, in which Jfis treated as a constant
parameter. Once Js(t) and qs(t) have been solved for, qf(t) can be
determined by integrating q = ¶ ¶H Jf r f

˙ .
Hr can be simplified further by expanding it in a Taylor

series in Js about J*(Jf). The first term, Hr0(Jf , J*), can be

2 The constancy of the fast action implies that changes in JR and Lz at the (ℓ,
m) resonance are related to each other: δJR=(ℓ/m)δLz (Sellwood &
Binney 2002). For smooth epicyclic DFs, items (a) and (b) of Section 2.2
imply that δLz and ℓ have the same sign, so δJR>0 at all Lindblad resonances,
and δJR=0 at the CR. Then, the change in the epicyclic energy (per unit
mass), ;ΩR δJR, is positive at all Lindblad resonances and very small at the
CR. Thus, the disk heats up.
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dropped because it does not contribute to the dynamics of (Js,
qs). Because ¶ ¶ = W ==H J J J, 0J Jr0 s s ss **

( ) ( ) , the linear term
in (Js−J*) is absent. Then, the unperturbed Hamiltonian

 -H J J B J J, 1 2r0 f s s
2

* *( ) ( ) ( ) , where = ¶ ¶ =B J H J J Jf
2

r0 s
2

s* *
( ) ( )

= ¶W ¶ =J J Js s s *
( ) . We can also set Js = J* in the perturbation:

F  F = FJ J J J J, ,p f s f p f* *( ) ( ) ( ) and x x x =J J J J J, ,f s f f* *( ) ( ) ( ).
Then, the resonant Hamiltonian governing (Js, qs) dynamics
reduces to the standard pendulum form:

e e q x= - - F -H B J J A t
1

2
cos . 22s

2
p s* * * *

( ) ( ) ( ) ( )

There are two small parameters in the problem: the nonlinearity
of the perturbation, ep, and the adiabaticity parameter, ε. Both
are infinitesimal for the linear theory of quasi-steady perturba-
tions discussed in Section 2. Our goal is to take the next step of
dealing directly with the lowest-order nonlinear effects of a
small, but not infinitesimal, ep. In this section, we solve the
problem for the adiabatic ordering, ε=ep, the likely
consequences of relaxing which are discussed briefly in
Section 7. The adiabatic dynamics of H is controlled by the
time-varying A, which is conveniently kept track of by the
“slow” time variable τ=εt, so we write A(τ).

Figure 1 shows the phase flow of the “τ-frozen” H of
Equation (22) in (Js, qs) space for some A(τ)¹0.3 In this limit,
H is a constant of motion, so orbits follow its isocontours. The
phase ξ* can always be chosen (by shifting by π, if necessary)
such that Φ* has the same sign as B*. Then, the elliptic fixed
point is at (J*, ξ*), about which the entire Hamiltonian flow is
reflection-symmetric in (Js, qs) space. B* can be of either sign;
we chose B*<0 to represent the flow in Figure 1, because this
is the case for the Mestel disk in the epicyclic limit—see

Equation (44).4 The upper and lower separatrices, + and - ,
are the two solutions of t e t= = F H E J A; 0sx f p *( ) ( ) ,
given by

q x=  -J J
E

B
2 cos 2 . 23s

sx
s*

*
*

{( ) } ( )

 meet at the hyperbolic fixed point (J*, ξ*±π) and divide
the phase space into three different regions.

a. H�Esx�0 in regions I and III (blue regions in
Figure 1), which have circulating orbits whose qsadvance
monotonically.  can be thought of as the limiting
circulating orbits belonging to III and I, respectively.
Because H is an even function of (Js−J*), a given H
corresponds to two orbits, one in I and the other in III,
which is obtained by reflection about the elliptic fixed
point.

b. Esx<H�−Esx in region II (red region in Figure 1),
which can be thought of as a resonant island. This
consists of trapped orbits librating around the elliptic
fixed point, where H takes its maximum value of
−Esx�0.

c. In II, the libration frequency decreases as H decreases,
from B Esx* at the elliptic fixed point for H=−Esx, to
zero as H→Esx. As H decreases further, we enter III and
I where the circulation frequency is zero for  and
increases in magnitude as H decreases further.

When the variation of A(τ) with τ is taken into account, H is
no longer a conserved quantity. Because ε=ep, the motion is
adiabatic in regions that are not in the immediate vicinity of  .
Then, the phase area, qd s∮ (Js−J*) enclosed by isocontours of
H, is an adiabatic invariant. This is a function of (H, τ), which
is discontinuous across  , because the topology of orbits
changes from trapped to circulating or vice versa. The fate of
an orbit when it encounters a slowly moving separatrix is very
sensitive to qsat encounter, and the phase area is no longer a
conserved quantity. For instance, a circulating orbit could get
captured by the resonant island or become another circulating
orbit on the other side of the island; or a trapped orbit may
escape from the resonant island through either of the
separatrices. This process was described in probabilistic terms
by Goldreich & Peale (1966) for single orbits in the context of
solar system dynamics. ST96 applied this to stellar systems and
derived the equations governing the time evolution of the DF.
Below we apply ST96 to derive the final DF, in terms of the
above initial DF, after the passage of an adiabatic transient.

3.2. Posttransient DF

For a transient mode, we assume that A(τ) in Equation (22)
increases monotonically from zero at τ<, reaches a maximum
value of unity at τ0, and then decreases monotonically to zero
at τ>. At τ=τ<, when A is zero, the initial DF

= +F J J F J ℓJ mJ, , 24in f s 0 f s s( ) ( ) ( )

is given as a smooth function of (Jf , Js). Here we derive the
final DF after the passage of the transient.
As noted in the final paragraph of Section 3.1, adiabatic

dynamics conserves the phase area, q -d J Js s *∮ ( ), of orbits

Figure 1. Phase space of the τ-frozen Hamiltonian. Orbits follow the
isocontours of H of Equation (22), as indicated by the arrows. Trapped orbits
are in region II (red), and circulating orbits are in regions I and III (blue).

3 From Equation (17), we note that, as θR and θf increase by p2 , qf increases
by 2πwhereas qsincreases by 2mπ. So there are m islands of which only one is
shown in Figure 1.

4 Were B* positive, the arrows in Figure 1 would be reversed, but there would
be no change in the physics of the process discussed in this section.
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that are away from  . It is a function of (H, τ), with
discontinuities across  . ST96 uses the conservation and
nonconservation of the phase area in a basic manner. Because
H is an even function of (Js−J*), so is the phase area. This
means—see item(a) of Section 3.1—that a given value of the
phase area refers to two different orbits, one in I and its
reflection in III. But the initial DF of Equation (24) is, in
general, not reflection-symmetric about Js = J*; see
Equation (48) for the Mestel disk. So the phase area is not a
good variable to use to follow the evolution of the DF.
However, this is readily fixed by exploiting a certain latitude in
the choice of the relative signs in the three regions.
Accordingly, we define

p q

p q
=

-

- -

-

-
K

d J J

d J J

2 in region I,

2 in regions II and III,
25

1
s s

1
s s

*

*

⎪
⎪

⎧
⎨
⎩

∮
∮

( ) ( )

( ) ( )
( )

which is an adiabatic invariant for orbits away from  . The
integrals are taken over the τ-frozen orbits, - =J Js *( )

e t q x + F -H A B2 cosp s* * *[ ( ) ( )] , as applicable. Unlike
the phase area, K takes different values in I and III.
Because q = -B J Js s* *

˙ ( ), we have q -d J Js s *∮ ( ) =

- B dt J J 0s
2

* *∮ ( ) . So K�0 in I, and K�0 in II and
III: indeed, two orbits in I and III with the same (H, τ) have
equal and opposite values of K. So, K is a good variable to use
to describe the evolution of a general initial DF of
Equation (24).5

ST96 provides the equations governing the adiabatic time
evolution of the DF as a function of (Jf , K ). These are used in
Appendix A to derive Equation (27) for the final DF in seven
simple steps. Below we give a brief account of the physics of
this process.

The first step is to write the initial DF as a function of Jfand
K. At the initial time τ<, when A=0, the disk is axisymmetric
with DF given by Equation (24). Both  collapse to the line Js

= L*, so trapped orbits are absent. Because the measure of
regionII is zero, region I consists of orbits with Js�J* and
region III has orbits with Js�J*. Circulating orbits are
governed by = -H B J L1 2 s

2
* *( ) ( ) . Then, Js=constant

along orbits, so (Js−J*) can be pulled out of the integral in
Equation (25). Because q = -B J Js s* *

˙ ( ) is positive in I and
negative in III, qd s∮ is equal to 2πin I and −2πin III. Hence,
K=Js−J*, and the initial DF can be written as

+F J J K,in f *( ). Identical considerations apply at the final time
τ>, when A=0 again.

Between τ< and τ>, the transient is nonzero. As  expand
and contract symmetrically about the resonant line Js = J*(Jf),
the disk undergoes a sequence of adiabatic transformations
through nonaxisymmetric states. But the final DF is axisym-
metric, just like the initial DF. Orbits may be divided into two
classes: those that never cross  and those that experience
separatrix crossing. The dividing line between these two classes
is given by the maximum excursions of  away from J*,
which happens at τ0 when A=1. At this time, the K

corresponding to  are equal to ±ΔJ(Jf), where

p
e

D =
F

>J J
J

B J

4
0 26f

p f

f

*

*
( )

( )
( )

( )

is derived in Equation (107).
1. Orbits with - DJ J Js *∣ ∣ at the initial time never

encounter  . These remain circulating orbits for all time, and
K is an adiabatic invariant. So, the DF maintains a frozen form
when expressed as a function of (Jf , K ). Because K=Js−J*
at the initial and final times, the final DF is equal to the
initial DF.
2. Orbits with - < DJ J Js *∣ ∣ at the initial time experience

separatrix crossing twice, first in the expansion phase and
second in the contraction phase. Consider the circulating orbits
with K=K1/2 in region III and their reflected counterparts
with K=−K1/2 in region I, where K1 can take any value
between 0 and 2ΔJ.
2a. Let τ1 be the time between τ< and τ0 when the

expanding  cross ±K1/2, respectively. The circulating orbits
are now trapped by the expanding island and turned into
librating orbits with K=K1, just inside  . Because the
motions of the separatrices are reflection-symmetric, according
to ST96, the DF of the newly formed librating orbits contains
equal mixtures of the DFs of the circulating orbits at ±K1/2.
2b. Following this,  expand away from these librating

orbits, attaining maximum expansion at τ0, after which they
contract. Meanwhile, the DF of the librating orbits at K1

remains frozen until  encounter them during their contraction
phase at the unique time τ2 (which lies between τ0 and τ>).
2c. As  cross them, the librating orbits are liberated from

the shrinking island into circulating orbits with K=±K1/2 in
III and I, respectively. According to ST96, the DFs of these
circulating orbits are equal to the DF of the librating orbits at
K1 just prior to the encounter.
2d. Further contraction of  leaves the DF of ±K1/2

unchanged until the final time τ>. Hence, the final DF at (Jf , Js)
is a mixture containing equal proportions of the initial DF at
(Jf , Js) and the initial DF at (Jf , 2J*−Js).
Therefore, the final axisymmetric DF is

=

+ -

- < D
F J J

F J J F J J J

J J J
F J J

,

1

2
, , 2

for ,
, otherwise.

27fin f s

in f s in f s

s

in f s

*

*

⎧
⎨
⎪⎪

⎩
⎪⎪

( )
{ ( ) ( )}

∣ ∣
( )

( )

As shown in Figure 2, the final DF is equal to the initial DF,
except within a “scar” of half-width eD µJ Jf p( ) straddling
the resonant line. Ffin(Jf , Js) is discontinuous at the scar
boundaries, Js = J*(Jf)± ΔJ(Jf), because there is a sharp
difference, in the adiabatic limit, between the dynamical
histories of regions that have experienced separatrix crossing
and those that have not. Within the scar, Ffin is an even function
of (Js−J*).
We can simplify Equation (27) by using the fact that Fin(Jf ,

Js) is a smooth function of Js, and the scar occupies a narrow,
eO p( ), region of phase space. So, for - < DJ J Js *∣ ∣ , the DF

can be expanded in a Taylor series about Js = J*(Jf):

= + - + - +¼F J J F F J J F J J,
1

2
,

28

in f s in
0

in
1

s in
2

s
2

* *( ) ( ) ( )

( )

( ) ( ) ( )
5 A similar choice is implicit in the ranges given in Equation (6) of ST96, but
was not stated explicitly there.
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where = ¶ ¶F J F Jn n n
in f in s( ) ( )( ) evaluated at Js = J*(Jf) are O(1)

functions of Jf . Using this in Equation (27), we obtain

=
+ - + ¼

- < D
F J J

F F J J

J J J
F J J

,

1

2
for ,

, otherwise.

29fin f s

in
0

in
2

s
2

s

in f s

*

*

⎧
⎨
⎪⎪

⎩
⎪⎪

( )
( )

∣ ∣
( )

( )

( ) ( )

Within the scar, the final DF is a sum over the even terms of
Equation (28). Comparing Equation (28) with Equation (29),
we see that, well within the scarred region, Finis a linear
function of (Js−J*), whereas Ffin is a quadratic function of
(Js−J*). Close to the resonance, the final DF is a more
flattened function of Js (on any Jf=constant surface) than the
initial DF; see Figure 2. This flattening is analogous to the
resonant flattening of the velocity space DF in the Landau
damping of plasma waves.

3.3. DF of a Scar

Because the final DF differs from the initial DF only within a
narrow strip around the resonant line, it is useful to isolate these
changes by defining the DF of a scar as the difference between
the final and initial DFs:

D = -

=
- -

- < D

F J J F J J F J J

F J J J F J J

J J J

, , ,

1

2
, 2 ,

for ,
0 otherwise.

30

f s fin f s in f s

in f s in f s

s

*

*

⎧
⎨
⎪⎪

⎩
⎪⎪

( ) ( ) ( )

{ ( ) ( )}

∣ ∣
( )

This is indicated in Figure 2 by the shaded regions between the
final and initial DFs. Within the scar, ΔF is an odd function of

(Js−J*) and discontinuous at the scar boundaries. Because

ò D =dJ F J J, 0s f s( ) , the total mass in the scar is zero. At each
value of Jf , mass has been shifted across the resonance. In the
example shown in Figure 2, ΔF is positive for Js>J* and
negative for Js<J*.
The DF of a scar is the basic quantity required to calculate

changes in the physical properties of the disk. ΔF is used in
Section 3.3.1 to derive a formula for the angular momentum
absorbed from the transient mode by resonant stars. Below we
describe some general features of the geometry of a scarred region
in the (Jf , Js) plane and then simplify the expression for ΔF.
a. We can simplify Equation (30) by using the Taylor series

expansion of Equation (28). Then,

D =
- - - - - ¼

- < D
F J J

F J J F J J

J J J
,

1

6
for ,

0 otherwise.

31f s
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s in
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s
3

s

* *

*

⎧
⎨
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⎩
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( ) ( )

∣ ∣
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( ) ( )

Within the scar, ΔF is equal to (−1) times the sum of the odd
terms of Equation (28). The first term is eO p( ), whereas the
second term is eO p

3 2( ), which is much smaller. Hence ΔF has
eO p( ) variations across the scar of width eµ p . Therefore, a

good measure of the nonlinearity of the problem is given by the
ratio

p
e

e
D

=
F

~
*

*

* 

J

J B J
O

4
1. 32

p

2 p( ) ( )

From Equation (31), we can also infer that the direction of the
shift of mass across the resonance depends mainly on the sign
of F Jin

1
f( )( ) . Generally, for F 0in

1( ) , mass has been shifted from
(Js  J*) to (Js  J*).
b. The extent of the scar along Jfcan be determined as

follows: because JR�0, Equation (17) implies that Jf�−ℓJs.
Then, Jf �j0, where j0 is the value of Jfwhere the resonant
line Js = J*(Jf) intersects the lower boundary Jf=−ℓJs. Hence,
the minimum value of Jfsatisfies the equation

= -j ℓJ j . 330 0*( ) ( )

For the CR, j0=0 because ℓ=0. For the Lindblad
resonances, ℓ¹0, and this equation must be solved to get j0.
Because J* is usually positive for galactic disks, j0>0 for the
inner Lindblad resonances (which have ℓ<0) and j0<0 for
the outer Lindblad resonances (which have ℓ>0).
c. The half-width of the scar ΔJ(Jf) is determined by the

radial profile of the transient mode and can assume varied
forms depending on whether the perturbation is spiral or bar
like. The functional form must be either calculated from a
model of observational data or taken from numerical simula-
tions. One general property we can infer directly is that it must
vanish at the lower limit of Jf , i.e.,ΔJ(Jf)→0 as Jf→j0, at all
Lindblad resonances.6

Figure 2. Initial and final DFs near a scar. The DFs are plotted as functions of
Js (in units of J*) for some constant Jf . The dashed red curve is the initial DF,
Fin, which is a smooth function of Js. The solid blue curve shows the final DF,
Ffin of Equation (27). Ffin=Finoutside the scar of half-width ΔJ=0.02 J*
and is flattened within the scar. The DF of the scar, ΔF of Equation (30), is
indicated by the shaded regions, green for positive and red for negative. In this
Jf =constant slice, mass is transferred from left to right.

6 This can be understood as follows. At Jf =j0, the allowed values of Js are
one-sided about the resonant value, J*( j0)=−j0/ℓ>0; for the inner Lindblad
resonances, Js�J*( j0), and for the outer Lindblad resonances, Js�J*( j0).
But, for the pendulum Hamiltonian of Equation (22), the allowed deviations of
Js must necessarily be symmetric about J*( j0). This is possible only when both
 collapse to the line Js = J*( j0), when the resonant island has zero area.

Therefore, ΔJ( j0)=0 at all Lindblad resonances. We saw in item (b) above
that j0=0 for the CR, so symmetrical deviations of Js about J*( j0=0) are
indeed allowed, and ΔJ( j0=0) need not vanish at the CR.
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3.3.1. Angular Momentum Exchange

The transfer of mass across the resonant line leads to a
change in the angular momentum of stars in the scarred region.
The angular momentum absorbed by the resonant stars from
the transient mode is

ò ò

ò ò

p

p

= D

= D -

¥

¥

 m dJ dJ F J J mJ

m dJ dJ F J J J J

4 ,

4 , , 34

j

j

abs
2

f s f s s

2 2
f s f s s

0

0
*

( )

( )( ) ( )

where we have used ò D =dJ F J J, 0s f s( ) . Using
Equation (31), we obtain

ò
p

- D
¥

 m dJ F J J J
8

3
. 35

j
abs

2
2

f in
1

f f
3

0

( )[ ( )] ( )( )

This shows that abs is generically eO p
3 2( ), which is somewhat

larger than the eO p
2( ) change of the linear theory discussed in

Section 2.3. The sign of abs can be positive or negative. This
is computed in Section 4.3, where it will become clear how
differently physical quantities behave at the three kinds of
resonances, namely the inner and outer Lindblad resonances
and the CR.

4. Scars in a Cool Mestel Disk

Equations (30) and (31) are compact expressions for ΔF, the
DF of the axisymmetric scar left behind by the passage of a
transient, adiabatic, nonaxisymmetric mode. But these hide the
important dependence of the sense of mass shifts across
resonances—hence the signs of the resonant angular momen-
tum exchanges, abs of Equation (35)—on the integers (ℓ,
m>0) labeling different resonances. Only when this is
revealed would we have a physical picture of the interactions
of the transient nonaxisymmetric mode with stars at the inner/
outer Lindblad and CRs.

In this section, we make explicit the general results of
Section 3 and compute physical quantities for a cool Mestel
disk, a model that has been used extensively in analytical and
numerical work. Some properties of a cool Mestel disk are
summarized in Section 4.1; see Binney & Tremaine (2008) and
references therein for more details. The effect of the transient
mode on the disk is considered in Section 4.2, where we
compute resonance locations and scar widths. The principal
resonances, ILR (ℓ=−1), the CR (ℓ=0), and the OLR
(ℓ=+1), are well separated in phase space. In Section 4.3, we
compute abs and discuss its properties as a function of (ℓ, m),
paying attention to the principal resonances.

The rearrangement of mass in phase space is best appreciated
by plotting ΔF in the (JR, Lz) plane. This is because (Jf , Js) are
useful only in the neighborhood of resonances, whereas (JR, Lz)
are global coordinates; we always have JR�0, and Lz>0 for
a disk of prograde stars. In Section 4.4, we discuss the
properties of ΔF in the (JR, Lz) plane, and its direct
implications for the mass shifts at the principal resonances.
Descending from phase space to real space, ΔF induces an
axisymmetric change, ΔΣ(R), in the disk surface density. This
is computed in Section 4.4.2 and Appendix B.1, and found to
be localized around resonant radii. The gravitational perturba-
tion due to ΔΣ(R) is computed in Section 5 and used to
showed that resonant torques in the scarred Mestel disk, due to
a certain class of linear modes, are highly suppressed.

4.1. Unperturbed Disk

The exact DF for a Mestel disk, given in Toomre (1977) and
Binney & Tremaine (2008), consists of stars orbiting only in a
prograde sense, so Lz>0. The surface density, Σ0(R)∝1/R,
gives rise to an attractive, radial gravitational force ∝ 1/R, so
the circular speed of a star is independent of R (i.e., a flat
rotation curve). The disk is embedded in a static spherical halo
with a three-dimensional mass density profile ρhalo(r)∝1/r2,
which exerts a radial force ∝ 1/r. The total radial acceleration
felt by a star, due to the disk and halo, in the disk plane can be
written as a0(R)=-V0

2/R, where V0 is the constant circular
speed. We write h pS =R V GR20 0

2( ) , where 0<η�1 is the
fractional contribution of the disk to the total radial force. The
radial velocity dispersion σ0 is constant.
In a cool disk, σ0=V0, and most of the stars are on near-

circular orbits. The guiding-center radius of an orbit, Rg(Lz), is
determined by solving = -L R a Rz

2 3
0 ( ), which gives

Rg(Lz)=Lz/V0. The orbital and epicyclic frequencies are
given by

W = - =
=

L
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L
, 36az
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The typical epicyclic radius is s k b= = - -R R2epi 0 0
1 4 1 2

g,

where b s= V2 10 0
2( )  is a dimensionless measure of

disk coolness. In the epicyclic limit, Repi=Rg, the radial
action is given by

k
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The Schwarzschild DF for a cool Mestel disk is

b= - >F J L
C

L

J

L
L, exp , 0, 38R z

z

R

z
z0

⎧⎨⎩
⎫⎬⎭( ) ( )

where hb p=C V G40
2 is a constant. At any given Lz>0,

most stars have JR/Lz<β−1=1. Figure 3 shows some
isocontours of F0 in the (JR, Lz) plane and the locations of the
principal resonances.7

The epicyclic Hamiltonian governing the unperturbed stellar
orbits is the sum of the energies (per unit mass) in circular and
epicyclic motions:

k= + +E J L
V

V
L

V R
L J,

2
ln , 39R z

z
z R

0
2

0
2

0 0
0

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

where R0 is an arbitrary length scale. Then, the radial and
angular frequencies are

kW =
¶
¶

=
E

J
L , 40aR

R
z0( ) ( )

kW =
¶
¶

= W - Wf
E

L
L L

J

L
L , 40b

z
z z

R

z
z0 0 0( ) ( ) ( ) ( )

7 The loci of the resonances are straight lines of infinite slopes in the epicyclic
limit we use. The resonant curves actually have finite slopes, but this does not
affect our calculations because we calculate in the epicyclic limit, JR/Lz=1.
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where the b< -O J L 1R z
1( )  term in Ωf is usually dropped

in epicyclic theory.

4.1.1. Stability, Responsiveness, and Choice of Parameters

For the disk to be stable to axisymmetric perturbations, the
Toomre parameter Q=σ0κ0/3.36GΣ0>1. In a Mestel disk,

p h bQ  is a constant independent of R. Because η�1,
we must have b pQ . Because Q>1, this is always
satisfied if b p 102  . For fiducial values, V0=200 km s−1

and σ0 40 km s−1, we have β35, so the disks we consider
are indeed linearly stable to axisymmetric perturbations. Then
the relative magnitude of the term that was dropped in
Equation 40(b) is O(JR/Lz)<β−10.03. The ratio of the
typical epicyclic radius to the guiding-center radius is
Repi/Rg∼2−1/4β−1/20.14. Whereas the unperturbed disk
must necessarily be linearly stable, it must also be responsive to
nonaxisymmetric perturbations. This implies that Q should not
be too large; generally, Q2 for the disk to be responsive to
swing amplification of nonaxisymmetric perturbations (Binney
& Tremaine 2008, Section 6.3).

Aside from V0, which sets the velocity scale, the natural
parameters of the cool Mestel disk are the dimensionless
quantities Q and β. This is because they can be simply and
independently specified: 1<Q<2 is tightly constrained by
axisymmetric stability and responsiveness to nonaxisymmetric
perturbations; we need only require β�10, but we will use
β35, which is more relevant to galaxies like the Milky Way.
In the calculations below, we use η and β, because the formulae
appear simplest in these variables. When specific estimates are
needed, we set h p b Q and express quantities in terms of
Q and β.

4.2. Perturbation due to a Transient Mode

The disk is perturbed by an m-armed, small-amplitude,
adiabatic transient mode with pattern speed Wp, as discussed in
the previous section. The potential perturbation is given by

Equations (14) and (15), and reproduced below:

å

e e f c

e e q q

F = F - W +

= F + - W

+

f
=-¥

¥

A t R m t R

A t i ℓ m t

cos

exp

complex conjugate .

a a

ℓ
ℓm R

tr p p

p p

( ) ( ) { ( ) ( )}

( ) [ { [ ( )]}

]



The transient leaves in its wake scars at different (ℓ, m)
resonances spread across the disk. Here we compute resonance
locations and scar widths.

4.2.1. Resonance Locations and Unperturbed Frequencies

Using the epicyclic frequencies of Equations 40(a) and (b) in
Equation (11), we obtain the resonance condition

k + W - W =ℓ L m L 0. 41z z0 0 p( ) { ( ) } ( )

Solving this, the resonant line in the (JR, Lz) plane is
= = W +L L V ℓ m1 2z 0

2
p* ( )[ ( )], which is independent of

JR. Because the Mestel DF consists of stars with positive orbital
angular momenta, the resonance exists only when L*>0;
henceforth we assume that (ℓ, m>0) are such
that + >ℓ m1 2 0[ ( )] .8

We can introduce the fast and slow action-angle variables of
Equation (17) in the vicinity of the resonant lines, Lz=L*, in
the (JR, Lz) plane. In the (Jf , Js) plane, the equation for the
resonant line is Js = J*, where

= =
W

+J
L

m

V

m

ℓ

m
1 2 420

2

p
*

*
⎡
⎣⎢

⎤
⎦⎥ ( )

is independent of Jf . The principal resonances (ℓ=−1, 0, +1)
are indeed well separated in action space (see Figure 3), as was
assumed in the derivation of the pendulum Hamiltonian in
Section 3.1. The fast and slow frequencies can be calculated
from Equations 40(a) and (b). W = W = ~J V mJ O2 1Rf s 0

2
s( ) ( )

and

W = W + W - W W -fJ ℓ m m m
J

J
1 . 43Rs s p p

s

*
⎛
⎝⎜

⎞
⎠⎟( ) ( )

Both frequencies are independent of Jfin the epicyclic limit.
Ωs(Js) has a resonance-independent form when expressed in
terms of (Js/J*) and goes through zero at resonance, Js = J*.

4.2.2. Posttransient Scar Widths

The resonant dynamics during the passage of the transient is
described by the pendulum Hamiltonian of Equation (22),
which is reproduced below:

e e q x= - - F -H B J J A t
1

2
cos .s

2
p s* * * *

( ) ( ) ( )

Differentiating Equation (43), we find that

=
¶W
¶

= -
W

<
=

B
J

m

J
0 44

J J

s

s

p

s

*
**

( )

Figure 3. Cool Mestel DF in the (JR, Lz) plane. Isocontours of F0(JR, Lz) of
Equation (38) in units of CWp/V0

2, for β=35. JR and Lz are given in units of
LCR=V0

2/Wp. The three vertical blue lines, read left to right, mark the
locations of the ILR, CR, and OLR for an m=2 mode.

8 For an m=1 mode, this means that > -ℓ 1 2 , so there are no inner
(i.e., ℓ=−1, −2, K) Lindblad resonances; for an m=2 mode, > -ℓ 2 , so
the inner (i.e., ℓ=−1) Lindblad resonance exists but not the higher-order inner
(i.e., ℓ=−2, −3, K) Lindblad resonances; and so on for higher m modes.
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is independent of Jfin the epicyclic limit. When the potential
perturbation arises mainly from the self-gravity of the
perturbation to the disk surface density, then ep=ηed, where
edis the fractional surface density perturbation (which is more
convenient to specify). F ~ -V0

2
* is the (ℓ, m) Fourier

coefficient of the normalized potential perturbation. We write
it as pF = -J V D J4 ℓmf 0

2
f*( ) ( ) ( ), where Dℓm(Jf) is a dimen-

sionless, positive function.
As discussed in the previous section, the posttransient disk is

also axisymmetric. The final DF is equal to the initial DF
everywhere in phase space, except in narrow regions straddling
different (ℓ, m) resonant lines. The half-widths of the scarred
regions, given in Equation (26), are

p
e

he

D =
F

=
W

+

J J
J

B

V

m

ℓ

m
D J

4

1 2 . 45ℓm

f
p f

0
2

p
d f

*

*
⎡
⎣⎢

⎤
⎦⎥

( )
( )

( ) ( )

At a given value of Jfin the (Jf , Js) plane, the scar extends over
a narrow strip, - < DJ J J Js f*∣ ∣ ( ). The allowed values of
Jfcan be determined as follows. The minimum value of the fast
action, j0, satisfies Equation (33). Because the J* of
Equation (42) is independent of Jf , the solution to
Equation (33) is just j0=−ℓJ*. Hence, −ℓJ*�Jf .

From Equation (32), the nonlinearity of the scar at the (ℓ, m)
resonance is

heD
=

+
J

J

D J

ℓ m1 2
1. 46ℓmd f

*

( )
[ ( )]

( )

The Dℓm(Jf ) diminish rapidly as ℓ∣ ∣ increases, so the important
resonances have small ℓ∣ ∣. Our normalization is such that
D0m(Jf) is an O(1) function. But D−1m(Jf) and D1m(Jf) can be
expected to be smaller because spiral density waves have the
largest amplitudes near the CR and only extend about as far as
the ILR or OLR; see, e.g., Figures 5 and 6 of SC14. We make
an estimate of the scar widths at the principal resonances by
setting D0m∼1, ~ ~-

-D D 10m m1 1
1. For a Mestel disk with

{β=35, Q=1.5} and an m=2 transient with ed=10−2, we
have

D ~ ´ ´ ´- - -J J 3.5 10 , 6 10 , 1.4 10 472 2 2
*( ) { } ( )

at the ILR, CR, and OLR, respectively.

4.3. Angular Momentum Transfer

We use Equation (35) to estimate the angular momentum
absorbed by resonant stars from the transient. The initial DF
near the (ℓ, m) resonance is = +F J J F J ℓJ mJ, ,in f s 0 f s s( ) ( ),
where F0(JR, Lz) is the Mestel DF of Equation (38). This gives

b
= - +F J J

C

mJ m

J

J
ℓ, exp . 48in f s

s

f

s

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭( ) ( )

Differentiating Finwith respect to Js and setting Js = J*, we
have

b b
= - - +F J

C

mJ

J

mJ m

J

J
ℓ1 exp . 49in

1
f 2

f f

* * *

⎡
⎣⎢

⎤
⎦⎥

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭( ) ( )( )

Substituting Equations (49) and (45) into Equation (35),

ò

p he

b b

-
+

´ - - +
-

¥

 mCJ
ℓ m

dJ
J

mJ m

J

J
ℓ D J

8

3 1 2

1 exp .

50

ℓJ
ℓm

abs

2
d

3 2

f
f f 3 2

f

*

* **

⎧⎨⎩
⎫⎬⎭

⎡
⎣⎢

⎤
⎦⎥

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭

[ ( )]

( )

( )



The functions Dℓm(Jf) determine the precise shapes of the scar
boundaries in phase space. As discussed in item(c) following
Equation (30), they are completely determined by the radial
profile of the transient mode. Dℓm(Jf) can assume varied
functional forms, depending on whether the transient is of spiral
form or bar like. The functional forms must be either calculated
in a model of observational data or taken from simulations. This
is beyond the scope of this paper; we move forward by replacing
Dℓm(Jf) by an effective resonance-dependent constant, Dℓm¯ .
Then, the Jf integral can be evaluated, and we obtain

a~  , 51ℓmabs CR ( )

where h= WL V G2CR 0
5

p
2/ is the total orbital angular momen-

tum in stars of the unperturbed disk with = WL L Vz CR 0
2

p,
and

a
b

he= +
ℓ

m

ℓ

m
D

4

3
1 2 52ℓm ℓm

1 2

d
3 2

⎡
⎣⎢

⎤
⎦⎥ { ¯ } ( )

is a resonance-dependent angular momentum absorption
coefficient.
Because αℓm has the same sign as ℓ, we have < 0abs at all

the inner Lindblad resonances, = 0abs at the CR, and
> 0abs at all the outer Lindblad resonances. From footnote 2,

the change in the epicyclic energies (per unit mass) of resonant
stars (“heating”) is kD ℓ mepi abs*( ) . There is no heating
at the CR, whereasD > 0epi at all Lindblad resonances. Over
its passage, the transient nonaxisymmetric mode has transferred
angular momentum from the inner to the outer Lindblad
resonances while heating up stars, which is in the same sense as
the linear theory of Lynden-Bell & Kalnajs (1972) discussed in
Section 2.3. But e~ Oabs d

3 2( ), which is larger than the O(ε2d)
change expected from the linear theory.

4.4. Scars in Phase Space and Real Space

The angular momentum exchanges described above are a
result of mass transfer across resonant surfaces. As discussed in
Section 3.3, the basic quantity describing these changes in
phase space is the DF of a scar, ΔF(Jf , Js), given by
Equation (30) or (31). In Section 4.4.1, we derive an explicit
expression for ΔF at any (ℓ, m) resonance in a cool Mestel
disk. The global rearrangement of mass in phase space is best
appreciated when ΔF is plotted as a function of the global
coordinates (JR, Lz). This is done in Figure 4 by assuming that
the scar width is a constant, as was used to derive Equation (51)
forabs. In Section 4.4.2, we integrateΔF to obtainΔΣ(R), the
axisymmetric perturbation to the disk surface density.

4.4.1. Global Changes in the DF

The DF of the scar, DF J J,f s( ), at the (ℓ, m) resonance of a
cool Mestel disk can be obtained by using Equation (49) in
Equation (31). ΔF is zero for - DJ J J Js f*∣ ∣ ( ), where J* and
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ΔJ(Jf) are given in Equations (42) and (45). For
- < DJ J J Js f*∣ ∣ ( ), the DF of the scar is

b b
D - - + -F

C

mJ

J

mJ m

J

J
ℓ J J1 exp . 53

2
f f

s

* * *
*

⎡
⎣⎢

⎤
⎦⎥

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭( ) ( )

Within the scarred region, ΔF is an odd function of (Js−J*),
so the mass in every (ℓ, m) scar is zero. The equation of the
resonant line in the (JR, Lz) plane is Lz=L*, where

= =
W

+L mJ
V ℓ

m
1 2 . 540

2

p
* *

⎡
⎣⎢

⎤
⎦⎥ ( )

The half-width of the scar, ΔL=mΔJ(Jf), depends on (JR, Lz)
because Jf=JR−(ℓ/m)Lz:

he
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We write the DF of the scar, D = DF J J F J L, ,ℓm R zf s( ) ( ), to
emphasize its dependence on (ℓ, m). ΔFℓm vanishes for

- DL L Lz *∣ ∣ . For - < DL L Lz *∣ ∣ , it can be written as a
function of (JR, Lz) by substituting Jf=JR−(ℓ/m)Lz and Js

=Lz/m in Equation (53):

b
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We still need to specify a functional form for Dℓm(Jf). As
discussed in Section 4.3, this requires information on the radial
profile of the transient mode. We made the simplifying
assumption D J Dℓm ℓmf( ) ¯ and derived Equation (51) for
abs. The discussion following this equation provides some
assurance that the resulting properties of abs are consistent
with what may be expected of angular momentum exchanges
between a nonaxisymmetric mode and resonant stars. But it is a
poor representation of the shape of a scar. Henceforth, we use

heD =
W

+L
V ℓ

m
D1 2 , 57ℓm

0
2

p
d

⎡
⎣⎢

⎤
⎦⎥ ¯ ( )

which is useful in providing a global picture of resonant mass
shifts and in calculating the perturbation to the surface density.
In Figure 4, we plot ΔFℓm(JR, Lz) near the principal resonances
of an m=2 transient. The specific functional forms will be
used in the rest of this paper; for the present, we note some
overall qualitative features:
1. Mass has shifted to lower Lz at the ILR (left panel) and to

higher Lz at the OLR (right panel), corresponding to < 0abs
at the ILR and > 0abs at the OLR from Equation (51).
Because the Jfof every star is constant, the mass shift is due to
the changes in the actions of the resonant stars, with
δJR=−δLz/2 at the ILR and δJR=δLz/2 at the OLR; see
footnote 2.
2. ΔF−1,2 is larger than ΔF1,2, because the Mestel DF is

larger at the ILR than the OLR; see Figure 3. If this overall
difference in magnitudes is factored out, we see that the
isocontours of ΔF−1m and ΔF1,m are, very roughly, mirror
images of each other, when (JR, Lz) are expressed in units of the
corresponding L*(i.e., LILR and LOLR, respectively).
3. The scar at the CR (central panel) is very different. ΔF0m

is an odd function of (Lz − LCR) and has a smaller magnitude.

Figure 4. DFs of scars at the principal resonances in the (JR, Lz) plane, after the passage of an m=2 adiabatic transient mode. The left panel is for ILR near
= WL V0.29ILR 0

2
p( ), the central panel is for CR near = WL VCR 0

2
p, and the right panel is for OLR near = WL V1.7OLR 0

2
p( ). Isocontours of ΔFℓm(JR, Lz) of

Equation (56) are drawn in units of WC Vp 0
2, for β=35 and ΔL/L*={0.035, 0.063, 0.014} as in Equation (47). ΔFℓm=0 in the white regions outside the scar. JR

and Lz are naturally measured in units of L*, which is equal to L L L, ,ILR CR OLR{ } in the three panels.

11

The Astrophysical Journal, 884:3 (22pp), 2019 October 10 Sridhar



JR is conserved during the mass shifts, because it is equal to the
fast action at the CR. Moreover, δLz>0 for JR<
L*/β;0.03L*, and δLz<0 for JR>L*/β;0.03L*, with

= 0abs from Equation (51). The changes in Lz lead to the
radial mixing of stars (Sellwood & Binney 2002);ΔF0m gives a
phase-space picture of this process for a transient mode.

4.4.2. Surface Densities of Scars

The DF of each scar, ΔFℓm(JR, Lz), gives rise to an
axisymmetric perturbation in the disk surface density,
ΔΣℓm(R). This is obtained by integrating ΔFℓm over velocity
space:

òDS = DR
R

dL dp F J L
1

, , 58ℓm z R ℓm R z( ) ( ) ( )

where Equation (37) may be used express JR as a function of
(R, pR, Lz).

Because the DF of the scar is localized around Lz;L*, we
expect the surface density of the scar, ΔΣℓm(R), to be localized
around the resonant radius,

= =
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*
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The standard epicyclic approximation (Repi=R*), which was
sufficient to calculate Σ0(R) from F0(JR, Lz) for the unperturbed
disk, cannot be applied directly to evaluate the integral in
Equation (58). This is because ΔL, the half-width of the scar in
phase space, introduces a new small radial scale in the problem:
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Comparing ΔR with the typical epicyclic radius of orbits in the
scar,

b b
D

=
D

=
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R

R

R

J

J
2 2 , 61

epi

1 4 1 4

* *
( )

where (ΔJ/J*) is the nonlinearity of the scar given in
Equation (46). For a Mestel disk with {β=35, Q=1.5}
and an m=2 transient with ed=10−2, used in the estimates
of (ΔJ/J*) in Equation (47), we have

D ~R R 0.25, 0.42, 0.1 62epi { } ( )

at the ILR, CR, and OLR, respectively.
With this estimate in hand, we see that the appropriate

generalization of the epicyclic approximation is the ordering
ΔR=Repi=R*, even though it is not so good at the ILR and
CR. This is applied to the integral of Equation (58) in
Appendix B.1 to obtain

mDS = SR R S R , 63ℓm ℓm 0 *( ) ( ) ( ) ( )

where μℓm is a resonance-dependent dimensionless number,
Σ0(R*)=hV0

2/2πG R*is the surface density of the unper-
turbed Mestel disk at R*, S(R) is an O(1) dimensionless
function that contains all the R-dependence, and
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determines the magnitude and sense of mass shifts due to the
surface density perturbation. For the same parameter values

used for the estimates in Equation (61),

m ~ - ´ ´ ´- - -9 10 , 4 10 , 7 10 , 65ℓm
3 3 4{ } ( )

at the ILR, CR, and OLR, respectively; it is negative at the ILR
and positive at the CR and OLR. The shape function
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is a function of (R/R*) because Repi∝R*. The Gaussian factor
implies that the radial scale of the scar is the local epicyclic
radius.
The fractional surface density, ΔΣℓm(R)/Σ0(R*)=μℓm S(R),

is plotted at the principal resonances in Figure 5. This illustrates
the following general properties of the surface densities of
scars.
1. ΔΣℓm(R) vanishes at R* and shows opposite behavior

inside/outside R*; more precisely, RΔΣℓm(R) is an odd
function of (R−R*). The total mass in the scar,

òp DS
¥

dR R R2 ℓm0
( ), is given by the sum of two terms; one

of them is òµ -
-

¥
dx x xexp 2

R R
2

epi*
( )

( )
and the other is

òµ -
-

¥
dx x xexp 2

R R
3 2

epi*
( )

( )
. Because the integrands are

odd functions of x, both the integrals are vanishingly small in
the epicyclic limit, R*?Repi. So the total mass in every scar is
zero, as expected.
2. Because ΔR=Repi, the width of the scar in real space is

due to epicyclic broadening, with the information about the
“intrinsic” width, ΔR, now contained in the constant μℓm.
3. The sign of μℓm determines the sense of mass shifts across

R*. It is radially inward when b+ <ℓ m3 2 0( ) and radially
outward when b+ >ℓ m3 2 0( ) . Hence, mass shifts outward
at the CR and, for β/m>3/2 for m not too large, inward/
outward at the ILR/OLR. The mass shifts are largest at
corotation and cause radial mixing of stars (Sellwood &
Binney 2002), even though the angular momentum absorbed at
the CR is, to leading order, zero from Equation (51).

5. Suppressed Torques in the Final Disk

In Section 3, we considered the nonlinear transformation of a
smooth initial axisymmetric DF to a scarred final axisymmetric
DF, due to the passage of an adiabatic, nonaxisymmetric
transient mode with angular wavenumber m>0 and pattern
speed Wp. The final DF is equal to the initial DF everywhere in
phase space, except in the vicinity of resonances, as given in
Equation (27). Both are axisymmetric DFs, but the initial DF is
smooth, whereas the final DF is flattened near resonances; see
Figure 2. In this section, we demonstrate that this is responsible
for the very different responses of the two DFs to any new
linear perturbation with the same angular wavenumber m>0
and pattern speed Wp as the original transient mode.
In Section 5.1, we formulate the problem of comparing the

LBK torques, in the initial and final DFs, by casting the
formulae of Section 2.3 in terms of slow and fast action-angle
variables. This reveals a very interesting property that is
entirely a result of the phase-space structure of the final DF:
when the self-gravity due to the scars is ignored in the final
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axisymmetric disk, all of the LBK torques, ¢ ℓm, vanish. Hence,
the extra radial acceleration due to the gravity of the scars must
be considered. This causes small changes in the radial and
angular frequencies and lead to slight shifts of resonances,
which are calculated in Section 5.2 for the scarred Mestel disk
of Section 4. In Section 5.3, we derive a formula ¢ ℓm, which is
nonzero but still much smaller than  ℓm, the torque in the initial
disk. The consequences of suppressed resonant torques for
mode renewal are then addressed.

5.1. LBK Torques in the Initial and Final DFs—I

Here we discuss the LBK torques acting on the initial and
final DFs, due to a linear mode with potential perturbation

e g f zY = Y - W +t R m t Rexp cos . 67a a1 s p( ) ( ) { ( ) ( )} ( )

Because the mode is linear, es=1 is infinitesimal, and γ>0
for a perturbation that is applied gradually in time. Ψa(R) and
ζa(R) give the radial profile of the mode amplitude and phase
and can be of general form.

We consider first the initial disk with DF, F0(JR, Lz), and
surface density profile Σ0(R). The gravity of Σ0(R) (and any
external source such as a dark halo) gives rise to a radial
acceleration profile, a0(R), which determines the radial and
angular frequencies, ΩR(JR, Lz) and Ωf(JR, Lz), given in
Equation (7). The torque due to a marginally growing, i.e.,

γ→0+, Ψ1 at the (ℓ, m) resonance is given by Equation 13(b):

òp e

d

=-
¶
¶

+
¶
¶

´ W + W - W Y
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 m dJ dL ℓ
F

J
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F
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8
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ℓm R z
R z

R ℓm R z

3
s
2 0 0

p
2

⎛
⎝⎜

⎞
⎠⎟

( { })∣ ( )∣ ( )

where Y
~

ℓm(JR, Lz) are Fourier coefficients corresponding to Ψ1.
Because the contribution to the integral is only from the
resonant curve in the (JR, Lz) plane, we can rewrite the integral
in terms of the fast and slow action-angle variables, which are
useful coordinates in the vicinity of the resonant line. From
Equation (24), the initial DF is Fin(Jf , Js)=F0(Jf +ℓJs, m Js).
Defining Y = Y +

~
J J J ℓJ mJ, ,ℓm ℓmf s f s s( ) ( ) , we have

òp e d= -
¶
¶

W Y m dJ dJ
F

J
J J8 , . 69ℓm ℓm

3
s
2 2

f s
in

s
s f s

2( )∣ ( )∣ ( )

We write d dW = -J J B Js s f* *( ) ( ) ∣ ( )∣, where =J J Js f*( ) is the
equation of the resonant curve of Equation (20), and

= ¶W ¶ =B J J J Jf s s s* *
( ) ( ) as given for the pendulum Hamilto-

nian of Equation (22). Integrating over Js, we obtain a compact
expression for the resonant torque:

òp e= - Y
¥

 m dJ
F J

B J
J J J8 , , 70ℓm

j
ℓm

3
s
2 2

f
in

1
f

f
f f

2

0 *
*

( )
∣ ( )∣

∣ ( ( ))∣ ( )
( )



where = ¶ ¶ =F J F Jn n n
J Jin f in s s *

( ) ( )( ) . The evaluation of  ℓm has
been reduced to a one-dimensional integral over Jf , from its
minimum value of j0 in Equation (33) to ¥. This formula is
valid for a smooth initial DF of general form and not restricted
to the cool Mestel disk.
We want to derive a similar expression for the torque exerted

by Ψ1(R, f, t) on the scarred disk, described by the final
(posttransient) DF. The final DF is equal to the sum of the
initial DF and the DFs of scars at all the (ℓ, m) resonances. So,
the surface density profile of the final disk is

åS = S + DSR R R , 71
ℓ

ℓm0( ) ( ) ( ) ( )

where ΔΣℓm(R) is the surface density due to the scar at the (ℓ,
m) resonance. The radial acceleration profile in the final disk is

å= + Da R a R a R , 72
ℓ

ℓm0( ) ( ) ( ) ( )

where Δaℓm(R) is the radial acceleration due to the gravity of
ΔΣℓm(R). The magnitude of these changes is of order the
fractional perturbation, hD ~ DS Sa aℓm ℓm0 0.
For the cool Mestel disk, h mD ~a aℓm ℓm0 is very small;

see Equation (78). So, it is reasonable to begin with the lowest-
order estimate of resonant torques in the final disk, by setting
μℓm→0. This is equivalent to ignoring Δaℓm(R), so a(R) →
a0(R). Then, the action-angle variables for the final disk, (JR,
Lz), as well as ΩR(JR, Lz) and Ωf(JR, Lz), are the same as for the
initial disk. Hence, the resonant curves, determined by
W + W - W =fℓ m 0R p{ } , are also the same for the two disks.
As earlier, we can introduce (Jf , Js) variables near the (ℓ, m)

resonance. Then, the resonant torque due to Ψ1 in the final disk

Figure 5. Radial profiles of the fractional surface densities of scars at the
principal resonances. Blue/green/red curves correspond to ILR/CR/OLR,
respectively. Parameter values used are the same as in Figure 4, with μℓm taken
from Equation (65). Abscissa is R/R*, where R*is equal to RILR=0.29(V0/
Wp), RCR=V0/Wp, and ROLR=1.7(V0/Wp) for the three curves.
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where = ¶ ¶ =F J F J J Jfin
1

f fin s s *
( ) ( )( ) . We can use Equation (29) to

express F J J,fin f s( ) in terms of F J J,in f s( ). Then,
= - ==F J F J J J 0J Jfin

1
f in

2
f s s* *

( ) ( )( )∣( ) ( ) , which can also be seen
from Figure 2, where the final, flattened DF has zero slope at
resonance. Then, ¢ = 0ℓm , so the linear mode exerts no torque
on disk stars. This conclusion holds for a scarred, final DF of
general form and not restricted to the scarred Mestel disk.

The vanishing of all resonant torques is due to a conjunction
of two ingredients: (i) the limit μℓm→0, which ensured that
the resonant lines in the final disk coincide exactly with those
in the initial disk, and (ii) that the final DF has exactly zero
slope at the scar center. When μℓm¹0, the resonant lines in the
final disk will be slightly shifted from those in the initial disk,
where the slope of the final DF would be nonzero, resulting in
nonzero ¢ ℓm.

5.2. Resonance Shifts in the Scarred Mestel Disk

Because the μℓm→0 theory gives a vanishing result for
¢ ℓm, we are obliged to calculate to the next order and consider

a small but nonzero μℓm, such as those given in Equation (65).
We want to calculate the orbital and epicyclic frequencies,
Ω(Lz) and κ(Lz), inside the scars of the final disk, which are
defined in terms of a(R), the radial acceleration profile in the
scarred disk. We must first determine the new guiding-center
radius, ¢R Lzg ( ), by solving = -L R a Rz

2 3 ( ). Then,

W = -
= ¢

L
a R

R
, 74az

R R

2

g

( ) ( ) ( )

k = -
= ¢

L
R

d

dR
R a R

1
, 74bz

R R

2
3

3

g

( ) [ ( )] ( )

gives the frequencies in the scarred Mestel disk. From
Equation (72), a(R) is the sum of the known function
a0(R)=-V0

2/R and Δaℓm(R) at all resonances, which we
now calculate.

5.2.1. Δaℓm(R) within a Scar

From Figure 5, we see that ΔΣℓm(R) is concentrated within
an annulus of half-width Repi about the resonant radius, outside
which its amplitude falls rapidly. So, at distances much larger
than its width, -R R Repi*∣ ∣  , the scar appears as two
concentric circular wires near R*with equal and opposite
masses. Δaℓm(R) is due mainly to the (dipolar) far field and is
small because of close cancellations between the attraction and
repulsion of the two wires. Because the resonant radii R*are
well separated for different ℓ, the field of one scar on another
can be ignored in a first approximation. Hence, the dominant
contribution to Δaℓm(R) near a scar is due to its self-gravity.9

We have

òD ¢
DS ¢

¢ -

¥
a R G dR

R

R R
2 , 75ℓm

ℓm

0
( ) ( ) ( )

where ΔΣℓm(R) is given in Equation (63). This formula is
exactly equivalent to the familiar relationship between the
potential and surface density of tightly wound spiral patterns—
see Equations (6.29) and (6.30) of Binney & Tremaine (2008).
This integral can be expressed in terms of special functions,

but we do not need these for the purposes of calculating
frequency shifts close to resonance. From Equation (74), we
see that Ω(Lz) depends on Δaℓm, whereas κ(Lz) depends on
both Δaℓm and Da Rd dℓm( )/ . Hence, we require Δaℓm(R) only
to first order in (R−R*)/R*. We calculate this in
Appendix B.2 to obtain

dD -
-
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( )

is a dimensionless resonance-dependent number that is a
measure of the fractional difference in the radial acceleration
near R*, between the final and initial Mestel disks. For the same
parameter values used for the estimates of μℓm in Equation (65),
we have

d ~ - ´ ´ ´- - -2.6 10 , 7 10 , 2 10 78ℓm
3 4 4{ } ( )

at the ILR, CR, and OLR, respectively.

5.2.2. Frequency Profiles within a Scar

Having determined Δaℓm(R), we can calculate the guiding-
center radius, ¢Rg(Lz), by solving = - DL V R R a Rz ℓm

2
0

2 3( ) ( ).
We require this only within the scar in phase space, i.e., for

- < DL L Lz *∣ ∣ . Solving to first order in δℓm, we get
d¢ +R L L V1 2z ℓm zg 0( ) [ ( )]( ) . The fractional shift in the

guiding-center radius, d 2ℓm , is negative at the ILR and positive
at the CR and the OLR. The frequencies can now be calculated
by using = - + Da R V R a Rℓm0

2( ) ( ) ( ) in Equation (74):
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We can get the frequencies to first order in δℓm by setting
R=Lz/V0 in the second terms on the right side. Using
Equation (76) for Δaℓm(R), we obtain
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The slow frequency within the scar is
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9 A scar can be thought of as a ring-like “gravitational capacitor” in real
space, with its external field smaller than its internal field. Equation (75) relates
the internal field to the surface density profile of the scar.
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Similar to the slow frequency in the initial Mestel disk, Ωs(Js)
of Equation (43), W¢s(Js) is a function of (Js/J*). But its
functional form is resonance dependent, as can be seen in
Figure 6. Indeed, the difference between W¢s and Ωs is equal to
−mΩpδℓm/2, which is positive at the ILR and negative at the
CR and the OLR.

The equation of the (ℓ, m) resonant line in the final disk is
given by = ¢J Js *

, where W¢ ¢ =J 0s *
( ) . Solving this to first order

in δℓm, we obtain

d¢ -J J1 2 , 82ℓm* *[ ( )] ( )

which shows that resonant lines undergo shifts δJ*=−(δℓm/2)
J*. At the shifted resonant location, the quantity
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For the same values of parameters as earlier, the fractional
shifts at the principal resonances are

d ~ ´ - ´ -- - -J J 1.3 10 , 3.5 10 , 10 . 843 4 4
* *( ) { } ( )

This is positive at the ILR and negative at the CR and the OLR;
see Figure 6. The scar half-widths, ΔJ of Equation (47), are
two orders of magnitude larger than the shifts. Because
d DJ J*∣ ∣  , the shifted resonant lines lie well within the scars
where the final DF is flattened. Below we show that the
nonzero shifts of the ILR/CR/OLR give rise to nonzero
resonant torques in the final disk; as the shifts are small, the
torques are weaker than in the initial disk.

5.3. LBK Torques in the Initial and Final DFs—II

We are now in a position to compare resonant torques in the
initial and final disks, due to the linear mode Ψ1(R, f, t) of
Equation (67), taking into account the self-gravity of the scars.
In order to make quantitative estimates, we use the smooth and
scarred Mestel disks.

5.3.1. Torques in the Smooth Mestel Disk

From Equation (70), the resonant torque in the smooth
Mestel disk is
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where = WB m Jp* *∣ ∣ and Fin
(1)(Jf) is given in Equation (49). It

is convenient to use the integration variable
b= +x m J J ℓf *( )( ) and the Fourier coefficient y bx,ℓm ( )

= bY -J mx ℓ J,ℓm * *( ( ) ) . Then,

òp e
b

b y b=
W

¥


mC
dxW x x8 , , , 86ℓm ℓm ℓm

3
s
2

p 0

2( )∣ ( )∣ ( )

where
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is the torque weight function for the smooth Mestel disk,
plotted in the left panel of Figure 7, at the principal resonances.

5.3.2. Torques in the Scarred Mestel Disk

We will derive an analogous equation for the resonant
torques due to Ψ1(R, f, t) on the scarred Mestel disk, taking
into account the shifts in frequencies and resonance locations
due to the self-gravity of the scars, derived in Section 5.2. Let
¢ ¢J L,R z( ) be the action variables in the scarred disk. ¢ =L Lz z, but
¢ ¹J JR R of Equation (37) within the scar. Here, it is given by

k
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, 88R
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where κ(Lz) is given in Equation (80) and ¢R Lzg ( ) 
d+ R L1 2ℓm zg[ ( )] ( ). The slow and fast actions near the (ℓ, m)

resonance are ¢ = ¢ - ¢J J ℓ m LR zf ( ) and ¢ = ¢J L mzs . Because κ

and ¢Rg differ from κ0 and Rg by O(δℓm), Equation (88) gives
d¢ = +J J OR R ℓm( ). Then, d¢ = +J J O ℓmf f ( ), whereas ¢Js = Js

remains unchanged. The O(δℓm) shift in the fast action is
unimportant, and we can set ( ¢Jf , ¢Js )→(Jf , Js).
The resonant torque is
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where W¢s(Js) is the slow frequency of Equation (81), and Ffin(Jf ,
Js) is given in terms of the initial DF by Equation (29). We
want to calculate the integrand to leading order in δℓm:

d
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where we have used Equation (83) for ¢B
*. From Equations (47)

and (84), we know that the shifted position of the resonance lies
well inside the scar in phase space. Using this in Equation (29),

Figure 6. Slow frequencies near resonances in the initial and final Mestel disks,
measured in units of mWp. The dashed black line is Ωs of Equation (43). The
solid blue/green/red curves are for W¢s of Equation (81), at the ILR/CR/OLR,
respectively. Parameter values used are the same as in earlier figures, with δℓm
taken from Equation (78).
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From Equation (82), we have ¢J
*−J*;−(δℓm/2)J*. Also,
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δℓm, the integrand is given by
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Substituting Equation (90) into Equation (89), and integrat-
ing over Js, the torque in the scarred Mestel disk is
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This is similar in form to  ℓm of Equation (85), the torque in
the smooth Mestel disk. The difference is that the integral
has acquired a prefactor (−δℓm/2), and J*Fin

(2) has replaced
Fin
(1) in the integrand. Because d 1ℓm∣ ∣  , we can guess

that ¢ ℓm ℓm∣ ∣ ∣ ∣ . But this needs to be established by
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Introducing the integration variable x used in the passage from
Equation (85) to (86), we obtain
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is the torque weight function for the scarred Mestel disk,
plotted in the right panel of Figure 7, at the principal
resonances.

5.3.3. Torque Suppression Factor

We want to make quantitative estimates of how small ¢ ℓm is
compared to  ℓm; to this end, we define the torque suppression
factor due to a scar, = ¢  ℓm ℓm ℓm. Equation (92) for ¢ ℓm is
similar in form to Equation (86) for  ℓm. Both torques have the
same function, y bx,ℓm

2∣ ( )∣ , in the integrand, which depends on
the radial profile of the linear mode, Ψ1(R, f, t). As discussed
earlier, this must be taken from either models of observational
data or fits to numerical simulations. However, we do not need
to know the detailed functional form of y bx,ℓm

2∣ ( )∣ in order to

Figure 7. Torque weight functions for the smooth and scarred Mestel disks. Parameter values are the same as in earlier figures. The dashed lines of the left panel are
for the Wℓm(x, β) of Equation (87). The solid lines in the right panel are for the ¢Wℓm(x, β) of Equation (93). Blue/green/red curves correspond to the ILR/CR/OLR,
respectively.
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make a rough estimate of ℓm. This is done below by exploiting
some specific properties of the weight functions, Wℓm(x, β) of
Equation (87) and ¢Wℓm(x, β) of Equation (93), for the smooth
and scarred disks, respectively.

Both weight functions fall off exponentially with x, so
smaller values of x contribute most to the integrals. As can be
seen in Figure 7, Wℓm(x, β) and b¢W x,ℓm ( ) are negative at the
ILR and positive at the OLR, so the linear mode absorbs/emits
angular momentum at the ILR/OLR, as expected. Moreover,
both weight functions have qualitatively similar forms to
functions of x, but ¢Wℓm is smaller than Wℓm by a factor of about
50 for the ILR and 500 for the OLR. Both weight functions are
small at the CR, as expected, where ¢Wℓm is smaller than Wℓm by
a factor of about 1000. Therefore, for y bx,ℓm

2∣ ( )∣ of general
form, ¢ ℓm will be much smaller than  ℓm. Hence, a first
estimate of the ratio of the torques is given by the ratio of their
weight functions near x;0. Therefore, the torque suppression
factor is:

b
b

d b b
b

~
¢

=
+ +

+


W

W

ℓ m ℓ m

ℓ m

0,

0, 2

4 2

1
. 94ℓm

ℓm

ℓm

ℓm
2( )

( )
( ) ( )

( )
( )

Using the values for δℓm in Equation (78), and β=35 and
m=2 as earlier,

~ ´ ´ ´- - - 1.9 10 , 7 10 , 2 10 95ℓm
2 4 3{ } ( )

at the ILR, CR and OLR, respectively.

6. Renewal of Modes in the Scarred Disk

In Section 6.1, we first establish that the suppressed torques,
exerted on the final disk by linear modes of the form Ψ1(R, f, t)
of Equation (67), also imply that the heating of disk stars is
much smaller in the final disk than in the initial disk. In
contrast, for some other linear mode fY R t, ,1¯ ( ), with a
different angular wavenumber or pattern speed, resonant
torques and heating are generically comparable in the initial
and final disks. In Section 6.2 we consider the implications of
this for mode renewal in the final disk and compare with the
simulations of SC14.

6.1. Suppressed Epicyclic Heating due to Ψ1(R, f, t)

The epicyclic energies (per unit mass) of resonant stars change
at the rates k ℓ m ℓmepi *

˙ ( )/ and k¢ ¢ ¢ ℓ m ℓmepi *
˙ ( )/ in the

initial and final disks, respectively. Here, κ* and k¢
* are the

epicyclic frequencies at resonance. Both epi
˙ and ¢ epi

˙ are
positive at the ILR and OLR, and vanish at the CR. Because

¢ ℓm ℓm∣ ∣ ∣ ∣ , we expect that ¢ epi epi
˙ ˙ . This is indeed true:

as κ* and k¢* differ only by O(δℓm), to first order in δℓm, the ratio
of the heating rates is

¢ ¢
=







 1. 96ℓm

ℓm
ℓm

epi

epi

˙
˙ ( ) 

Therefore, linear modes of the form Ψ1(R, f, t) of Equation (67)
suffer much less collisionless dissipation in the final disk. This is
entirely due to the fact that resonance shifts are small, ∼ O(δℓm),
so that the resonant lines lie within the scars of the final disk,
where the final DF is flattened (as a function of Js).

We now compare the torques in the initial and final disks,
due to some other linear mode, fY R t, ,1¯ ( ):

e g f zY = Y - W +t R m t Rexp cos , 97a a1 s p¯ ( ) ¯ ( ) { ¯ ( ¯ ) ¯ ( )} ( )

where m̄ and Wp
¯ can be different from m and Wp. Below we

show that (i) the two sets of ILR/CR/OLR, for Y1¯ and Ψ1, are
well separated in the smooth and scarred Mestel disks. (ii)
Generically, the ILR/CR/OLR of Y1¯ pass through scar-free
regions of the final disk, so that resonant torques and heating
due to Y1¯ will be nearly the same in both disks.
1. We first consider resonant lines, ℓ m,( ¯ ) due to Y1¯ and (ℓ, m)

due to Ψ1 in the smooth Mestel disk. The latter is given as Js =
J* of Equation (42), where we will treat the parameters (m, Wp)
as given and fixed. Similarly, the ℓ m,( ¯ ) resonant line is =J Js *

¯ ,
where

=
W

+J
V

m

ℓ

m
1 2 . 980

2

p
*

⎡
⎣⎢

⎤
⎦⎥¯

¯ ¯ ¯
( )

In order for the resonant lines of Y1¯ and Ψ1 to be close to each
other, J J* *

¯  . For the CRs (i.e., ℓ=0), this implies that
W Wm mp p¯ ¯  , a condition which can evidently be satisfied by

many ¹m m¯ and W ¹ Wp p
¯ . In addition, if we require that the

ILR and OLR also must coincide, m m¯  . Because m̄ and m
are positive integers, this can be satisfied only if =m m¯ and
W Wp p
¯  . Hence, for ¹m m¯ or Wp

¯ significantly different from
Wp, the ℓ m,( ¯ ) and (ℓ, m) resonant lines will be well separated in
phase space.
2. Next, we consider resonant lines, ℓ m,( ¯ ) due to Y1¯ and (ℓ,

m) due to Ψ1 in the scarred Mestel disk. The latter is given as
d= ¢ = -J J J1 2ℓms * *[ ( )] , which we know lies well within

the scar. Outside the scarred regions, the orbital and epicyclic
frequencies are nearly the same in both disks (with small
differences due to the dipolar fields of distant scars, discussed
in Section 5.2.1). So, the ℓ m,( ¯ ) resonant line in the scarred disk
will nearly coincide with the ℓ m,( ¯ ) line in the smooth disk.
3. From items1 and 2 above, we conclude that the ILR/CR/

OLR due to Y1¯ lie close to each other in the smooth and scarred
disks, and that these must be well separated from the ILR/CR/
OLR, due to Ψ1. Hence, the ℓ m,( ¯ ) line in the final disk
generically traverses scar-free regions of phase space,10 where
the DF near it is given by the smooth Mestel DF of
Equation (38), the resonant torques exerted by a marginally
growing Y1¯ are nearly the same for the smooth and scarred
Mestel disks, and given by

òp e
b

b y b=
W

¥


mC
dxW x x8 , , , 99ℓm ℓm ℓm

3
s
2

p 0

2¯ ¯
¯ ( )∣ ¯ ( )∣ ( )¯ ¯ ¯

where bW x,ℓm ( )¯ is the same as in Equation (87) with m
replaced by m̄, and y bx,ℓm¯ ( )¯ is the Fourier coefficient
corresponding to Y1¯ . Equivalently, we can think of the torque
suppression factor, ~ 1ℓm

¯ ¯ . From Equation (96), the ratio of
the heating rates in the final and initial disks is~ ~S 1ℓm , so Y1¯

10 We note the possibility that a particular ℓ m,( ¯ ) resonant curve of Y1¯ might
pass through some scar, while other ¢ℓ m,( ¯ ) resonant curves of Y1¯ (with ℓ′¹ℓ)
lie in scar-free regions. We assume that this is not the case, but that does not
mean that such an “accidental overlap” of a single resonant line with a single
scar is uninteresting. Indeed, it might well prove important, but this problem is
beyond the scope of this paper.
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can be expected to cause comparable amounts of heating in
both disks.

6.2. Model of Mode Renewal

In numerical simulations of smooth stellar disks, sampling
shot noise generates a spectrum of spiral modes, some of which
grow to somewhat large amplitudes and decay through
absorption at the Lindblad resonances. Let us consider one of
these transient spiral modes, with angular wavenumber m and
pattern speed Wp. It will transform an initially smooth disk into
a scarred disk, whose main scars are at the ILR/CR/OLR.
Spiral modes generated by shot noise in the scarred disk will
behave differently. In Section 6.1, we showed that the resonant
torque and heating suppression factor  1ℓm  for linear
modes, Ψ1, with the the same (m, Wp) as the precursor transient
mode. But for a linear mode Y1¯ with different Wm, p( ¯ ¯ ), ~ 1ℓm

¯ ¯
for all ℓ, except in the case of accidental overlaps mentioned in
footnote10. Hence, among the spectrum of modes generated
by shot noise, modes like Ψ1—which suffer far less dissipation
than other modes like Y1¯ —will grow to larger amplitudes and
dominate the renewed spiral pattern. We may think of the scars
as filtering a noisy generator.

There appears to be some support for this model of mode
renewal in the simulations of SC14. Their Figure 5 plots the
power in modes m=2, 3, 4 as functions of radius and
frequency. The top panels correspond to transient modes that
scar the disk, and the bottom panels are for modes that are
regenerated in the scarred disk. The central panels are for the
m=3 mode, which show that the renewed mode has the same
frequency as its precursor. Moreover, their spatial forms,
displayed in panels (c) and (f) of Figure 6, are also strikingly
similar. But the interpretation is not so clean, because of the
presence of large-amplitude m=2, 4 modes; this is briefly
discussed in Section 7.

SC14ʼs (p. 1) physical picture of mode renewal is presented
in the “local” picture of wave-packet behavior near Lindblad
resonances:

“The scattering of stars as each wave decays takes place over
narrow ranges of angular momentum, causing abrupt changes
to the impedance of the disk to subsequent traveling waves.
Partial reflections of waves at these newly created features
allows new standing-wave instabilities to appear that saturate
and decay in their turn, scattering particles at new locations,
creating a recurring cycle.”

In the “global” LBK approach of our paper, the “narrow ranges
of angular momentum” would correspond to the narrow scars
surrounding resonant curves in phase space; the “abrupt changes
to the impedance of the disk to subsequent traveling waves” can
be thought of as the abrupt flattening of the final DF (as a function
of the slow action) across a scar; and the “partial reflection of
waves...” would be due to the suppressed dissipation within scars.
The renewed modes in our model would then correspond to the
cavity-type “mirror modes” described by SC14, which are
sustained by swing amplification at the CR and partial reflection
at the scar of a Lindblad resonance.

The partial reflection must, as SC14 realize, arise from a
modification near the Lindblad resonances of the WKB
dispersion relation for spiral density waves. We can think of
this in the following manner. The standard Lin–Shu–Kalnajs
dispersion relation for stellar disks (Lin & Shu 1966; Binney &
Tremaine 2008) is valid for the smooth initial DF. In order to
study the reflection of waves in the scarred disk, it is necessary

to derive a dispersion relation for spiral wave packets in the
final disk. Because our final DF is equal to the initial DF
outside scars and flattened within, we may expect the new
dispersion relation to be different from the old one only near
resonances. This can be worked out; indeed, it is necessary to
supplement our “global” LBK approach with a “local” picture
of wave-packet propagation between the corotation and
Lindblad resonances. Only then will we understand weak
torques, suppressed dissipation, and mode renewal in terms of
spiral density waves that are partially reflected at the Lindblad
resonances. What may we expect of such a modified LSK
dispersion, based on the results of Sections 5 and 6.1? In
Section 5.1, we showed that, when the self-gravity of the scars
is ignored (i.e., when δℓm=0), the resonant torques vanish,
and there is no dissipation. In the corresponding local picture,
the encounter of a wave packet with a resonant scar must be
lossless, so reflection should be perfect. When self-gravity is
included (i.e., when δℓm¹0), the resonant torques and
dissipation are suppressed but not zero, as we showed in
Section 6; this more generic case should correspond to the
partial reflection of a wave packet.
SC14 also observed that each cycle of mode renewal heats

up the disk until Q2, when it becomes less responsive. This
fact is also consistent with our picture of suppressed dissipation
of certain linear modes of the form Ψ1. This is because, in our
model of mode renewal as a noise-filtering process, the lower
dissipation rates of these modes enable them to grow to greater
amplitudes than other linear modes Y1¯ . But the decay of these,
by now, large-amplitude modes would be governed by
nonlinear effects; SC14ʼs simulations appear to suggest that
the nonlinear decay timescales may be comparable in the initial
and final disks, but this remains to be investigated. We suggest
that the filtering action of scars, operating on noise-generated
modes when their amplitudes are still small enough to be
“linear,” is the basic physical mechanism regulating mode
renewal.

7. Conclusions

We presented a model of the renewal of nonaxisymmetric
modes in stellar disks that have experienced the passage of a
small-amplitude, transient nonaxisymmetric mode with angular
wavenumber m and pattern speed Wp. The physical mechanism
relies on the nonlinear readjustment of the phase-space
distribution of stars in the vicinity of resonances, which can
be thought of as scars left behind by the transient mode. The
DF of the final disk is flattened (as a function of the slow
action) within narrow scars, resulting in the suppression of
resonant torques and epicyclic heating. In particular, linear
modes with the same (m, Wp) as the transient mode that
produced the final disk from the initial disk transport much less
angular momentum, and suffer much less dissipation, than
other linear modes with different angular wavenumbers or
pattern speeds. Therefore, the set of resonant scars acts as a
filter of the spectrum of linear modes generated by shot noise in
numerical simulations, promoting the preferential growth of
linear modes with the same (m, Wp). These then grow to large
amplitudes and dominate the appearance of the disk. Their
subsequent decay would depend on nonlinear processes that are
not considered in this paper, and decay timescales could be
comparable in the initial and final disks. As the disk eventually
heats up and becomes less responsive, some form of cooling is
necessary for recurrent spiral activity; accretion of cold gas and
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new star formation have been thought of as the main physical
agents, and we have little to add to this.

The renewed modes we identified correspond to the cavity-
type mirror modes of SC14. In the local picture of wave-packet
propagation, these can be thought of as spiral density waves
that are swing-amplified at corotation and partially reflected at a
Lindblad resonance in a scarred disk. These two physical
ingredients have been emphasized recently by Binney (2019):
“The swing amplifier and resonant absorption are the stand-out
pieces of physics in this beautiful mechanism by which
galaxies like ours evolve.” Whereas the swing amplifier is
reasonably well understood, resonant absorption in scars has
not received much attention. Our study of the physics of
resonant absorption from a global LBK point of view has
revealed that it can be highly suppressed within scars. We also
noted that this should imply partial reflection of wave packets
in the local description, whose quantitative description should
come from a modified LSK dispersion relation near scars,
giving rise to abrupt changes in the impedance of the disk
proposed by SC14.

The final DF for the scarred Mestel disk of Section 4.4.1
could be used for initial conditions in simulations to test our
model of mode renewal. This will help clarify matters in at least
two ways:

a. Our discussion of noise-generated modes in a scarred disk
was based on simulations. The physical kinetics of the
generation of phase structures, such as ridges in action space,
from the discreteness of unscarred disks has been explored by
Fouvry et al. (2015a, 2015b). To study the filtering action of
scars we have proposed, it is necessary to extend the theory to
scarred disks. The theory could then be compared with
controlled simulations of the scarred Mestel disk.

b. As support for our model, we cited the case of the
renewal, recurrence even, of an m=3 mode in the simulations
of SC14, while noting that the interpretation is confused by the
presence of m=2, 4 modes. SC14 state that these two modes
are not independent, so it is plausible that there is some overlap
in the sets of scars produced by the m=2, 3, 4 precursor
modes and nonlinear interactions among the modes. In
the SC14 simulations, what we have referred to as the scarred
disk was produced from the smooth disk through the action of a
superposition of transient spiral and bar-like modes, of which
m=2, 3, 4are the most prominent. Using the scarred Mestel
disk would provide a cleaner initial condition.

Sellwood & Carlberg (2019) present numerical experiments
on mode recurrence in disks seeded by a groove scored by
hand. The groove gives rise to an m=2 instability, which is
not a cavity-type mode (Sellwood & Lin 1989; Sellwood &
Kahn 1991). This “groove mode” is transient, and its decay
leaves behind scars at the principal resonances, as given in
their Figure 6. The sense of mass shifts across resonant lines
appears to be consistent with what is expected from our
Section 4.4.1; Figure 7 of their paper is essentially the DF of
the OLR scar (when due allowance is made for the finite
slopes of the resonant lines—see our footnote 7 of
Section 4.1). Two new m=2 modes are then generated by
the scars of the transient precursor groove mode. The weaker
of the two renewed modes has the same frequency as the
precursor (lines 4 and 6 of their Table 2) and is likely to be a
cavity-type mirror mode of the sort we discussed. But the
stronger mode has a lower frequency than the precursor
groove mode (lines 2, 3, and 5 of their Table 2), so it is not a

cavity mode of the type we considered. However, its CR
passes through the OLR scar of the precursor, implying that
its Lindblad resonances would pass through unscarred parts of
the disk. This may correspond to a case of “accidental
overlap,” mentioned in footnote10 of our Section 6.1 but not
discussed further.
We considered a precursor transient mode with fractional

surface density perturbation, ed=10−2, but this can be
increased to ed=10−1, which is closer to simulations, as
argued below.11 Because the filtering action of scars arises
from the flattening of the DF within scars, the resonance shifts,
δJ* of Equation (84), must be smaller in magnitude than ΔJ,
the half-width of the scar. For ed=10−2, we have
d D ~ -J J 10 2
*∣ ∣ (for an m=2 mode), so resonant lines in

the scarred disk pass through the very central regions of the
scar. Because d eµJ d

3 2
* and eD µJ d

1 2, we expect
d eD ~J J d*∣ ∣ . Hence, for ed=10−1, which is closer to
simulations, d D ~ ´ -J J few 10 1

*∣ ∣ . The resonant lines still
sample the flattened regions within scars, so Equation (94) for
ℓm, the torque (and dissipation) suppression factor, would be
valid. From Equation (95), ~ -- - 10 10ℓm

2 3 at the principal
resonances for ed=10−2. Because eµℓm d

3 2, for ed=10−1,
we have ~ - 0.03 0.3ℓm . Resonant torques and dissipation
are larger, but the filtering action of scars might still be
expected to work for this more realistic transient mode.
There is room for further improvement in the calculations

presented here, for closer comparisons with simulations or
confrontation with observational data. We assumed that the
growth and decay times of the transient mode were large
enough that we could calculate the form of a scar in the
adiabatic limit. But the transient modes in simulations are
faster, so we need to extend our calculations beyond the
adiabatic limit. The passage of a nonadiabatic transient will
result in greater mixing of the initially axisymmetric DF. This
will produce a scarred disk that is nonaxisymmetric, unlike the
adiabatically scarred disk we have considered in this paper. The
nonaxisymmetry is of interest, in itself, but it does not seem to
affect mode renewal, as has been tested in simulations by
starting reruns after randomizing in f at fixed R, pR, and pf
(see, e.g., Sellwood & Lin 1989; Sellwood 2012). So, we can
focus on the axisymmetric part of the scars and ask how
different these are from the adiabatic scars of this paper; the
more vigorous stirring would smoothen the boundaries, but the
interesting questions would relate to DF changes near scar
centers.
For explicit calculations involving scars in a cool Mestel

disk, we replaced the functions Dℓm(Jf), determining the scar
boundaries by resonance-dependent constants Dℓm¯ . This proved
a useful surrogate for the estimation of integrated quantities,
providing results that are physically in line with expectations:
the sense of mass shifts in phase space, the magnitudes and
signs of the angular momentum absorbed during scar
formation, and the shapes of ΔΣℓm(R), which all determine

11 The reason for not using the more realistic value, ed=10−1, straightaway is
the following. Unless the pendulum approximation of Equation (22) itself
needs improvement, we expect all the calculations up to and including
Section 4.4.1 would remain unchanged. But the formula for the surface density
of scars, ΔΣℓm(R) of Equation (63), would be modified. This was derived in
Appendix B.1 by assuming that ΔR/Repi=1. From Equation (61), this is a
∼ few×10−1 for ed=10−2. Because eD µR Repi d

1 2, this ratio is ∼1 for
ed=10−1. Then ΔΣℓm(R), the radial acceleration due to scars, Δaℓm(R), and
subsequent development, would require the use of special functions and
integrals over them. It was felt that presenting these as such would have
obscured the physics.
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the subsequent development. But it is a poor representation of
the scar boundaries and not suitable for comparison with
observational data. Indeed, the functions Dℓm(Jf) can be
calculated for any assumed radial profile for the transient. It
is necessary to do this, were one to search for transient spiral
activity in our Galaxy in GaiaDR2, such as Trick et al. (2019)
for axisymmetric features and Sellwood et al. (2017) and
Monari et al. (2019) for nonaxisymmetric features.

Coherent and symmetric spiral patterns are often seen in
barred galaxies, or galaxies that have been tidally perturbed by
interaction with a passing companion galaxy (Kormendy &
Norman 1979; Kendall et al. 2011). Because the spiral has a
lower pattern speed than the bar (Sellwood & Sparke 1988),
this is a more complicated—and very interesting—problem
than we considered, involving two pattern speeds. The tidal
perturbation poses a different sort of problem, because the tidal
potential does not have a well-defined pattern speed. But it
drives a large-scale spiral pattern in the galaxy with a strong
m=2 component that would eventually decay. If the tidally
driven spiral behaves somewhat like the transient modes of this
paper, relic scars left behind by its passage could enable the
renewal of patterns resembling “grand design” spirals. Further
extension of our model, guided by simulations, is required to
address these problems.

I thank Jerry Sellwood for very useful comments and
Karamveer Kaur for a careful reading of the manuscript and
contributing to Appendix B.2.

Appendix A
Final DF after the Passage of the Adiabatic Transient

We use ST96 to follow the time evolution of the initial DF,
Fin(Jf , Js) of Equation (24), due to an adiabatic transient mode
with time profile function A(τ) that is nonzero only between τ<
and τ>: A(τ) increases monotonically from zero at τ<, reaches a
maximum value of unity at τ0, and then decreases mono-
tonically to zero at τ>. The τ-evolving DF is followed as a
function of the fast action Jf and the “adiabatic invariant” K of
Equation (25), and the final DF of Equation (27) is derived.

ST96 is valid for Hamiltonians of more general form than H,
for which  can be asymmetric and expand or contract at
different rates. As given in Table 1 of ST96, there are altogether
six cases of separatrix crossings to consider. But, for the H of
Equation (22),  are always reflection-symmetric about Js =
J*, so the number of cases reduces to two; see items2 and 5
below.

It is convenient to use separate notations for trapped orbits
(in region II) and circulating orbits (in regions I and III). In II,
K=0 for the elliptic fixed point orbit. For the limiting librating
orbit, H→Esx just inside  , we can calculate = K using
Equation (23):
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K is discontinuous across  , because the pendulum phase
space is divided. We use K=Ka to describe the trapped orbits
of region II and K=Kb to describe the circulating orbits of
regions I and III. The time-evolving DF is written as Fa in II

and Fb in I and III:
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As A(τ) grows and decays, the range of values taken by the
variables, Ka and Kb, varies with τ. Within these shifting
boundaries, the functional forms of the DFs, Fa and Fb, also
change with τ. Below we follow the time evolution of Fa and
Fb through seven simple steps and determine the final DF.
1. Initial state:A=0 at τ<, so both  collapse to the line Js

= L* and = 0. There are no trapped orbits, so we can ignore
both Ka and Fa. For the circulating orbits, we know from
Section 3.2 that Kb=Js−J*. Then,

t = +<F K J F J J K, ; , . 102b b bf in f *( ) ( ) ( )
2. Expansion: As A(τ) increases, circulating orbits encoun-

tering the expanding  are trapped into librating orbits. Let us
pick a time τ1 between τ< and τ0.

a. Because orbits in regions I and III (defined at τ1) have not
experienced separatrix crossing, Kb is an adiabatic
invariant, so Fb retains the same form as
Equation (102):
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where t= K J;1 1 f( ).
b. All of the trapped orbits with 0�Ka<K1 have

experienced separatrix crossing. We need Fa for the
limiting librating orbit, Ka→K1, just inside  . Because
 expand symmetrically, according to casec of Table 1

in ST96, Fa contains equal proportions of Fb at
Kb=±K1/2:
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F K J F K J

F J J K F J J K

, ;
2, ; 2, ;

2
, 2 , 2

2
,

a a
b b

1 1 f
1 1 f 1 1 f

in f 1 in f 1* *

( )

( ) ( ) ( )

( ) ( )

where we have used Equation (103) to write the last
equality.

3. Further expansion: As A(τ) increases,  expand and trap
orbits with Ka>K1. Meanwhile, the value of the DF at K1

remains frozen:

t t= 

=
+ + -

F K J F K K J
F J J K F J J K

, ; , ;
, 2 , 2

2
.

105

a a a1 f 1 1 f

in f 1 in f 1* *

( ) ( )
( ) ( )

( )
4. Maximal expansion: Region II is maximal at τ0 when

A=1. The orbits in I and III (defined at τ0) do not ever
experience separatrix crossing. For these, Fb at the final time is
the same as that at the initial time. Using Equation (102), we

20

The Astrophysical Journal, 884:3 (22pp), 2019 October 10 Sridhar



have

t t= = +
D

> <


F K J F K J F J J K

K J J
, ; , ; ,
for , 106

b b b b b

b
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where

t
p

e
D = =

F
>J J J

B

1

2
;

4
0. 107f 0 f

p *

*
( ) ( ) ( )

Below we calculate Fb(Kb, τ>; Jf ) for < DK J Jb f∣ ∣ ( ).
5. Contraction: For τ>τ0, A(τ) is a decreasing function of

τ, and  contract. Trapped orbits encountering the contracting
 are liberated into circulating orbits. Let τ2 be the (unique)

time between τ0 and τ>, when A(τ2)=A(τ1). At this time,
0�Ka<K1, and K K 2b 1∣ ∣ , just like at τ1 in item2 above.
According to casef of Table 1 in ST96, Fb at Kb=±K1/2 (in
III and I, respectively) is equal to Fa(Ka→K1, τ2; Jf), which is
the DF of the limiting trapped orbit at this time. Because the
trapped orbit with Ka=K1 has not experienced separatrix
crossing during the interval τ1<τ<τ2, its DF has remained
frozen in the form given by Equation (105). Then,

t t = 

=
+ + -

108

F K J F K K J
F J J K F J J K

2, ; , ;
, 2 , 2

2
.

b a a1 2 f 1 1 f

in f 1 in f 1* *

( )

( ) ( )
( ) ( )

6. Further contraction: As A(τ) decreases further,  shrink
and the circulating orbits at Kb=±K1/2 (in III and I,
respectively) no longer experience any separatrix crossing.
Hence, for all τ>τ2, Fb(±K1/2, τ; Jf)=Fb(±K1/2, τ2; Jf)
remains frozen at the value given by Equation (108). We now
note that, in item2, we could have chosen τ1 to take any value
between τ< and τ0. So, K1 can take any value between 0 and
2(ΔJ). Hence,

t =
+ + -

< D

>
* *F K J

F J J K F J J K

K J J

, ;
, ,

2
for .

109b b
b b

b

f
in f in f

f

( ) ( ) ( )

∣ ∣ ( )
( )

7. Final state: Because A(τ>)=0, just like the initial state,
there are no trapped orbits. The circulating orbits are described
by the Fb of Equations (106) and (109). Similar to the initial
state, we have Kb=Js−J* in the final state. Substituting this
into Equations (106) and (109), we obtain Equation (27) for the
final DF.

Appendix B
Physical Quantities for a Scar in a Cool Mestel Disk

B.1. Surface Density

Here we derive Equation (63) for ΔΣℓm(R) by using
Equation (56) for ΔFℓm(JR, Lz) in Equation (58). This is done
in the small scar-width limit ΔR=Repi=R*, which is
equivalent to ΔL=V0Repi=L*. Then, ΔFℓm(JR, Lz)=0 for

- DL L Lz *∣ ∣ , and for - < DL L Lz *∣ ∣ ,

b b
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In the small scar-width limit,

k
k

+ -J
p

R R L
2 2

, 111R
R

z

2

g
2

*

* [ ( )] ( )

where k = V L2 0
2

* * is the epicyclic frequency at resonance.
We can use this in Equation (110) to express ΔFℓm as a
function of (R, pR, Lz), which is the form required to calculate

ò òDS = D
-D

+D

-¥

¥
R

R
dL dp F

1
. 112ℓm
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The integral over pR involves Gaussian-type integrals and is
readily calculated. Then,

ò
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This integral can be evaluated in terms of special functions, but
we do not need them in the small scar-width limit. Because the
integrand is a smooth function, it can be expanded in a Taylor
series about Lz=L*, where it can be seen that the lowest-order
contribution comes from the (Lz−L*)

2 term. Integrating this
gives
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The surface density of a scar is eµ D µL 3
d
3 2( ) / . ΔΣℓm(R) is

concentrated about R*and becomes small for -R R*∣ ∣ 
Repi, because of the Gaussian factor. Using the definitions of
the constants C, σ0, b- -R R2epi

1 4 1 2
* , and Equation (57)

for ΔL, we obtain ΔΣℓm(R) as given in Equation (63).

B.2. Radial Acceleration

Here we derive Equation (76) by substituting theΔΣℓm(R) of
Equation (63) into Equation (75):
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Changing to a dimensionless integration variable, =x
¢ -R R*( )/Repi and using x0=(R−R*)/Repi,
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Because the Gaussian decays rapidly for >x 1∣ ∣ and
R*/Repi?1, the lower limits of integration can be taken as
-¥ and + --R R x R R x1 1epi
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epi* *[ ( ) ] [ ( ) ] . Then,
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can be written in terms of special functions. But we require
 x1 0( ) and  x2 0( ) only to first order in x0:
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Substituting this in the above formula for Δaℓm(R) gives
Equation (76).
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