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Synopsis

The epoch of cosmic dawn and reionization (CD/EoR) is one of the most important time periods of the
history of the universe when the first sources of radiation like stars and galaxies were formed. These
sources emitted a wide spectrum of radiation and changed the properties of their surrounding medium.
This epoch is not completely understood theoretically and is poorly constrained with observations. 21 cm
radiation emitted due to the hyperfine splitting of neutral hydrogen (HI) is one of the most important probes
to study the state and dynamics of the neutral medium during this epoch. In this thesis, we present an
analytical formalism to study the fluctuating component of the HI signal from the epoch of cosmic dawn
and reionization.

We use excursion set formalism to calculate the size distribution of randomly distributed self-ionized regi-
ons. These ionization bubbles are surrounded by isotropically heated neutral regions. The spin temperature
(TS) of HI in these regions might be fully or partially coupled to the kinetic temperature of the medium. We
model the ionization, X-ray heating, and Lyman-α coupling using five parameters: efficiency of ionization
(ζ ), number of X-ray photons emitted per stellar baryon (Nheat), the spectral index of X-ray photons (α),
minimum frequency of X-ray photons (νmin), and the ratio of source luminosity of Lyman-α to ionizing
photon ( fL).

We develop a formalism to compute the two-point correlation function for this topology, taking into ac-
count the autocorrelation of the ionization field and spin temperature field, and cross-correlation between
ionization and spin temperature. Using geometric and probabilistic arguments, we compute the global HI

signal, its autocorrelation and power spectrum in the redshift range 10≤ z≤ 30 for the ΛCDM model. We
check the validity of this formalism for various limits and simplified cases and develop a few toy models to
explore the results more intuitively.

Our results agree reasonably well with existing results from N-body simulations in spite of following an en-
tirely different approach and requiring orders of magnitude less computational power and time. We further
apply our formalism to study the fluctuating component corresponding to the recent EDGES observation
that shows an unexpectedly deep absorption trough in global HI signal in the redshift range 15 < z < 19.
We show that, generically, this observation predicts larger signal in this redshift range, but smaller signal at
higher redshifts. We also explore the possibility of negative real-space auto-correlation of spin temperature
in the early universe.
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Synopsis

Chapter 1: Introduction

In the first chapter, we explore the current observational bounds on the early history of the universe and
their theoretical implications. We briefly present current theoretical understanding of how the large scale
structures collapsed and first sources of radiation were formed within them. We list the expected properties
of these first sources and their effect on their surrounding medium. We summarise the excursion set for-
malism used in our work to find the size distribution of isolated ionization bubbles at any redshift. We also
discuss the hyperfine line splitting of neutral hydrogen and the mechanisms that affect the population of
these two states, and hence the spin temperature of HI; these mechanisms are background radiation, collisi-
ons, and Lyman-α photons. We conclude with listing ongoing effort to theoretically understand the epoch
of CD/EoR through simulations and analytical methods.

Chapter 2: Temperature Evolution of the IGM

In this chapter, we compute X-ray heating of the intergalactic medium (IGM) surrounding the ionization
bubbles due to photoionization of neutral atoms. We calculate the temperature evolution at a point as a
function of its distance from the centre of the X-ray source. We also compute the background temperature
evolution due to the combined effect of all the faraway sources. Since the X-rays have a large mean free
path, the temperature profiles are large; therefore, we explore various possible methods to truncate these
profiles while allowing them to overlap with one another and ensuring that they merge smoothly with the
background values far away from any source. We also study a fiducial model where the baryonic gas might
be coupled to cold dark matter through velocity-dependent interaction.

Chapter 3: Spin Temperature Coupling

In this chapter, we present the physics of HI spin temperature TS coupling with the matter kinetic tempe-
rature TK through Lyman-α photons and collisions. We calculate the number density of Lyman-α photons
as a function of distance from a source, taking into account the effect of higher-order Lyman-n transitions.
We also compute the background value of Lyman-α number density far away from any sources. We also
calculate the Lyman-α mean free path in the neutral medium and the average number of scattering expe-
rience by a typical Lyman-α photon before it is redshifted out of the resonance width. Combined with the
kinetic temperature profiles calculated in the previous section, we can use the value of coupling coefficients
to calculate the final spin temperature profiles around ionization bubbles.

Chapter 4: Correlations

We present our formalism to calculate the two-point correlation function of HI 21 cm signal in this chapter.
We use geometric arguments to find pairs of points at any separation r and find the probability of such a
pair occurring given our geometry of self-ionized bubbles and large overlapping spin temperature profiles
around them. We verify that our formalism gives expected results in various limits and simplifications.
We also study two simple models which help us identify the effect of ionization, heating and coupling on
correlation at various scales. We extend our formalism to a simple scenario where ionization bubble centres
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Synopsis

are correlated and show that such correlations introduce new scales in the results. We calculate the power
spectrum by taking a Fourier transform of our correlation function.

Chapter 5: Results

We present results of our formalism in this chapter and study their dependence on five modelling parame-
ters. We show the evolution of global HI 21 cm brightness temperature signal as a function of redshift. We
also show the evolution of the fluctuating component (correlation functions and power spectrum) at various
scales and for various combination of modelling parameters. We compare our results with results of N-body
simulations and find that our results match the simulations in general, but differ in details. We also calcu-
late the spin temperature profiles for a fiducial model of dark matter-baryon coupling, which matches the
unexpectedly deep absorption trough observed by the EDGES group. We compute the expected correlation
function and power spectrum for such a model and show that if the global signal detected by EDGES is
confirmed, then the value of fluctuating component of 21 cm signal during those redshifts would also be
enhanced.

Chapter 6: Conclusion

We summarise the current and upcoming instrumental projects to detect the global 21 cm signal and its
fluctuating component. We list the upper limits placed by these instruments as well as the possible impli-
cations of the detection of global absorption trough by EDGES. We conclude with a brief overview of our
work and possible future extensions.
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Chapter 1

Introduction

“There is a theory which states that if ever anyone discovers exactly what

the Universe is for and why it is here, it will instantly disappear and be

replaced by something even more bizarre and inexplicable.

There is another theory which states that this has already happened.”

— Douglas Adams, The Restaurant at the End of the Universe

1.1 The Universe

According to the standard model of cosmology, the universe as we know it began as a hot dense state in an
event called the ‘big bang’. The universe expanded with time, cooled and the energy was converted into
radiation and matter. This matter collapsed under self-gravity and formed stars, galaxies and clusters of
galaxies. Within the core of these stars and their energetic remnants, heavy elements were created which
formed the planets like earth. So, about 13.7 billion years after the formation of our universe, we look up
into the sky and wonder how was it created, what is it made up of, how does it evolve and how will it end.

There are many parts of this narrative which are not well understood. On the one hand, we have a fair
understanding of our Solar system, Milky Way galaxy and the local universe at large. For billions and
billions of lightyears in any direction, we observe a universe that is made up of galaxies, which are made
up of stars, gas and dust. There are about 1011 galaxies in the observable universe and about 1011 stars per
galaxy. These galaxies are further part of even larger structures. When we do fail to detect these structures,
it is largely due to the limitations of our current instruments and not because there is nothing to detect.

On the other hand, we have observed the cosmic microwave background (CMB), the fading afterglow of
the young universe (Penzias and Wilson [1965], Dicke et al. [1965]). Unlike our present universe, it is
remarkably uniform with the temperature of 2.7 K. The fluctuations of CMB temperature are about 1 part
in 105 (Mather et al. [1990], Hinshaw et al. [2013], Planck Collaboration et al. [2018]). This is the universe
where most of the matter is in the form of hot, uniform, partly ionized gas.

However, between these two extremes, we are left to fill up a lot of blanks. How and when did the gas start
condensing to form sources of radiation such as we see today? Where did these sources form? What were
the properties of these first sources? The physics of first stars and galaxies is only partially understood theo-
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retically and poorly constrained with observations. It is one of the outstanding goals of modern cosmology
to try to answer these questions. This thesis is a small contribution towards understanding this period in the
history of the universe.

1.1.1 The Early Universe

Inflation: Soon after the universe came into existence, for a brief period, it expanded exponentially. This
time period is called ‘inflation’. The quantum fluctuations during this exponential phase caused density
fluctuations in matter and radiation at the end of the inflation. This is the initial condition for density
perturbations that grew via gravitational collapse into the universe that we see today.

Baryogenesis and Big bang Nucleosynthesis (BBNS): All observational evidences suggest that our uni-
verse contains an excess of baryons over anti-baryons. Starting from an initial condition which is symmetric
with respect to the number of baryons/anti-baryons, it is possible to achieve an excess of baryons through
a process known as baryogenesis (Sakharov [1967]) during and after the inflationary era. This process was
responsible for creating the photon to baryon ratio, ηb = 109; this ratio is invariant under the expansion of
the universe.

The next important phase of the early universe is the formation of heavy nuclei. At temperature T � 1010 K,
there was an equilibrium between proton and neutron number density with,

p++ e−↔ n0 +νe.

As the rate of weak interactions fell below the expansion rate, this process fell out of equilibrium. However,
the free neutrons continued to decay until the temperature dropped further to allow them to form deuteron
and helium nuclei. The proton to neutron ratio at this epoch (np/nn ∼ 1/7) determined the abundance
of helium nucleus (∼ 25% by mass). The nucleosynthesis also created trace amounts of deuteron (2H),
Helium-3 (3He), Lithium-7 (7Li) and Beryllium (7Be) (Wagoner [1973], Boesgaard and Steigman [1985],
Kolb and Turner [1990]).

During this phase, the universe has the following components: photons, non-relativistic matter (dark matter,
baryonic matter (ionized and strongly coupled to photons)), neutrinos (decoupled for other matter and free
streaming).

The small density fluctuations in matter and radiation generated during inflation grew via self-gravitational
collapse. As the universe is dominated by the energy density of radiation (photons and neutrinos), these
fluctuations can only grow logarithmically on scales smaller than the horizon, H−1. In addition, the baryonic
matter plasma is strongly coupled to photons, whose main effect is: (a) The baryonic matter remains ionized,
(b) Through repeated scattering between photons and baryons, density fluctuations in the baryonic matter
are washed out1 (Silk [1968]), (c) The baryon temperature TK and the radiation temperature Tγ are the same
and both fall as 1/(1+ z) owing to expansion (Appendix C).

1This is one of the reasons why we need dark matter that does not interact with radiation. The structures we see today could
not have been formed if the only matter component in the universe was baryonic, because in that case radiation would have wiped
out all fluctuations on small scales (Blumenthal et al. [1984]).
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1.1.2 Matter Radiation Equality, Recombination and Decoupling

Matter-Radiation Equality: When the universe made a transition from the radiation-dominated to the
matter-dominated era at zeq ' 3380 (Appendix C), the expansion rate slowed enough to allow the dark
matter to start collapsing. However, the potential wells thus created were incapable of trapping the ionized
baryonic matter since it was still strongly coupled to the radiation field.

Hydrogen Recombination: Around zrec ∼ 1100, the number of hydrogen-ionizing photons in the back-
ground radiation fell sufficiently to allow hydrogen atoms to be formed (Epoch of Recombination).

However, if a proton and an electron directly combined to form a hydrogen atom, the emitted photon of
energy ' 13.6 eV would be immediately absorbed by another hydrogen atom and the net recombination
would be zero. Therefore, for the recombination process to be successful, the electron and proton should
combine to an excited state. The majority of such recombinations took place through the first excited state
of the hydrogen atom. From this state, it can de-excite to the ground state by one of the two processes: (1)
2s→ 1s: This is a forbidden transition, and hence 2s is a metastable state. The hydrogen atom can still make
this transition with the rate Λ = 8.23 s−1 through the emission of two photons. (2) 2p→ 1s: The Lyman-α
photon emitted in this process is also immediately absorbed by another neutral hydrogen. However, after
multiple scattering, this photon will redshift out of the resonance line, leaving one successfully recombined
atom1. Both these processes made a similar contribution to the process of recombination (Peebles [1993]).

Helium Recombination: Helium ionization energy is higher than the hydrogen (24.6 eV and 54.4 eV
for neutral and singly-ionized helium). Therefore, the number of photons with energy higher than this in
the background radiation fell below the number of helium atoms at z ∼ 6000 and z ∼ 2000 (Switzer and
Hirata [2008]) respectively for first and second recombination of helium and these events took place before
hydrogen recombination.

Cosmic Microwave Background (CMB) Radiation: In a neutral universe, the background radiation
was finally able to free stream. The last scattering of this background radiation occurred during the end of
the epoch of recombination, which is called the ‘the last scattering’ surface. The small fluctuations in the
density and hence the temperature of the baryonic matter at this epoch were imprinted into CMB radiation
as temperature and polarization inhomogeneities. These inhomogeneities are seen as anisotropy of the order
of 10−5 in the CMB maps across the sky (Figure 1.1) (Planck Collaboration et al. [2018]). CMB is currently
the strongest probe to study the early universe and the deciding factor in support of the hot big bang model
(Dodelson [2003]). Since this epoch, there are very few known mechanisms which substantially alter the
properties of the CMB. The free streaming radiation cools as 1/(1+ z) and its temperature at any redshift
is given by TCMB(z) = T0(1+ z), where T0 = 2.73 is its observed temperature at the present.

Residual Ionization: Towards the end of the epoch of recombination, rapid reduction of the number
density of electrons and protons caused the rate of recombination to fall. Hence a small fraction of free
electrons and protons was left in the universe. This ‘residual’ electron fraction remains fairly constant for a

1The photons which have energy slightly smaller than Lyman-α due to redshifting are not absorbed by anything at that epoch.
Whereas the redshifted recombination photon would excite the neutral atom to a high energy state, from where it can get easily
ionized through collisions. Thus, redshifting does not destroy the recombination photons, but it destroys the Lyman-α photons.
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Figure 1.1: Cosmic microwave background anisotropies (Courtesy: ESA/Planck
Collaboration).

long time as it becomes increasingly difficult for free electrons and protons to encounter each other in the
rapidly expanding universe1 (Figure 1.2). In our calculations we take the fraction of residual electron to be
xe ' 2×10−4, and assume that it is independent of redshift.

At the end of the epoch of recombination, the universe has following components: Radiation (free stre-
aming), Matter (dominant) (dark matter (forming structures), baryonic matter (almost neutral, thermally
coupled to radiation)), neutrinos (free streaming).

Thermal Decoupling: After recombination, the mostly free streaming CMB photons were still being
scattered from the residual electron fraction. The electron interaction time scale with both the ionized gas
and neutral medium is smaller than the time scale of electron-photon interaction; therefore, these electrons
exchanged energy with the CMB through inverse Compton scattering and shared it with the baryonic gas,
which kept all the components of the gas at the same temperature. The evolution of matter temperature TK

is given by,

dTK

dt
=−2ȧ

a
TK +

xe

1+ xe

8σT

3
arT 4

CMB
mec

(TCMB−TK). (1.1)

1 We can compare the recombination rate and expansion rate in the present universe (z= 0). For T = 104 K within the ionized
regions (xe = 1), the case A recombination coefficient is, αA = 4.18× 10−13cm3s−1; and the recombination rate is R = αAne,
where ne = xenb,0 is electron number density. The ratio of recombination rate to Hubble expansion rate is,

R
H0

= 4.18×10−13 nb,0

H0
' 0.046.

This ratio suggests that even without sources of ionizing radiation, the gas will not recombine since the rate of current expansion
is higher than rate of recombination.
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Figure 1.2: Evolution of ne/nH with redshift
calculated using CMBFAST (Seljak and Zaldarriaga
[1996]). The two bumps at high redshifts indicate
the first and second ionization of helium.

Figure 1.3: Evolution of CMB and matter (gas)
temperature with redshift, as function of residual
electron fraction xres. Matter decouples from CMB
earlier for smaller value of xres.

Here, the first term is the adiabatic cooling of matter due to the expansion of the universe, and the se-
cond term is the heating/cooling due to thermal coupling with CMB (Peebles [1993]). σT is the Thomson
scattering cross-section of electrons and photons, ar is radiation constant, and me is electron mass. The
xe/(1+ xe) factor is the ratio of number density electrons to all the particles which share its energy (e.g.
electrons, ions, atoms)1. This equation states that even though baryons are cooling faster than CMB due to
the expansion of the universe, as long as there is sufficient interaction between residual electrons and CMB
photons, the baryons are thermally coupled to CMB and their temperature falls as 1/(1+z). Given the large
heat capacity of CMB photons, this process did not sufficiently alter the CMB spectrum2.

When the rate of this interaction fell below the cooling rate (i.e. the expansion rate of the universe), the
thermal coupling became inefficient and the baryons started cooling as 1/(1+ z)2. The timescale for the
heating (photon-electron thermal coupling) is,

tc =
1+ xe

xe

3mec
8σtarT 4

CMB
. (1.2)

Comparing this time scale with the Hubble expansion time scale for the matter dominated universe (H(z)−1∼
tc) we get,

1

H0Ω
1/2
m (1+ z)3/2

∼ 1+ xe

xe

3mec
8σtarT 4

CMB

1
(1+ z)4 . (1.3)

Therefore, the redshift when the cooling rate overtook the heating rate is dependent on the residual electron

1If non-baryonic matter (with number density nd = xdnb) was coupled to baryonic matter at this epoch, its effect can be
incorporated by modifying this ratio to xe/(1+ xe + xd).

2One way to describe this process is that the CMB has decoupled from baryonic matter, but the matter has not decoupled
from CMB.
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fraction as

(1+ z)5/2 ∼ 45.15
1+ xe

xe
. (1.4)

With xe = 2.7× 10−4, the thermal decoupling redshift is zdec ∼ 122. If the residual electron fraction was
smaller, the baryons would decouple and start cooling sooner and their temperatures would be lower. On the
other hand, if the residual electron fraction was larger, then the final baryon temperature would be higher
(and closer to CMB temperature). For example, taking xe = 2.7× 10−5, we get zdec ∼ 308, and taking
xe = 2.7× 10−3, we get zdec ∼ 48. Figure 1.3 shows the evolution of CMB and matter temperature as
function of three different residual electron fractions.

Components of the universe after thermal decoupling are: Radiation (free streaming), Matter (dominant)
(dark matter (forming structures), baryonic matter (almost neutral, decoupled from radiation)), neutrinos
(free streaming).

Dark Ages: The time period after recombination is referred to as ‘dark ages’ since there was minimal
interaction between matter and radiation and the sources of radiation had not formed yet. During this
epoch, the baryonic matter started falling into the dark matter potential wells and these high-density regions
collapsed into halos of various masses. This epoch ended when the sources of radiation were created in these
collapsed structures. There are no current observations to study the nature and dynamics of the universe
during this time period and our understanding of this epoch is based on theoretical models.

1.1.3 Structure Formation

In a perfectly homogeneous1 universe, every point of matter will remain stationary since it feels the equal
force from every direction. This is an unstable equilibrium since a slight inhomogeneity would grow under
self-gravity. The evolution of such density inhomogeneities in different components of the universe is the
key to understand the formation of structures in the universe, as these inhomogeneities eventually collapse
to form galaxies and other large scale structures.

We can begin with a patch of the universe which has a density

ρ = ρ̄(1+δ ), (1.5)

where, ρ̄ is the average density of the universe. If δ > 0, then the selected patch has density higher than
the average density (overdense region); if δ < 0, then the patch has density lower than the average density
(underdense region). The ‘overdensity’ parameter δ has minimum value of −1. In the early universe,
δ � 1 and with the expansion of the universe, this overdensity grows. The evolution of the overdensity in
different components of the universe (baryons, photons, massless and massive neutrinos, etc.) is important
for understanding the details of this process in the early universe. But the dominant component of the
matter at late times is the cold dark matter (CDM) and to gauge the salient aspects of the growth of these
perturbations, it suffices to underline the evolution of the perturbations for this component of the universe.

1Such a universe will need to be infinite or closed.
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An important outcome of CDM domination is that the structures grow hierarchically, i.e. smaller structures
form before the bigger structures.

At early times and/or large enough scales, we can study the evolution of inhomogeneities with linear per-
turbation theory. In this approximation, the perturbations grow independently for each Fourier mode. The
factor enhancing these fluctuations is called the ‘growing mode’ (D+). The assumption of linear theory bre-
aks down when δ > 1. The fluctuations at different scales become nonlinear at different time (redshift). The
non-linear phase of density perturbations can be studied using the top-hat spherical model. At the time of
the collapse, the full nonlinear overdensity of a spherical overdense region is δnl = 178, which corresponds
to linear overdensity of δL = 1.686. Therefore, if the linear analysis predicts a region with an overdensity
of δ > 1.686, in full nonlinear theory, this region has collapsed into a halo (Peebles [1980], Padmanabhan
[1993]).

Virialization: Slight asymmetry in the mass distribution of a halo will prevent it from collapsing to a
point. During the collapse, shocks and heating of the halo gas will lead to ‘virial equilibrium’, where the
total potential binding energy of the halo is twice the kinetic energy of its particles (−W = 2K). This
virialization takes place on the same time scale as the collapse of the halo. The region with higher initial
overdensity virializes sooner.

Jeans Mass: Within a virialized halo, the baryonic matter exerts pressure which starts to balance the effect
of gravity. This prevents further collapse of the baryonic halo. If a halo is collapsing faster than the speed
of sound, it will continue to collapse before the pressure can build up to counter it. Once it has reached
equilibrium, further gravitational instability will create pressure waves. For a halo of radius R and density
ρ , the dynamical collapse time scale and the time scale for a pressure wave to travel through it (acoustic
response time) are, respectively,

tc ∼
1√
Gρ

and ta ∼
R
cs
, (1.6)

where cs is speed of sound in the medium. Both these processes depend on the mass, temperatures and
density of the halo. The threshold mass (‘Jeans mass’) is (Barkana and Loeb [2001]),

MJ ∼
(

5kbT
Gmp

)3/2( 3
4πρ

)1/2

. (1.7)

When the halo is more massive than the Jeans mass, the gravity dominates, and the halo can collapse. Halos
smaller than Jeans mass will not form structures1.

Cooling: The temperature of baryons within a collapsing halo rises owing to increasing density which
causes more collisions between particles. These energetic collisions can ionize or excite an atom, molecule,
or ion. When this particle de-excites or recombines, a photon will be emitted which might escape the cloud.
Thus the kinetic (thermal) energy of the particles can be carried away by the radiation. In a halo consisting
of primordial gas, the emission of HI atomic lines constitutes the most important channel of cooling. The

1For the cold dark matter, the Jeans mass is formally zero as it is pressureless, therefore a halo of any mass can collapse.
However, the halos with masses below the baryonic Jeans mass contain only dark matter and no baryonic matter.
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Figure 1.4: Cooling efficiency for a halo consisting
of primordial gas of atomic hydrogen
(nH = 0.045 cm−3) and helium (solid red curve) and
a halo with additional molecular hydrogen
(nH2 = 0.001nH) (dashed blue curve) as function of
temperature. The two peaks in the red curve
correspond to the characteristic temperature for
excitation of HI and HeII. (Courtesy: Barkana and
Loeb [2001])

minimum temperature required to excite these lines is about 104 K and this is the minimum temperature
that can be attained with HI cooling.

If there were molecules, then the halo can cool further through excitation of their rotational or vibrational
lines, which takes place at a lower temperature. Moreover, the radiation emitted through molecular lines
can escape the halo with greater ease, since their mean free path is very large due to the smaller number
densities of molecules. However, in the early universe, the ‘metals’ (elements heavier than helium) are
negligible as they are primarily formed in stellar core and supernova remnants, none of which have been
formed at this epoch. It is possible to form H2 molecule in the early universe, but it is extremely difficult
since we need catalysts like ‘dust’ (heavy molecules) or electrons.

In our work, we assume that halos are cooled only through atomic hydrogen. As this requires a virial
temperature Tvir > 104 K, we obtain a lower bound on the mass of the collapsing halo (Barkana and Loeb
[2001], Dayal and Ferrara [2018]):

Mmin = 3.915×108(Ωmh2)−1/2 (1+ z)−3/2M�. (1.8)

Fragmentation: Within a virialized halo, if cooling time is shorter than the dynamical time (tcool < tdyn),
then the collapse is isothermal. In such a scenario, the temperature remains constant, but the density incre-
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ases. This leads to decrease in the Jeans mass MJ ∝ ρ−1/2T 3/2. Therefore, within the original halo, now
smaller structures can collapse. Shocks and density inhomogeneity within the halo will lead to fragmen-
tation of the halo. This is a runaway process in which the clouds keep fragmenting and collapsing until
eventually, the density is so high that the clouds become optically thick to the cooling radiation (Ciardi and
Ferrara [2005]).

Cosmic Dawn: The more efficient the cooling is, the longer the sub halos and clouds fragment. Thus,
strong cooling leads to the formation of stars which have small masses. Given the inefficient atomic cooling
of the primordial halos, the first stars that formed were very massive. These are called ‘Population III’ (Pop
III) stars. They are believed to be isolated, very bright and short-lived (Barkana and Loeb [2001], Ciardi
and Ferrara [2005]).

Feedback: Chemical: When these Pop III stars died (and caused supernova explosions), they enriched
their surrounding medium with metals, which helped the formation of H2 molecules. This lead to easier
channels for cooling of the medium and the new sources which formed there had properties different from
the first stars; these are called the Population II (Pop II) stars (e.g. Loeb and Barkana [2001], Ciardi and
Ferrara [2005] and the references therein).

Mechanical: Violent supernova explosions injected energy into the medium and threw out the gas. This
depletion of gas prevented further stars formation in the neighbourhood.

Radiative: These stars emitted a spectrum of radiation which changed the properties of their surrounding
medium (Haiman et al. [2000], Barkana and Loeb [2001], Pritchard and Loeb [2012], Natarajan and Yoshida
[2014], Morales and Wyithe [2010]). The ultraviolet (UV) photons ionized and heated their surrounding
neutral gas. X-ray photons emitted from the accretion of gas around binaries and black holes, heated up
the medium, increased the electron fraction and formation of H2 molecules. However, the Lyman-Werner
photons (11.26 to 13.6 eV) can cause dissociation of H2 molecules (Haiman et al. [1997]). Heating and
ionization of the medium lead to increase in Jeans mass to about 109M� (Sethi [2005]).

We study the effect of three most important components of this radiation: UV, Lyman-α1 and X-ray photons
with a wide spectrum.

1.1.4 Photoionization

The ultraviolet (UV) photons emitted by first sources are absorbed in their immediate vicinity and carve
out ionized HII regions in the neutral Intergalactic Medium (IGM). The number density and spectrum of
ionizing photons depend on the type of the source (e.g. black holes emit with harder spectrum than stars).
With the formation of new sources and the expansion of the universe, these HII regions expand and merge.
This epoch is called the ‘Epoch of Reionization’ (EoR).

HII Region: Within an ionized region, there is a balance between the recombination of HI atoms and their
ionization due to UV photons. Due to this constant recombination and ionization, the ionization photon is
scattered until it reaches the boundary of the ionized region where it is absorbed. Given the small mean free

1While studying this epoch, all the radiation between Lyman-α and Lyman-limit emitted from the source is referred to as
Lyman-α radiation. Whereas the Lyman-α radiation received at a point only refers to photons with Lyman-α frequency.
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path of the UV photon in a neutral region, the boundary of an HII region is very sharp. However, towards
the end of EoR the global volume fraction of the ionized gas ( fi) is close to 1 and the ionizing photon mean
free path is very large. This leads to non-local ionization. The temperature of the ionized region is ∼ 104

K.

This scenario is called ‘inside out’ reionization where the medium surrounding the sources is ionized first.
This model is currently favoured by the numerical simulations (Choudhury et al. [2009]), but it was earlier
proposed that the reionization process would be dominated by recombination time scale instead of ioni-
zation. If that was the case, the regions far away from sources would be ionized first, since due to their
low density, recombinations would be slower. This is called an ‘outside-in’ reionization scenario (Miralda-
Escudé et al. [2000]). We only use inside-out reionization model in our work.

Clumping Factor: In the IGM, there are regions which are dense and massive (M > MJ) enough to
be gravitationally bound, but not massive enough to collapse into a star. These clouds have very high
recombination rate due to high density and they remain neutral for a long time even when their surrounding
medium has been ionized. Such regions act as UV sink (Sethi [2005]), as inside such a region, the ionization
and recombination processes are not in balance. Clumping factor is defined as,

C =
〈n2

b〉
〈nb〉2

, (1.9)

where, nb is baryon number density and 〈〉 is the ensemble average1. We could have defined C with number
density of hydrogen instead of baryons, but hydrogen and helium are not expected to cluster differently. C

usually has a value between 1 and 5 (McQuinn et al. [2007]). We assume it to have a constant value of 2.

Str̈omgren sphere: If Ṅγ is the number of ionizing photons emitted (isotropically) by a source per unit
time, then we can balance the number of recombination and ionization to calculate radius R of the ionization
region as (Shapiro and Giroux [1987], Shu [1992]),

Ṅγ =
4π

3
R3

αBCnenp, (1.10)

where, ne and np are electron and proton number density respectively, and αB is Case-2 recombination
coefficient (Appendix B). The physical radius of a Str̈omgren sphere is,

R =

(
3

4π

Ṅγ

αBCnenp

)1/3

. (1.11)

This radius is increasing with the expansion of the universe. The comoving radius,

R0 = R(z)(1+ z) =
1

1+ z

(
3

4π

Ṅγ

αBCne,0np,0

)1/3

,

is also increasing with the expansion of the universe, because the number density of particles and hence
recombination efficiency is decreasing.

1Assumption of Ergodicity: we use volume average and ensemble average interchangeably.
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Self-Ionized Regions: For ΛCDM model of the universe, the ionized regions are larger than the Str̈omgren
sphere of a single source, because they are created by highly clustered multiple sources. Self-ionized regions
are defined as regions which have enough sources to ionize all the gas in them and no more (Furlanetto et al.
[2004]). If within such a region, collapsed mass mcoll can produce enough sources to ionize total of mion

mass, then we can define ‘ionization efficiency parameter’ as,

ζ =
mion

mcoll
. (1.12)

It is a function of properties of the sources and their surrounding medium. Balancing total recombination
with total ionization per hydrogen atom within a self-ionized region, we get,

nrec =
received photons
total hydrogen

=
received photons
emitted photons

emitted photons
stellar baryons

stellar baryons
collapsed baryons

collapsed baryons
total baryons

= fescNγ/b f? fcoll (1.13)

Here, fcoll = mcoll/mtot is the fraction the halo mass that has collapsed into structures, f? is the fraction of
collapsed baryons that is converted into stars, fesc is the fraction of ionizing photons that escape the source
halo, Nγ/b is number of UV photons emitted per stellar baryon, while nrec is the number of recombinations
per hydrogen atom1. The collapsed fraction within a self-ionized region is,

fcoll =
nrec

Nγ/b f? fesc
. (1.14)

Inside a self-ionization region all the mass is ionized (mion = mtot), therefore, we can write,

ζ =
1

fcoll
= f? fesc

Nγ/b

nrec
. (1.15)

Hence, the ionization efficiency parameter ζ incorporates multiple properties of the sources, many of which
have uncertainty by a large factor (Gnedin et al. [2008], Benson et al. [2013], Kim et al. [2013]). Therefore,
in our work, we only explore various values of ζ and try to constrain it using available observations. The
value of ζ would evolve with time because the nature of sources and their surrounding medium change with
redshift. However, we assume ζ to be constant over the whole redshift range in our work.

The self-ionized regions (ionization bubbles) need not be spherical, but for the sake of simplicity, we assume
them to be spherical, though this assumption will not hold in case of overlapping and merging bubbles. We
discuss the implications of these assumptions in Section 5.6.

Excursion Set Formalism: A region which has linear overdensity of δ > 1.68, will have collapsed to form
a halo. However, this region could be part of a larger halo. Such a ‘cloud in cloud’ scenario suggests that
to figure out if a point in the universe is within a collapsed halo, we should find the largest possible region
around it that has collapsed. This method is called the ‘excursion set formalism’ (Press and Schechter

1We have interchangeably used total baryons number and total hydrogen number, which would make a small difference.
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[1974], Bond et al. [1991], Lacey and Cole [1994]).

Around a point, we start with a region of very large radius (and corresponding mass scale), track the value
of overdensity parameter δ smoothed1 at that scale (δm), and find the radius (mass) when this value crosses
(a barrier of) δc = 1.68. We can linearly extrapolate this barrier to present (z = 0), which gives the redshift
dependent barrier as δc(z) = 1.68/D+(z)> δc(0). Here δc(z) is the critical density for collapse at redshift z

and D+ is the growing mode of density perturbations. δc(z)> δc(0) because the halos which formed earlier
should have higher overdensity.

Defining σ2(m) as the variance of δm at present (z = 0), if m1 > m2, then σ(m1)< σ(m2), with the limiting
case of σ(m→ ∞) = 0. Using the extended Press-Schechter model (Sheth and Tormen [1999], Sheth et al.
[2001]), the collapse fraction at any redshift is,

fcoll = erfc

 δc(z)−δm√
2[σ2

min−σ2(m)]

 , (1.16)

where, σ2
min ≡ σ2(mmin).

We can use a similar method to calculate the size distribution of self-ionized regions in the early universe.
By applying a condition that the collapse fraction within a region needs to be greater than ζ−1, we ensure
that the region is self-ionized. Using Eq. 1.15 in Eq. 1.16, we get

ζ
−1 = erfc

 δc(z)−δx(m,z)√
2[σ2

min−σ2(m)]

 .
Here δx(m,z) is the overdensity barrier a region must cross to be self-ionized. Using, erfc(x) = 1− erf(x),
and defining, K(ζ ) = erf−1(1−ζ−1), we can write the barrier as,

δx(m,z) = δc(z)−
√

2 K(ζ )[σ2
min−σ

2(m)]1/2. (1.17)

For simplicity, the barrier can be linearised at m→ ∞ as,

B(m,z) = δc(z)−
√

2 K(ζ )σmin +
K(ζ )σ2(m)√

2σmin
. (1.18)

To find the self-ionized region, we need to find the first up-crossing of δ above the curve described by
B(m,z). Finally, this gives the comoving number density of ionization bubbles in mass range (m,m+dm)

(Sheth [1998]) as,

m
dn
dm

=

√
2
π

ρ̄

m

∣∣∣∣d ln σ

d ln m

∣∣∣∣ B0

σ(m)
exp
[
−B2(m,z)

2σ2(m)

]
. (1.19)

Here B0 ≡ δc(z)−
√

2 K(ζ )σmin is the value of barrier at m→ ∞ and ρ̄ is the background mass density.
1Smoothing a field on scale R essentially means that we average out the information on a scale smaller than this. For this we

use a window function which determines how different points within the smoothed regions are assigned weight.

12



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20

G
lo

b
a
l 
Io

n
iz

a
ti

o
n
 F

ra
ct

io
n

redshift (z)

ζ = 08
ζ = 10
ζ = 15

ζ = 100

Figure 1.5: Evolution of global ionization fraction
( fi) for different values of ζ . Reionization is
completed earlier for higher value of ζ .
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Figure 1.5 shows the evolution of the global ionization fraction fi of the universe as a function of ζ . For
higher value of ζ , the reionization is more efficient and is completed earlier (at higher redshift).

In Figure 1.6 we show the distribution of volume fraction occupied by bubbles of different sizes and their
evolution with redshift. This figure agrees with the results of Furlanetto et al. [2004] (their Figure 2) for
the set of parameters used by them. For the set of parameters used in our work, the self-ionized bubbles are
smaller, e.g. at z = 12 the peak of the bubble distribution corresponds roughly to a scale of Rx ' 10Mpc for
Furlanetto et al. [2004], while it peaks at Rx ' 3Mpc for our case.

Excursion set formalism has been used extensively for analytic work and semi-numerical simulations of the
epoch of reionization, including in the publicly-available code 21cmFAST (Mesinger et al. [2011]). This
formalism breaks down when the ionization fraction of the universe is very large since the shapes of the
ionized regions become irregular due to significant overlap.

Ionization of Helium: The sources of UV photons which ionized hydrogen were also able to cause first
ionization of helium. However, the second ionization of helium requires photons of energy higher than
54.4 eV. Main sources of such hard UV photons are quasars (quasi-stellar objects) which started forming
at low redshifts and therefore the complete ionization of helium was delayed until such sources formed
(Morrison et al. [2019]).

1.2 Observations

Our understanding of physics during dark ages, cosmic dawn and epoch of reionization is still limited.
There is substantial uncertainty about the properties of the dark matter and its interaction with baryons,
the formation of large scale structures, the halo cooling mechanism and the feedback processes. Studying
these epochs can help us gain useful insights into non-linear structure formation and the evolution of first
sources in the universe. It would also provide an independent method to measure cosmological parameters
and investigate dark matter models.

To observationally study the physics of this time period, we need to either directly detect the radiation from
this epoch or study the distortion (e.g. spectral distortion, spatial inhomogeneity or change in polarization)

13



of a background radiation that passes through it. For any astrophysical probe, it is essential to ascertain that
the signal received had indeed originated from the desired source. For CD/EoR studies, this is a challenge,
as we do not completely understand the properties of the sources and medium at high redshifts. We also do
not completely understand the properties of local sources (stars, their remnants, dark matter, gas in galaxies
and IGM, dust, earth’s atmosphere, other terrestrial sources etc.) which can contaminate or mimic the
signal which we are trying to detect. However, if multiple independent probes with different systematics
corroborate the same picture, then it would increase our confidence in their detections. We next list the
main probes to study the ionization history of the universe (Fan et al. [2006a]).

1.2.1 Scattering of Lyman-α due to Neutral Hydrogen at High Redshift

The high-redshift galaxies and quasars emit radiation around Lyman-α line. These photons are redshifted as
they travel in the expanding universe. The photons of higher frequency (bluer) than Lyman-α at the redshift
of emission, might redshift into the Lyman-α resonance on their way towards us. At the location where
this occurs, if there is substantial neutral hydrogen present in the medium, it will absorb these photons and
re-emit them in random directions. This scattering results in an absorption line in the observed spectra of
QSOs at frequencies larger than Lyman-α in the rest frame (Field [1962], Scheuer [1965]).

The optical depth of Lyman-α photons in a neutral medium is,

τGP ' 2.04×105xHI(1+δ )(1+ z)3/2,

as shall be derived in Section 3.1.1. This optical depth is very large, which means that a very small amount
of neutral hydrogen (xHI(1+ δ )) at a certain point in intergalactic medium is enough to scatter almost all
the redshifted Lyman-α radiation. Thus, this test is extremely sensitive to detect the presence of neutral
hydrogen, but it can only provide lower bound to the HI number density.

This effect is named after James Gunn and Bruce Peterson, who proposed this as a test of neutral hydrogen
in the intergalactic medium at z ∼ 2 (Gunn and Peterson [1965]). At high redshifts there are multiple
lines in the blueward side of such spectra, which suggests the presence of neutral hydrogen in clouds.
Studying the distribution of such absorption lines (‘Lyman-α forest’) can help us understand the distribution
of HI clouds and the patchiness of the reionization process. Figure 1.7 shows the spectra of quasars from
redshift 5.74< z< 6.42. Almost complete absorption of radiation of frequency higher than Lyman-α (Gunn
Peterson trough) in these spectra, suggests that the universe was transitioning from neutral to ionized state
at z∼ 6 (Becker et al. [2001], Fan et al. [2006b]).

A similar analysis can also be applied to study the galaxies which emit prominently in the vicinity of Lyman-
α line (‘Lyman-α Emitters’) and galaxies which emit prominently in frequency below Lyman-limit, but are
dim in Lyman-α (‘Lyman Break galaxies’). Lyman-α fluxes of such galaxies drop between 6 < z < 7,
adding further evidence to the presence of HI at this redshift (Malhotra and Rhoads [2004], Jensen et al.
[2013], Dijkstra [2016]). This probe can also be used to study the ionization history of helium through
absorption lines of HeI or HeII (Miralda-Escude [1993], Shapiro et al. [1994]). These observations suggest
that the ionization of helium was completed by redshift 2 < z < 3 (Morrison et al. [2019]).
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Figure 1.7: Absorption troughs in spectra of SDSS quasars from redshift
5.74 < z < 6.42, indicating presence of HI in the IGM. These
observations suggest that the reionization might have completed around
z∼ 6 (Courtesy: Fan et al. [2006b]).
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1.2.2 Cosmic Microwave Background Radiation

Once the hydrogen in IGM starts getting ionized, the CMB photons once again can interact with the free
electrons of the medium they pass through via Thomson scattering. This does not result in complete cou-
pling of CMB and matter, as the number density of the matter particles has fallen by a factor of ∼ 1003

since the recombination epoch. The main impact of Thomson scattering of CMB photons with electrons is
to cause linear polarization of CMB at large scales (Rees [1968], Hu and White [1997]). The optical depth
of scattering is,

τreion =
∫

ni(z)σT dl

=
∫ zlss

0
nHI,0(1+ z)3 fi(z)σT

c dz
(1+ z)H(z)

,

where, σT is Thomson cross-section and ni = nHI,0(1+ z)3 fi is the electron number density in the ionized
region. Here we have ignored the effect of helium ionization. The upper limit of the integration zlss is the
redshift of last scattering surface and we have used light travel distance to calculate integration over photon
path. The above equation is useful for calculating the cumulative history of reionization. However, to get a
first order approximation, we assume that the universe ionized instantaneously at zreion. We take fi = 1 for
z≤ zreion, and 0 otherwise. This gives us,

τreion '
cσT nHI,0

H0

∫ zreion

0

(1+ z)2 dz
[ΩΛ +(1+ z)3Ωm]1/2

' 2cσT nHI,0

3ΩmH0
[(ΩΛ +(1+ zreion)

3
Ωm)

1/2− (ΩΛ +Ωm)
1/2].

Taking value of τreion = 0.055 (Planck Collaboration et al. [2018]), we have, zreion ∼ 8.43. By performing
more detailed modelling, and including the effect of ionization of helium and the kinetic Sunyaev-Zeldovich
effect (Planck Collaboration et al. [2016a]), this value further reduces to zreion = 7.75± 0.73 (Fan et al.
[2000], Becker et al. [2001], Hinshaw et al. [2013], Planck Collaboration et al. [2014, 2016b, 2018]). This
matches with observations of Gunn-Peterson test1 since we expect the reionization to be an extended pro-
cess. Towards the end of EoR, the neutral gas is limited in dense clumps of matter, which are self-shielded
from the ionizing photons; and we expect to see them in quasar spectra long after most of the universe has
been fully ionized.

The interaction between CMB photons and free electrons also generates a small distortion of the CMB
spectrum (‘Sunyaev - Zeldovich effect’) (Sunyaev and Zeldovich [1972]), which can be also used to probe
the history of HI reionization (Carlstrom et al. [2002], McQuinn et al. [2005]).

1The value of τreion has changed over the years with better observations. Its initial value, τreion = 0.17±0.04 gave reionization
redshift to be 11 < zreion < 33 (Spergel et al. [2003]), which was very different from Gunn-Peterson results. Models where the
universe was once ionized, became neutral again and ionized again were considered to account for this discrepancy (Cen [2003]).
They have been discarded now.
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1.2.3 Other Probes

We can observe the bright galaxies from the epoch of reionization and cosmic dawn using deep surveys
(e.g. Hubble Space Telescope (Oesch et al. [2013], Ellis et al. [2013], Oesch et al. [2016])) to study the
evolution of structures during these epochs. Observational probes to study the redshifted radiation emitted
from early sources are expected to be operational in the next decade (e.g. James Webb Space Telescope
(JWST), Giant Magellan Telescope (GMT), Extremely Large Telescope (ELT), Thirty Meter Telescope
(TMT)). The reionization of hydrogen and helium adds a large amount of energy into the IGM, raising its
temperature. After this phase transition, the gas cools with the expansion of the universe. By measuring the
IGM temperature at lower redshifts and its evolution, we can potentially determine the redshift of hydrogen
and helium reionization (Theuns et al. [2002]).

It is also useful to observe the atomic and ionic lines of the medium surrounding the early sources, which
can provide us with indirect information about the nature and distribution of these sources (Meiksin [2009]).
These lines include hyperfine splitting of ground state of HI (21 cm line) (Furlanetto et al. [2006], Pritchard
and Loeb [2012]) and HeII (Vasiliev et al. [2018]), fine structure line from first excited state of HI (3 cm line)
(Dijkstra et al. [2008b]) and the recombination lines from ionized regions. Many ongoing and upcoming
experiments are planning to detect the spectral distortion of CMB due to HI 21 cm line from the epoch of
cosmic dawn and reionization (summarized in Section 6.1). Experiment to Detect the Global EoR Signature
(EDGES) has claimed a detection of a broad global absorption trough of strength 500 mK at ν ' 78±
10 MHz (Bowman et al. [2018]); this is the only positive detection of HI signal. In our work, we have
explored the possibility of studying the epoch of cosmic dawn and reionization using the 21 cm signal.

1.3 The 21 cm Signal

The ground state of neutral hydrogen splits into two hyperfine levels. The spin of the electron and nucleus
(proton) in the ‘triplet’ and ‘singlet’ states are parallel and anti-parallel respectively. When an atom makes
a transition from triplet to singlet, it emits a photon of wavelength λ21 = 21.1cm (ν21 = 1420.406 MHz).
The triplet state is metastable with transition rate of A21 = 2.85× 10−15s−1, which makes spontaneous
transition from triplet to singlet very difficult. This line was first predicted by Hendrik van de Hulst in 1944
(Van De Hulst [1982]) and was first observed in the HI 21 cm spectra of our Galaxy by Ewen and Purcell
[1951].

1.3.1 Spin Temperature

The spin (or excitation) temperature of 21 cm line, TS, is defined by the ratio of atoms in two hyperfine
states,

n1

n0
=

g1

g0
exp
(
−hpν21

kBTS

)
. (1.20)
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Here, hp is plank constant1, n0 and n1 are number density of atoms in singlet and triplet states respectively2,
and g0 = 1 and g1 = 3 are degeneracies of these two states. TS is the thermal temperature the HI gas
would have if the number densities of singlet and triplet states were in thermal equilibrium. We can define,
T? = hpν21/kB = 0.068K. This value is very small, generally smaller than almost any temperature in the
universe if we ignore any exotic physics. Therefore, the ratio of two levels is

n1

n0
' g1

g0

(
1− T?

TS

)
(1.21)

and
T?
TS
' 1− g0n1

g1n0
. (1.22)

Given the inefficient spontaneous emission, the value of TS is determined by the following processes in the
early universe which cause transition between these two states (Field [1958]):

1. Background Radiation: 21 cm photons present in the radio background (e.g. CMB) will get absorbed
by singlet atoms or cause stimulated emission of triplet atoms. Rate of these two transitions are respectively:

Pγ

01 =
g1

g0

Tγ

T?
A21, and Pγ

10 =

(
1+

Tγ

T?

)
A21, (1.23)

where, Tγ is the radiation temperature. The ratio of upward to downward transition rate for this mechanism
is,

Pγ

01

Pγ

10
' g1

g0

(
1− T?

Tγ

)
. (1.24)

2. Collisions: The collision of HI with other atoms and charged particles will lead to excitation and de-
excitation of hyperfine states, bringing the TS in equilibrium with kinetic temperature TK . The ratio of these
two rates is,

Pc
01

Pc
10

=
g1

g0
exp
(
− T?

TK

)
' g1

g0

(
1− T?

TK

)
. (1.25)

We have retained only the first order term for the expansion of exponential because we can assume TK� T?.

3. Lyman-α : A Lyman-α photon might take an atom from the singlet/triplet state to the first excited state.
From there, the atom might de-excited to triple/singlet state, causing a spin-flip (Section 3.1.3). The rate of
upward and downward transition is,

Pα
01

Pα
10

=
g1

g0

(
1− T?

Tα

)
, (1.26)

where, Tα is Lyman-α radiation colour temperature. Repeated scattering of Lyman-α photons by HI atoms
at kinetic temperature TK causes Tα to relax to TK through Wouthuysen-Field effect (Wouthuysen [1952],
Field [1958, 1959], Rybicki and dell’Antonio [1994], Chen and Miralda-Escudé [2004]).

1We use subscript p to distinguish it from Hubble parameter h.
2For this subsection, the subscript 0 does not indicate z = 0.
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Detailed Balance: The probability of transition from singlet/triplet state to triplet/singlet state is only
a function of atoms in singlet/triplet state and does not depend on the number of atoms already in tri-
plet/singlet state. Therefore, when more than one of these mechanisms is present, the probability of tran-
sition by one mechanism will not be affected by the presence of other mechanisms. If singlet and triplet
states are in equilibrium, then

(Pγ

01 +Pc
01 +Pα

01)n0 = (Pγ

10 +Pc
10 +Pα

10)n1. (1.27)

Therefore, the ratio of atoms in two levels depends on the transition rates as,

n1

n0
=

Pγ

01 +Pc
01 +Pα

01

Pγ

10 +Pc
10 +Pα

10
.

Using these rates from Eqs. 1.23, 1.25 and 1.26 and ratio of number destinies from Eq. 1.21, we get,

g1

g0

(
1− T?

TS

)
'

g1
g0

Tγ

T?
A21 +Pc

10
g1
g0

(
1− T?

TK

)
+Pα

10
g1
g0

(
1− T?

Tα

)
(

1+ Tγ

T?

)
A21 +Pc

10 +Pα
10

.

Simplifying this, we get

T?
TS
'

A21 +Pc
10

T?
TK

+Pα
10

T?
Tα(

1+ Tγ

T?

)
A21 +Pc

10 +Pα
10

.

Defining collision and Lyman-α coupling coefficients as,

yc =
Pc

10
A21

T?
TK

and yα =
Pα

10
A21

T?
Tα

(1.28)

respectively, we can write spin temperature as,

TS '
T?+Tγ + ycTK + yαTα

1+ yc + yα

. (1.29)

In this equation, the T? term is negligible compared to other temperatures and is usually dropped. Here,
yc ∝ nHI,ne (number density of neutral hydrogen atom or electrons) and yα ∝ nα (number density of Lyman-
α photons) determine the efficiency of collisional and Lyman-α coupling, respectively1 (Chapter 3). Given
that Tα ' TK , if ytot = yc + yα & Tγ/TK , then TS is strongly coupled to TK . Otherwise, in absence of these
coupling mechanisms, it relaxes to Tγ .

In early universe, the only known source of radio background is CMB with blackbody temperature TCMB.

1If there was any other exotic mechanism (at temperature Td) which affected the number densities of hydrogen atoms in
singlet and triplet states, we can include it as,

TS '
T?+Tγ + ycTK + yα Tα + ydTd

1+ yc + yα + yd
. (1.30)
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Hence, we usually assume that Tγ = TCMB. However, if other radio sources (with temperature TR) were
present, then we need to use Tγ = TCMB +TR (Ewall-Wice et al. [2018], Feng and Holder [2018]).

While computing equilibrium between rates of upward and downward transition in Eq. 1.27, we have as-
sumed that all the rates involved are larger than the expansion rate of the universe. Assuming the radiation
source to be CMB, the ratio of radiation excitation and the Hubble expansion rate (for matter dominated
universe) is,

Pγ

01
H(z)

' 3T0A21

T?H0
√

Ωm
(1+ z)−1/2

' 4.17×105(1+ z)−1/2.

The de-excitation rate is of the same order of magnitude as the excitation rate. Hence, the hyperfine exci-
tation and de-excitation of HI due to CMB is faster than the expansion rate of the universe at all relevant
redshifts. For collisional and Lyman-α coupling,

Pi
01

H(z)
' TK

T?

A21

H(z)
yi

' 5.1×104(1+ z)−3/2TKyi.

This ratio is dependent on the kinetic temperature and the coupling coefficients. When the coupling is
weak, the expansion rate of the universe is larger than the excitation and de-excitation rates. However, in
this scenario, the balance between hyperfine levels will be mediated by CMB.

Eq. 1.29 can also be written alternatively as (Pritchard and Loeb [2012]),

T−1
S =

T−1
γ + xαT−1

α + xcT−1
K

1+ xα + xc
, (1.31)

where the rate coefficients are defined differently as,

xc =
Pc

10
A21

T?
Tγ

and xα =
Pα

10
A21

T?
Tγ

. (1.32)

1.3.2 Brightness Temperature

When the background CMB radiation passes through a patch of HI at high redshift, 21 cm photons are
absorbed from or emitted into this background radiation depending on whether spin temperature of HI is
greater than or less than TCMB. The CMB brightness temperature in a patch of sky (r) at redshift z is
(Rybicki and Lightman [1979]),

TCMB(r,z) = TCMB(z)e−τ(r,z)+TS(r,z)(1− e−τ(r,z)),

where τ is the 21 cm optical depth of the patch of HI and TCMB(z) is the unaltered black body CMB
temperature at redshift z. In this expression, the first term is due to the absorption and stimulated emission
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of the 21 cm photons in the CMB spectrum by the HI path. The second term accounts for the spontaneous
emission from the HI cloud and further absorption and stimulated emission of these photons by the cloud.
The change in CMB brightness temperature due to this HI cloud, the differential brightness temperature at
that patch of sky and redshift, is given as,

∆TB(r,z) = TCMB(r,z)−TCMB(z)

=−TCMB(z)(1− e−τ(r,z))+TS(r,z)(1− e−τ(r,z)).

The redshifted 21 cm differential brightness temperature at present is,

∆TB(r,νo) =
∆TB(r,z)

1+ z
=

TS(r,z)−TCMB(z)
1+ z

(1− e−τ(r,z)), (1.33)

where, the observed frequency is νo = ν21/(1+z) due the redshifting of photons. The 21 cm optical depth is
the integration of absorption coefficient αν along the light travel path, τ(r,z) =

∫
αν(r,z)dl. The absorption

coefficient incorporates the absorption and stimulated emission of 21 cm photon (Rybicki and Lightman
[1979]),

αν =
hpν

4π
n0B01

(
1− g0n1

g1n0

)
φ(ν). (1.34)

Here B01 is the Einstein B coefficient. The line profile function φ(ν) can be approximated as φ(ν)∼ ∆ν−1,
where ∆ν is the resonance line width. For 21 cm line, the natural broadening is very small, therefore the
resonance line width is dominated by the motion (velocity v) of the atoms. In static cloud of HI, this line
width is due to thermal (Doppler) broadening. In cosmological setting, this width is dominated by the
cosmic expansion and peculiar velocity of the gas. Hence,

ν φ(ν)' ν

∆ν
=

c
v
=

c(
H(z)+ 1

a(t)
dv
dl

)
∆l

. (1.35)

The peculiar velocity of HI is generally very small compared to the expansion velocity, and we ignore its
effect (‘Redshift Space Distortion’) in our work.

Here ∆l is the typical distance a 21 cm photon would travel before it is redshifted out of the resonance width,
after which it will not interact with the HI gas. Therefore, this gives the integration limit of optical depth.
The value of ∆l is very small, therefore we can assume that all the properties of the gas (temperatures,
density, etc.) will remain constant over this length. Thus using Eq. 1.34 and 1.35, we have,

τ(r,z)' αν(r,z)∆l ' hpν

4π
n0B01

(
1− g0n1

g1n0

)
c
ν

1
H(z)

. (1.36)

Substituting the value of TS from Eq. 1.22 and g1/g0 = 3 in Eq. 1.36, and exploiting the relation between
Einstein A and B coefficients (Appendix D), we have,

τ(r,z)' hpν

4π
n0

(
3A21

c2

2hpν3

)(
T?
TS

)
c
ν

1
H(z)
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' 3
8π

A21n0
c3

ν3
T?
TS

1
H(z)

. (1.37)

The number density of singlet atoms can be approximated as,

n0 =
n0

n0 +n1
nHI =

g0

g0 +g1

(
1− T?

TS

)nHI '
1
4
(
xHI(1+δ )nHI,0(1+ z)3) .

Here, we have ignored the (1−T?/TS) factor in the denominator, since its effect is negligible. Substituting
this in Eq. 1.37 and using the value of nHI,0 from Appendix C, we get

τ(r,z)' 3
8π

(
1
4

xHI(1+δ )
3
4

Ωb
3H2

0
8πGmp

(1+ z)3
)

A21
c3

ν3
T?
TS

1
H(z)

.

Here, xHI is the neutral fraction of HI gas and δ is the overdensity. For matter dominated universe, the
optical depth is,

τ(r,z)' 33

322π2
A21hpc3

GmpkBν2
H0

h
xHI(1+δ )

TS

Ωbh2

(Ωmh2)1/2 (1+ z)3/2

' 8.435×10−3 xHI(1+δ )

TS

(
Ωbh2

0.022

)(
0.14
Ωmh2

)1/2

(1+ z)3/2 K. (1.38)

As this optical depth is very small (τ � 1), we can approximate 1− e−τ(r,z) ' τ(r,z) in Eq. 1.33. The final
value of differential brightness temperature is,

∆TB(r,νo)'
TS(r,z)−TCMB(z)

1+ z
τ(r,z)

' 26.67 xHI(1+δ )

(
1− TCMB(z)

TS

)(
1+ z
10

0.14
Ωmh2

)1/2(
Ωbh2

0.022

)
mK. (1.39)

The CMB spectral distortion caused by this effect is observable (Madau et al. [1997], Shaver et al. [1999],
Gnedin and Shaver [2004], Sethi [2005]) and it contains information about density (δ ), ionization (xHI) and
spin temperature (TS) of the gas from where it originated. The value of ∆TB is function of both redshift of
observation (through νo) and the direction. The globally averaged value of this signal at any redshift is

〈∆TB(νo)〉 ' 26.67〈xHI〉
〈

1− TCMB(z)
TS

〉(
1+ z
10

0.14
Ωmh2

)1/2(
Ωbh2

0.022

)
mK. (1.40)

Here the global average of ionization is the ionization volume fraction of the universe (〈xHI〉 = fi) and the
global average of overdensity is zero (〈δ 〉= 0).

1.3.3 21 cm Signal from Early Universe

• During the early dark ages (1000 < z < 150) the matter temperature TK is still coupled to TCMB. The-
refore, irrespective any coupling mechanism, TS = TCMB and the differential brightness temperature
∆TB = 0.
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Figure 1.8: Evolution of TCMB (blue curve), TK
(Tgas, red curve) and TS (black curve) for a fiducial
model. The dashed red curve shows the evolution of
TK without any heating sources.

• After matter thermally decouples from the CMB (150 < z < 30), the baryonic gas cools faster than
CMB (TK < TCMB). Collisions couple TS to matter temperature TK , and the ∆TB < 0 (dark ages
absorption trough).

• With the expansion of the universe (z ∼ 30), the density and temperature of the gas decrease, the
collisions become inefficient, driving the TS→ TCMB and ∆TB→ 0.

• When the first sources of radiation form during cosmic dawn, the production of Lyman-α photons
once again couple TS to TK . Initially, the baryonic gas at TK is colder than the TCMB, and the signal is
in absorption with ∆TB ≤ 0 (CD/EoR absorption trough).

• The gas can be heated due to X-rays emitted from the sources (TK > TCMB) and the signal would be
in emission with ∆TB ≥ 0.

• Finally when the gas has completely ionized, xHI = 0 and hence the brightness temperature ∆TB = 0.

A plot for evolution of TCMB, TK and TS for a fiducial model is show in Figure 1.8.

1.3.4 Simulations and Analytical Formalisms

The HI signal from the epoch of cosmic dawn and reionization has been extensively studied in the literature
using semi-analytic methods and large-scale simulations (e.g. Pritchard and Furlanetto [2007], Santos et al.
[2008], Baek et al. [2010], Santos et al. [2010], Mesinger et al. [2011], Visbal et al. [2012], Tashiro and
Sugiyama [2013], Mesinger et al. [2013], Pacucci et al. [2014], Fialkov et al. [2014, 2015], Ghara et al.
[2015], Mesinger et al. [2016], Fialkov et al. [2017], Ross et al. [2017]). These N-body simulations are
affected by both the box-size of the simulation and grid-size of cells. If the box-size is not large enough,
the coupling of short and long scales cannot be computed properly. On the other hand, if the number
density of particles in a simulation is not large enough, then small scale structures are not resolved. Given
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the complicated physics at very small and large scale, as well as multiple time scales, it is not possible to
completely simulate cosmic dawn and EoR in-depth with current technology.

Numerical simulations can provide insight into the morphology and evolution of the sources in the early
universe, however, given the uncertainty in the astrophysics of this epoch, analytical methods are better
suited to predict the statistical quantities like correlation function and power spectrum. Compared to nu-
merical simulations, these estimates are computationally inexpensive, as well as orders of magnitude faster,
which makes it possible to analyse a large set of possible modelling parameters and their degeneracies at
a fraction of computational resources and time. The analytical methods are not limited by the size of the
simulation box, therefore a variety of physical process happening at very small or very large scale can be
easily incorporated.

In our work, we developed a formalism based on geometric and probabilistic arguments to analytically
compute the autocorrelation and power spectrum of HI signal in the early phase of CD/EoR. Our method
cannot predict the shape of individual regions, but it allows us to compute the statistics of the HI field and
compare the observed signal for multiple sets of parameters. It needs to be emphasized that, our formalism
is not perfect, as we still need to relax several simplifying assumptions (Section 5.6). However, since
N-body simulations, semi-analytical and analytical formalisms each have their own set of assumptions,
strengths and weakness, it is beneficial to compare results obtained by different methods. If the predictions
of all these methods match, it increases our confidence in the results; if they do not match, it might lead us
to a deeper insight of the physics of the early universe and the shortcoming of our methodologies.

1.4 Thesis Plan

In the present chapter, we reviewed the HI signal from CD/EoR and the motivation to study it. In Chapter 2,
we calculate the impact of X-ray heating on the medium surrounding ionization bubbles. In Chapter 3, we
calculate the strength of HI spin temperature coupling with matter temperature through Lyman-α photons
and collisions. In Chapter 4, we present our formalism for computing the two-point correlation function of
the HI signal. We also discuss various approximations, assumptions, and limits germane to our formalism.
We summarize our results in Chapter 5 and explore their dependence on various modelling parameters as
well as the assumptions taken in this work. We make concluding remarks in Chapter 6 and summarise the
current status of observational detection of cosmological 21 cm signal. We give a list of useful constants,
expressions and geometrical functions used in our work in the Appendix.

In our computations, we assume the spatially-flat ΛCDM model of the universe, with the cosmological
parameters from Planck 2015 (Planck Collaboration et al. [2016b]) and Planck 2018 (Planck Collaboration
et al. [2018]): Ωm = 0.310, ΩB = 0.049, h = 0.677 and ns = 0.967, with the overall matter power spectrum
normalization corresponding to σ8 = 0.808. The matter power spectrum of the ΛCDM model is generated
using publicly-available code CMBFAST (Seljak and Zaldarriaga [1996]).
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Chapter 2

Temperature Evolution of the IGM

“The idea hovered and shimmered delicately, like a soap bubble, and she

dared not even look at it directly in case it burst. But she was familiar with

the way of ideas and she let it shimmer, looking away, thinking about

something else.”

— Philip Pullman, Northern Lights

2.1 X-Ray Heating

Accretion in X-ray binaries and stellar remnants at high redshifts emit X-ray photons (photons of energy
higher than 100 eV1). We assume that the X-ray source luminosity is a power law function (Mesinger et al.
[2011]),

Ṅν = Ṅt

(
ν

νmin

)−α

, (2.1)

where νmin is the lowest frequency (in the rest frame of the source) of X-ray photons escaping from the
sources. It is expected that high-mass X-ray binaries would emit harder X-ray spectra than stellar remnants
(Fialkov et al. [2014]). Therefore we can use different values of α to represent different types of sources.
For higher value of α (more negative power), there are lesser photons with high frequency, which suggests
a softer spectrum. By using more than one combination of modelling parameters (α,νmin), we can model
the effect of multiple types of sources, but we do not attempt such modelling in our work. We have,

dṄν

dν
=−αṄt

(
ν

νmin

)−α

ν
−1, (2.2)

which shows that the source luminosity decreases with increasing frequency. We drop the negative sign
for the rest of the derivation. Given the dynamic nature of X-ray sources, the X-ray luminosity of a halo

1We use photon energy and frequency interchangeably and both are given in eV.
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depends on the number of sources being formed per time and not the number of sources already present.

Ṅt =
number of X-ray photons emitted

time

=
number of X-rays emitted
number of baryons in stars

number of baryons in stars
number of collapsed baryons

number of collapsed baryons
time

.

Here the fraction of collapsed baryons that is converted into stars is f?, and we define Nheat as the number
of X-ray photons emitted per stellar baryons.

The number of baryons collapsing per unit time should be calculated at the redshift when the sources were
forming in the halo, and not when they started emitting X-rays after being converted into binaries. In our
work, we do not study detailed evolution of sources; therefore, we ignore this time delay and calculate the
baryons which were collapsing when the X-rays were being emitted. The number of baryons collapsing
within an ionization bubble per unit time can be linked to the growth of this bubble. Therefore,

Ṅt = Nheat f?
d(Nhalo fcoll,ion)

dt
, (2.3)

where, Nhalo = 4π/3R3
xnb,0 is the number of baryons1 in a self-ionized region of radius Rx. Within this

region, the collapse fraction is fcoll,ion = 1/ζ . Given the definition of ζ and self-ionized regions, fcoll,ion

remains constant as the size of the halo (Nion) increases (Section 1.1.4).

In our work, we do not follow the evolution of individual ionization bubbles. The only information we have
is their size distribution at any redshift calculated using excursion set formalism (Section 1.1.4). Therefore
we assume that the growth of an ionization bubble is proportional to the growth of global collapse fraction,
fcoll,g at that redshift. We write,

d(Nhalo fcoll,ion)

dt
= Nhalo fcoll,ion

ḟcoll,g

fcoll,g

=
4π

3
R3

xnb,0
1
ζ

ḟcoll,g

fcoll,g
. (2.4)

Here we have ignored the fact that we expect high density regions within an ionized region to be collapsing
faster than the average of all sources in every part of the universe. Replacing these values in Eq. 2.2, we get
the number of X-ray photons of frequency ν emitted by the source, per unit time, per unit frequency,

dṄν

dν
=

4π

3
R3

x
αNheat f?nb,0

ζ ν

ḟcoll,g

fcoll,g

(
ν

νmin

)−α

. (2.5)

These X-rays of energy E � 13.6eV are not absorbed in the HI region, but escape into the surrounding
neutral medium.

1We have again used the number of hydrogen atoms and number of baryons interchangeably. This makes a small difference.
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2.1.1 Photoionization and Heating of the Medium

X-rays emitted from the sources are absorbed by the neutral hydrogen and helium in the IGM. This pro-
cess emits an energetic photoelectron, which causes secondary ionization and excitations into the medium.
Depending on the electron fraction and temperature of the medium, the energy of the photoelectron gets
divided into heating, ionization and excitation of the medium (Shull and van Steenberg [1985], Venkatesan
et al. [2001]).

A neutral medium is ionized up to 10% by X-rays, after which the energy gone into further ionization is
negligible. In our work, we neglect the effect of this partial ionization caused by X-rays and assume the me-
dium outside an ionization bubble to be comprised of neutral hydrogen and neutral helium with primordial
abundances. For small ionization fraction of the medium, the fraction of energy of the photoelectron that
goes into heating of the medium is fH = 0.15 (Shull and van Steenberg [1985], Venkatesan et al. [2001]).
This is a function of ionization fraction and approximately independent of X-ray frequency for ν > 100 eV.

In this subsection, we try to calculate the kinetic temperature profile around an ionization bubble of X-ray
sources. Here primed quantities are calculated at the receiving point (point P), un-primed quantities are at
the source (point S), and quantities with 0 subscript are comoving quantities. The probability of ionization
of species i by a photon of frequency ν ′ in a shell of thickness dl′ is,

P(i,ν ′) = n′iσi(ν
′)dl′. (2.6)

Here n′i = x′inb,0(1+ z′)3 is the local number density of species i, with x′i being the local number fraction of
species i. Assuming that in the mostly neutral medium, the fraction of ionized hydrogen and singly ionized
helium is the same, we have

xHI =
12
13

xn xHII =
12
13

(1− xn)

xHeI =
1

13
xn xHeII=

1
13

(1− xn),

where, xn is the neutral fraction of the medium. We have ignored the effects of doubly ionized helium,
which require very high energy photons. nb,0 = 9.14× 10−6Ωbh2 is the number density of baryons at
present (Appendix C). The photoionization cross-section of species i by an X-ray photon of frequency ν ′

is,

σi(ν
′) = σi,0

(
ν ′

νi

)−3

, (2.7)

where, νi is the ionization threshold frequency and σi,0 is the ionization cross-section of a particle of species
i. We have used the approximate expressions for the frequency dependence of the ionization cross-section
of HI and HeI; for more precise expressions see Osterbrock [1989]. This gives the probability of absorption:

P(i,ν ′) = x′inb,0(1+ z′)3
σi,0

(
ν ′

νi

)−3

dl′. (2.8)
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The ratio of probability of absorption by HI and HeI is,

P(HI,ν ′)
P(HeI,ν ′)

' xHσH,0ν3
H

xHeσHe,0ν3
He
' 0.52. (2.9)

Therefore, ∼ 2/3 X-ray photons are absorbed by helium.

Mean Free Path of X-rays: The physical mean free path of an X-ray photon of frequency ν , is

l̄ =
1

nσ
' 1

(1+ z)3
ν3

nHI,0σHI,0ν3
HI +n0,HeσHeI,0ν3

HeI

' 3.76×10−5
(

ν

1+ z

)3

Mpc, (2.10)

which agrees with Furlanetto et al. [2006]. As the photon travels through the medium, its frequency decrea-
ses, which increases the cross-section. But the decrease in number density of hydrogen atoms with redshift
cancels this effect and the probability of the absorption of the X-ray photon is not altered significantly.

The low-frequency X-ray photons have lower mean free paths and they are absorbed with higher probability.
They heat up the medium immediately surrounding the HII regions, whereas the high-frequency photons
free stream through the medium and might get absorbed far away from any source. For example, at z = 20,
the physical1 mean free path of X-ray photons of frequency ν ' 100 eV and ν ' 1 keV are l ' 4.06 kpc and
l ' 4.06 Mpc respectively. At z = 15, these mean free path are l = 9.18 kpc and l = 9.18 Mpc respectively.

Hard X-rays with large mean free paths heat up the whole IGM to some uniform background temperature
Tbg. The heating caused by soft X-rays around individual sources adds to the spatial fluctuations of kinetic
temperature. In our work, we divide the neutral regions into two zones. In the near zone the heating
is dominated by X-ray photons from an individual self-ionized region and in the far zone, the average
contribution from the all the background sources is taken into account.

Very high energy photons are not absorbed until the completion of the reionization of the universe. We
do not consider the increase in UV flux due to redshifted X-ray photons. The frequency of an X-ray
photon emitted at the beginning of cosmic dawn z∼ 30 will decrease by a factor of 5 by the completion of
reionization. Since the soft X-rays photons are absorbed locally, they will not have a chance to redshift to
the UV band; and the redshifting of hard X-ray photons will not put them in this band.

Optical Depth of the Medium: The X-ray optical depth of the medium (at z′) between source S (at z) and
receiving point P (at z′′) is,

τ =
∫ P

S
dl′ ∑

i
n′iσ
′
i .

Using Eq. 2.8, we get

τ =
∫ P

S
dl′ ∑

i
nb,0x′i(1+δ

′)(1+ z′)3
σi,0

(
νi

ν ′

)3

1Given the large mean free paths for high frequency photons, these distances should be interpreted as light travel distance.
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= nb,0

∫ P

S
dl′

x′n(1+δ ′)(1+ z′)3

ν ′3 ∑
i

xiσi,0νi
3. (2.11)

We have divided the fraction of a species in two factors as x′i = x′nxi, where x′n is the neutral fraction of
the medium and xi is the primordial fraction of species i. If the point P is very close to the source, then
the quantities within the distance integral will remain constant over the integral. X-ray photons are not
absorbed in the ionized region, so we integrate this term from the boundary of the ionization bubble (at X)
to point P. Assuming δ ′ = 0,

τ = nb,0

∫ P

X
dl′

(1+δ ′)(1+ z′)3

ν ′3 ∑
i

xiσi,0νi
3

' nb,0(1+ z′)3

ν ′3
Rγ ∑

i
xiσi,0νi

3, (2.12)

where Rγ is the light travel distance between X and P. We note here that since the mean free path of soft
photons is a few kpc, calculating the optical depth from the centre of the ionization bubble and calculating
it from the boundary of the bubble changes the temperature immediately surrounding the ionization bubble
drastically. However, the temperature far away from the source is not affected much due to this effect.
The optical depth of the medium for a photon of fixed frequency ν is decreasing with the expansion of the
universe since the number density of the particle decreases.

2.1.2 Temperature Profile around X-ray Sources

First, we assume that an X-ray photon is emitted by the source at z (point S) and it is absorbed by an atom
at z′ (point P). Energy obtained by electrons due to ionization of species i, per unit time, per unit comoving
volume, per unit frequency at comoving distance R0 from the source is,

dE ′
ν ′(i)

dt ′dν ′dV0
= (hpν

′−hpνi)
dN′

ν ′

dt ′dν ′dV0
P(i,ν ′), (2.13)

where, dN′
ν ′/(dt ′dν ′dV0) is the number of photons of frequency ν ′ arriving at distance R0, per unit time,

per unit frequency, and per unit comoving volume. P(i,ν ′) is the probability of atom of species i getting
ionized by a photon of frequency ν ′ if such a photon were present (Eq. 2.8) and (hpν ′−hpνi) is the energy
of the emitted photoelectron if an atom of species i was ionized by photon of frequency ν ′. Assuming a
neutral medium and taking into account the contribution due to all species, we get,

dE ′
ν ′

dt ′dν ′dV0
=

dN′
ν ′

dt ′dν ′dV0
∑

i
hp(ν

′−νi)xinb,0(1+ z′)3
σi,0

(
ν ′

νi

)−3

dl′

= hpnb,0
dN′

ν ′

dt ′dν ′dA0

dl′

dl0

(1+ z′)3

ν ′3 ∑
i
(ν ′−νi)xiσi,0ν

3
i . (2.14)
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The number of photons of frequency ν ′ received at distance R0 from the source per unit area, per unit time,
per unit frequency are,

dN′
ν ′

dt ′dν ′dA0
=

dṄν

dν

1
4πR2

0
e−τ(R0,ν

′), (2.15)

where, dṄν/dν are the number of photons emitted from the source per unit time, per unit frequency and
τ(R0,ν

′) is the optical depth of the medium. Using Eq. 2.15 in Eq. 2.14, and noting that dl0 = dl′(1+ z′)

we get,

dE ′
ν ′

dt ′dν ′dV0
= hpnb,0

dṄν

dν

1
4πR2

0
e−τ(R0,ν

′) (1+ z′)2

ν ′3 ∑
i
(ν ′−νi)xiσi,0ν

3
i . (2.16)

Using the value of source luminosity from Eq. 2.5, we get,

dE ′
ν ′

dt ′dν ′dV0
= hpnb,0

(
4π

3
R3

x
αNheat f?nb,0

ζ ν

ḟcoll,g

fcoll,g

(
ν

νmin

)−α
)

1
4πR2

0
e−τ(R0,ν

′) (1+ z′)2

ν ′3 ∑
i
(ν ′−νi)xiσi,0ν

3
i

= hpn2
b,0

αNheat f?να
min

3ζ

R3
x

R2
0

ḟcoll,g

fcoll,g

(1+ z′)2

ν ′α+4

(
1+ z′

1+ z

)α+1

e−τ(R0,ν
′)
∑

i
(ν ′−νi)xiσi,0ν

3
i . (2.17)

We integrate this over all frequencies ν > νmin to get energy per emitted photoelectron, per unit time, per
unit comoving volume at distance R0 from the centre of a self-ionized region of radius Rx. We assume that
fH = 0.15 fraction of the energy of these photoelectrons goes into heating the medium, which gives,

dEheat

dt ′dV0
=

hpn2
b,0

3
fHαNheat f?να

min
ζ

(1+ z′)α+3

(1+ z)α+1
R3

x

R2
0

ḟcoll,g

fcoll,g

∫
∞

ν ′min

dν
′ e
−τ(R0,ν

′)

ν ′α+4 ∑
i
(ν ′−νi)xiσi,0νi

3, (2.18)

where, ν ′min = νmin(1+ z′)/(1+ z) is the minimum frequency from the source that reaches P. We can
integrate Eq. 2.18 over the history of the source to get the total energy converted into heating the medium.
However, with the expansion of the universe, the medium is also cooling adiabatically. If z′c is the redshift
at which we want to compute the temperature profile, then the source redshift is zc. We multiply the energy
received at higher redshift (z′) by (1+ z′c)

2/(1+ z′)2 factor to account for this effect. Therefore,

dE ′heat
dV0

=
hpn2

b,0

3
fHαNheat f?να

min
ζ

∫ t(zc)

t(z?)
dt ′

R3
x(t
′)

R2
0

(1+ z′)α+3

(1+ z)α+1
ḟcoll,g

fcoll,g

(1+ z′c)
2

(1+ z′)2∫
∞

ν ′min

dν
′ e
−τ(R0,ν

′)

ν ′α+4 ∑
i
(ν ′−νi)xiσi,0νi

3. (2.19)

Here z? is the source redshifts corresponding to formation of first sources and Rx(t ′) is the radius of the
given ionized region at time t ′ in past. This is not a straightforward quantity to calculate as excursion set
formulation doesn’t give the time evolution of the radius of a particular self-ionized region. Given that
the formalism allows us to compute the evolution of the average ionized fraction fi, we assume R3

x(t
′) =
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R3
x(t)( fi(t ′)/ fi(t)). This gives,

dE ′heat
dV0

=
hpn2

b,0

3
fHαNheat f?να

min
ζ

R3
x

R2
0
(1+ z′c)

2
∫ t(zc)

t(z?)
dt ′

fi(t ′)
fi(t)

ḟcoll,g

fcoll,g

(
1+ z′

1+ z

)α+1

∫
∞

ν ′min

dν
′ e
−τ(R0,ν

′)

ν ′α+4 ∑
i
(ν ′−νi)xiσi,0νi

3. (2.20)

Note that if we know the exact collapse and merger history of a particular ionization bubble, then we can
replace the ( fi(t ′)/ fi(t))( ḟcoll,g/ fcoll,g) factor with appropriate time dependent values. The final increase in
temperature at redshift z′c, due to a self-ionized region of radius Rx at distance R0 is,

∆T ′ =
1

nb,0kB

dE ′heat
dV0

=
hpnb,0

3kB

fHαNheat f?να
min

ζ

R3
x

R2
0
(1+ z′c)

2
∫ t(zc)

t(z?)
dt ′

fi(t ′)
fi(t)

ḟcoll,g

fcoll,g

(
1+ z′

1+ z

)α+1

∫
∞

ν ′min

dν
′ e
−τ(R0,ν

′)

ν ′α+4 ∑
i
(ν ′−νi)xiσi,0νi

3. (2.21)

Here we have assumed that the energy of the photoelectron is shared by HI and HeI. If the ionization fraction
is large or if baryonic matter is coupled to dark matter particles, the number of particles sharing the energy
should be modified accordingly.

2.1.3 Background Temperature

To calculate the average temperature increase of the IGM since z?, we need to take into account the X-ray
photons emitted by all the sources over the history of the universe. We choose a random point and calculate
the increase in temperature at that point due to sources that lie in a shell of thickness dR0 at distance R0 and
integrate over all such shells. The volume of ionized gas inside this shell at comoving distance R0 is,

V0 = 4πR2
0dR0 fi(z(R0)), (2.22)

where fi(z(R0)) is the global ionization fraction at the redshift of that shell. Eq. 2.21 gives the increase in
temperature due to ionized region of volume 4π/3R3

x . Replacing, Eq. 2.22 in it and integrate over R0,

∆T ′bg =
hpnb,0

kB

fHαNheat f?να
min

ζ
(1+ z′0)

2
∫ R0(z?)

Rmin

dR0

∫ t(z)

t(z?)
dt ′

ḟcoll,g(t ′)
fcoll,g(t ′)

fi(t ′)
(

1+ z′

1+ z

)α+1

∫
∞

ν ′min

dν
′ e
−τ(R0,ν

′)

ν ′α+4 ∑
i
(ν ′−νi)xiσi,0νi

3. (2.23)

We take the upper limit of R0 integration to correspond to the redshift of star formation R0(z?), where
we take z? = 35. However, the lower limit Rmin is somewhat difficult choice as we discuss in the next
subsection. Here we do not correct the value of optical depth due to any intermediate ionized regions
between the shell at R0 and the point of interest P.
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2.1.4 Modelling Profiles

There are two major problems with this method of separating the medium in the ‘near zone’ (source pro-
files) and ‘far zone’ (background). (a) Due to the large mean free paths of heating bubbles, we expect the
temperature profiles to be very large. They start overlapping with one another long before the overlap of
ionization bubbles. This is problematic while trying to calculate the correlations, as discussed in Chapter 4.
(b) The ionization bubbles, and hence their temperature profiles have a wide range of sizes. Therefore it
is difficult to define some characteristic scale at which the profiles end and the background begins. This
problem is also related to the lower limit Rmin of integral in Eq. 2.23. Given that most of the contribution
to X-ray heating come from soft photons from nearby sources, it is important to model their contribution
properly.

Since the profile of one source is still in the background region for the rest of sources, we need to add the
average Tbg to the source profile temperature. We use energy conservation to make sure that the average
temperature rise over different regions corresponds to the total energy dumped into the medium by all the
sources.

Some of the methods to mitigate these problems are explored below, with a brief description and a few pros
and cons:

• Inter-bubble Separation: At any redshift, we can define R̄ as the mean separation between two
ionization bubbles. It can be defined as R̄∼ N−1/3, where N is the total number density of ionization
bubble, or we can take weighed average as,

R̄∼ ∑N(Rx)Rx

∑N(Rx)
,

where, N(Rx) is the number density of bubbles with size Rx and we take the sum over Rx.
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We can calculate source profiles up to this distance R̄ and use Rmin = R̄ to calculate background
temperature. However, given the large size distribution of bubbles, this method fails in many ways.
Profiles of large bubbles are cut-off abruptly, before the temperature levels off, whereas profiles of
small bubbles are computed up to a distance where they have negligible influence. Excursion set
formalism also gives us ionization bubbles whose radius is larger than R̄, which would result in these
bubbles having no temperature profiles. We do not use this method in our work.

• Region of Influence: We can try to cutoff source profiles where the temperature increase due to that
source, over its history, is equal to the background temperature. This results in the smooth merging of
source profiles with the background, however, it undermines the fact that source profiles would also
have a small amount of heating due to faraway sources. It also does not give a conclusive value of
Rmin. We do not use this method in our work.

• Cutoff Temperature: We can cutoff source profiles when the temperature increase in a shell of this
profile over the entire history of the source is less than Tcutoff, or can use cutoff value for s≡ TCMB/TK .
This prescription works at high redshifts where the heating is yet inefficient and the profiles are small.
At low redshift, if Tcutoff is too small, this method results in a very large number of overlaps. Even
though we have attempted and succeeded in incorporating a small amount of overlap of temperature
profiles (Section 2.1.5), scenarios where several profiles are bound to overlap on every other profile
is a difficult case, which often gives in unphysical artefacts in our formalism. This also does not give
us any intuitive value for Rmin.

We used this method with Tcutoff = 1K and Rmin = 0 in Raste and Sethi [2018]. Here the photon
energy from the source profiles is also included while calculating background temperature. However,
we can remove this contribution by subtracting the total amount of energy in the profiles from the
final Tbg (Method 1 in Section 2.1.5).

• Relative cutoff Temperature: We can cut-off source profiles where the temperature difference bet-
ween two consecutive shells is less than certain cutoff value, which would indicate that the tempera-
ture profiles have levelled off. As in the case of absolute cutoff temperature, this would result in large
TS profiles and high amount of overlap at lower redshift. We do not use this method in our work.

• Volume fraction of Profiles: We can calculate source profiles up to a very large distance and use a
very small value of cutoff temperature (Tcutoff < 0.1 K). The total volume fraction occupied by all the
profiles fhb� 1, which suggests a large amount of overlap. After correcting for the effect of overlap,
the real volume fraction of these profiles fh (see Section 2.1.5) is still close to unity.

The average temperature increased due to all the sources should agree with the background tem-
perature calculated using Rmin = 0. However, instead of calculating background temperature using
Eq. 2.23, we shed outer shells from the source profiles until the volume fraction occupied by bubbles
and their profiles fi+ fh is less than 0.5. The energy within these shedded shells is averaged to calcu-
late the background temperature. As we remove more outer shells from source profiles, the sizes of
these profiles decrease and the global temperature increases. We have used this method in Raste and
Sethi [2019].
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Figure 2.1: Heating (TK) profiles around a bubble at
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With the growth and formation of more sources, the profile, as well as, the background temperature increase.
However, the quantity of interest that can be probed directly with the 21 cm signal is not the absolute
temperature of the gas TK , but its contrast with CMB (1− TCMB/TK). At lower redshifts, TCMB is small
and the kinetic temperature is increasing. Spatial fluctuations in TK results in significant spatial fluctuations
of 21 cm signal only as long as TK is smaller than TCMB. When the gas has heated to a temperature
much higher than TCMB, its spatial fluctuations have negligible effect on 21 cm fluctuations (TK� TCMB⇒
1− TCMB/TK ∼ 1). This is the uniformly heated phase of the universe, even though the actual kinetic
temperature can be far from uniform. Therefore, in our work, we primarily focus on accurate modelling of
TK during the early phase of heating.

While deriving Eqs. 2.21 and 2.23, we have assumed that other than adiabatic cooling, no other cooling
mechanism are efficient in the IGM. If there were any other uniform heating or cooling mechanisms in the
universe, we can incorporate their effect in the value of Tbg.

In Figure 2.1 we plot temperature profiles around an ionization bubble at z = 17 for ζ = 10, Nheat = 1.0, and
three values of α . The figure also displays a case when νmin = 1keV. This figure shows that the temperature
around an ionization bubble falls sharply unto certain distance, after which the profiles become shallower.

For higher value of α , there are more soft X-ray photons and the profile temperature, as well as the back-
ground temperatures, are higher. For smaller value of α , the profiles are shallower and the temperature in
the inner shells (right outside ionization bubbles) is small. When we assume that the minimum frequency
of photons escaping the halo is 1 keV, the profiles are smaller and shallower. The absence of soft photons,
which are the main reasons for temperature fluctuations, results in almost uniform heating of the medium.
Also, in this case, the heating is suppressed even in the far zone as high energy photons remain unabsorbed
(Fialkov et al. [2014]). For higher value of Nheat, there are more photons of every frequency. This results in
a higher overall temperature of the medium.

In Figure 2.2 we show the evolution of the heating profile around an ionization bubble (similar results have
been obtained by e.g. Venkatesan and Benson [2011], Ghara et al. [2015]). The smallest radius in each
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profile displayed is the size of the fiducial ionization bubble, which is assumed to grow according to the
mean ionized fraction in the universe (Rx ∼ f 1/3

i ). With the growth of this bubble, the temperature of the
profile and background is increasing.

In Figure 2.3 we show the temperature profile size distribution corresponding to ionization bubbles from
Figure 1.6. Here the profile boundaries are calculated using Tcutoff = 1 K. The heating profiles are larger
than self-ionized regions by roughly a factor of 4.5 for this case. For most of the history of reionization, the
maximum contribution comes from the smallest bubble size and only at small redshifts there is a clear peak
at intermediate bubble sizes. Sizes of profiles increase with Nheat since there are more X-ray photons. For
higher value of α , more heating contribution comes from smaller bubble size than larger ones.

2.1.5 Overlap of Profiles

The volume fraction of the universe occupied by the ionization bubbles is,

fi = ∑
Rx

N(Rx)
4π

3
R3

x , (2.24)

where, N(Rx) is the number density of bubbles with ionization radius Rx and we have assumed that the
ionization bubbles do not overlap. Similarly, we can define the volume fraction due to source temperature
profiles to be,

fhb = ∑
Rx

N(Rx)
4π

3
(R3

h−R3
x), (2.25)

where, Rh is the outer radius of the profile around ionization bubble of radius Rx (See Section 4.3 for detailed
notations). The value of Rh is depended on what prescription we use to define the source profiles, however,
it is generically a function of Rx. When there is a significant overlap between source profiles, the value of
fhb can exceed unity, as many parts of the volume are counted more than once as parts of different profiles.
Hence, fhb is not really a fraction. We define another quantity fh, as the actual volume fraction occupied by
source profiles. We use two methods to calculate fh.
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Method 1: We can imagine a universe filled with ionization bubbles ( fi), their overlapping source profiles
( fh) and a background region ( fb) which lies outside any source profile. In this universe we place another
ionization bubble with its own source profile, and make sure that the new ionization bubble does not overlap
with any other ionization bubble (but it can overlap with any source profile). Therefore within the source
profile of the new bubble, fi fraction of the volume is ionized, fh fraction of the volume is overlapping
with other profiles and only fb fraction of the volume is un-overlapping. Thus, generally within every
profile, there can be part of another profile or ionization bubble1. We subtract these parts while defining fh

recursively as,

fh = ∑
Rx

N(Rx)
4π

3
(R3

h−R3
x)(1− fi− fh)

= fhb(1− fi− fh).

This gives us,

fh =
fhb(1− fi)

1+ fhb
, (2.26)

fb = 1− fi− fh =
1− fi

1+ fhb
. (2.27)

When the value of fhb and fi is small, fh approaches fhb. However, even when the value of fhb becomes
much larger than unity, fh remains less than unity.

We also calculate the effect of overlap of source profiles on the average profile and background temperatu-
res. When multiple temperature profiles are likely to overlap, the temperature of any profile should contain
contribution due to other overlapping profiles. Hence,

Tp = Tq +To, (2.28)

where, Tp, the resultant temperature, is the sum of the original temperature of this shell Tq and the average
contribution due to overlaps To. We can write,

To = ∑
Rx

∑
q

fq(Tq +To),

where, fq is the real volume fraction of the shell with temperature Tq after taking into account the overlaps.
We can write it as,

fq = N(Rx)
4π

3
fhb

fh
((Rq +∆Rq)

3−Rq
3), (2.29)

where, Rq and ∆Rq are the radius and width of the shell. The fhb/ fh factor takes care of the overlaps. The

1Outside an ionization bubble, the probability of finding any temperature profile is 1− fi, since this region is definitely not in
the background. But the volume fraction of the profile associated with this bubble is 1− fi− fh since some of the heated regions
are shared with other bubbles and will get counted as profiles associated with those bubbles.
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sum of all such volume fractions for all shells of all profiles is fh. Therefore,

To = ∑
Rx

∑
q

fqTq + fhTo

=
1

1− fh
∑
Rx

∑
q

4π

3
N(Rx)

fhb

fh
((Rq +∆Rq)

3−Rq
3)Tq.

Using value of fh from Eq. 2.26, we get,

To =
1− fi

1+ fi fhb
∑
Rx

∑
q

4π

3
N(Rx)((Rq +∆Rq)

3−R3
q)Tq. (2.30)

We add To to the profiles, but subtract To/ fn from background temperature Tbg to maintain the energy
budget. Here fn = 1− fi is the neutral fraction of the universe, and this factor arises since we need to discard
the energy from the profile that overlap with ionized regions1. If the background temperature calculated
using Rmin = 0 in Eq. 2.23 is Tbg, then the average temperature within neutral region is,

fnT̄K = ∑
Rx

∑
q

fq

(
Tq +To +

(
Tbg−

To

fn

))
+ fb

(
Tbg−

To

fn

)
.

Here we note again that within a source profile, there is contribution due to overlapping profiles as well as
background temperature due to far away sources. This gives,

fnT̄K = ∑
Rx

∑
q

fq(To +Tq)+ fh

(
Tbg−

To

fn

)
+ fb

(
Tbg−

To

fn

)
= To + fn

(
Tbg−

To

fn

)
= fnTb.

This confirms the conservation of energy. We used this method in Raste and Sethi [2018].

Method 2: We want to arrange N ionization bubbles of radius Rx and temperature profile of radius Rh, in
a large box of volume V (V � 4π/3 R3

h). The condition is that the ionization bubbles must on overlap with
one another, but the temperature profiles can overlap with other ionization bubbles and profiles. We wish to
calculate the total volume fraction occupied by the profiles for such an arrangement.

When N = 1, there is only one bubble randomly placed within the box. The fraction of volume of this box
occupied by the bubble and profile is, respectively,

gx =
4π

3
R3

x
V

and gh =
4π

3
R3

h−R3
x

V
,

with the total volume fraction occupied, gt = gx +gh = (4π/3) R3
h/V . Here we are interested in calculating

the volume fraction occupied by the profiles. Thus, this fraction for N = 1 is g1 = gh.

1In reality, as ionized regions are almost transparent to X-ray photons, we could have accommodated this energy properly,
but it is a small factor and we do not attempt more detailed calculations.
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For N = 2, we need to randomly place the second bubble in the box which already contains the first bubble.
Across multiple such placements, the average non-overlapping volume fraction occupied by the profile of
the second bubble is gh(1− gt), since its probability of overlapping with first bubble or its profile is gt .
Therefore the total average volume fraction of both bubbles is,

g2 = gh +gh(1−gt) = g1 +g1(1− (g1 +gi)).

Placing a third bubble in this scenario (N = 3), we get,

g3 = g2 +gh(1− (2gi +g2)),

where the first term (g2) is due to the profiles of first the two bubbles, and the second term is due to the
profile of the third bubble, which can overlap with the two ionization bubbles (2gi) or their profiles (g2).
This can be expressed recursively for N spheres as,

gN = gN−1 +g1(1− ((N−1)gi +gN−1))

= gN−1(1−g1)+g1(1− (N−1)gi)

=
N−1

∑
k=0

g1(1−g1)
k(1− (N−1− k)gi)

=

(
1+

gi

g1

)
(1− (1−g1)

N)−Ngi. (2.31)

Now the total volume fraction occupied by the ionization bubbles is fi = Ngi, and the total sum of fractions
occupied by the profiles, including the multiple counting of overlapped part is fhb =Ngh. The actual volume
fraction occupied by the profiles is,

fh = gN =

(
1+

fi

fhb

)
(1− (1−gh)

N)− fi. (2.32)

In the limit where gh� 1 and N� 1, we get (1−gh)
N ' exp(−Ngh). Thus, we finally have,

fh =

(
1+

fi

fhb

)
(1− e− fhb)− fi. (2.33)

We extend this result to multiple bubble sizes and temperature profiles with multiple shells by using
Eqs. 2.24, and 2.25.

We tried putting a large number of ionization bubbles (N = 200) in a simulation box, with the condition
that these bubbles do not overlap, but their profiles can, and calculated the total volume fraction occupied
by these profiles. These results match very well with Eq. 2.33, but start diverging from Eq. 2.26 for large
fhb. In both methods, it has been assumed that the probability of overlap of inner shells is the same as the
probability of overlap of the outer shells, however, if we enforce that the ionization bubbles do not overlap,
then the outer shells are more likely to be overlap than inner shells.
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2.2 Baryon Interaction with Cold Dark Matter

If there was a small fraction of millicharged dark matter in the universe, then there is a possibility that it
might interact with baryons through Coulomb scattering (Barkana [2018], Fraser et al. [2018]). The cross
section for this interaction is,

σdm = σ1

(
1 km/s

vrel

)4

, (2.34)

where vrel is the relative velocity between dark matter and baryonic particle and σ1 is the interaction cross-
section when vrel = 1 km/s. This interaction cross-section increases with decreasing velocity, which corre-
sponds to lower temperatures as v ∝ T 1/2. Such an interaction would change the evolution of the baryon
temperature during dark ages as,

dTK

dt
=−2ȧ

a
TK +

xe

1+ xe

8σT

3
arT 4

CMB
mec

(TCMB−TK)+ndmσdmvrel(Tdm−TK). (2.35)

Here, TK and Tdm are baryon and dark matter temperatures respectively and ndm is the dark matter number
density. If Tdm < TK , then this interaction results in the cooling of baryons more than what is predicted by
the standard physics during dark ages. Dark matter temperature evolves as,

dTdm

dt
=−2ȧ

a
Tdm +nbσdmvrel(TK−Tdm). (2.36)

Here the first term accounts for the cooling of the dark matter temperature and the second term is the change
in temperature due to its interaction with baryons with number density nb. This is a difficult quantity to
calculate since we do not know initial or final temperature of dark matter.

The evolution of baryon temperature will depend on Tdm, ndm and σdm, which are parameters dependent on
the dark matter models. If ndm� nb, then its interaction with baryons does not affect the evolution of dark
matter temperature significantly.

Given the strong dependence of σdm on relative velocity, this interaction would become more important
at low temperatures. If the value of σdm is very high, it would couple dark matter temperature to baryon
temperatures at the epoch when the baryons are still coupled to CMB, and this would result in heating of
the dark matter, and change the later structure formation scenario. This provides an upper bound for σdm.

The presence of dark matter-baryons interaction would alter the fluctuations in baryon temperature signifi-
cantly. Baryonic gas at the same temperature and redshift will cool differently due to its peculiar velocity,
which would create additional baryon acoustic oscillations at low redshifts (Fialkov et al. [2018], Muñoz
and Loeb [2018]). In our work, we do not model velocity-dependent fluctuations; however, we do explore
models where the interaction between baryon and cold dark matter changes the baryon temperature history
during dark ages and cosmic dawn, and decreases the efficiency of X-ray heating.
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Chapter 3

Spin Temperature Coupling

“Dumbledore beamed at him, and his voice sounded loud and strong, [...]

‘Of course it is happening inside your head, Harry, but why on earth should

that mean it is not real?’”

— J. K. Rowling, Harry Potter and the Deathly Hallows

3.1 Lyman-α Coupling

Photons of frequency between Lyman-α and Lyman-continuum line (10.2 eV < ν < 13.6 eV) are emitted
by the same sources that ionize the medium. These photons are referred to as the Lyman-α radiation emitted
from the source1. These photons with frequency less than hydrogen ionizing frequency escape the ionized
regions and redshift into the outside neutral medium. When their frequency becomes equals the resonant
frequency of one of the Lyman series lines, they are absorbed and scattered by the neutral hydrogen of the
medium2. Lyman series photons with n > 2 usually cascade to Lyman-α frequency, and help coupling spin
temperature TS to kinetic temperature TK (Pritchard and Furlanetto [2006]). Here we have assumed that all
of Lyman-n photons are converted to Lyman-α photons ( frecycle = 1 for all n).

In the neutral regions, collisional excitation of the hydrogen to first excited state can be safely ignored
because the temperature required for such excitations would be high enough to cause significant ionization
of the medium. We also ignore the Lyman-α photons produced due to recombination in the ionized regions,
because they are either absorbed very close to the boundary of the HII regions or they redshift to frequency
lower than Lyman-α and do not interact with the neutral IGM.

3.1.1 Lyman-α in the Intergalactic Medium

In IGM, a Lyman-α photon is scattered repeatedly by neutral hydrogen. It also undergoes redshift between
each scattering and will be shifted out of the resonance width after a number of scatterings. This resonance

1However, the Lyman-α radiation received at a point only refers to photons with Lyman-α frequency.
2The scattering cross-section falls with increasing n of the line, so this scenario is applicable if the optical depth of scattering

in the expanding medium exceeds unity. This requirement is readily met for the transitions of interest (n < 20).
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width ∆να is dominated by the Doppler broadening for Lyman-α . Hence we take1,

∆να =

√
kBTK

mpc2 να . (3.1)

Lyman-α absorption cross-section by HI is,

σα =
πe2

mec
fαφ(ν−να) (3.2)

where, fα = 0.4162 is the Lyman-α oscillation strength. It can be written as function of spontaneous decay
rate Aα and frequency να as,

fα =
3c2Aα

8πν2
α

mec
πe2 . (3.3)

Lyman-α line profile function φ(ν−να) is sharply peaked around Lyman-α frequency. Therefore, we can
approximate it to φ(ν−να) = 1/2∆να .

Optical Depth: Lyman-α optical depth in neutral medium is,

τα =
∫

σαnHI(z)dl

=
πe2 fα

mec

∫
φ(ν−να)nHI(z)

c
H(z)

dz
1+ z

,

where, dl is the light-travel distance. Since, φ(ν − να) is sharply peaked around να , we assume that the
redshift dependent quantities nHI and H(z) will remain constant over this distance. Using, dz/(1+ z) =

dν/ν , we get,

τα '
πe2 fα

meνα

nHI(z)
H(z)

∫
φ(ν−να)dν

' 1.34×10−7 nHI(z)
H(z)

.

Using, approximation of matter-dominated universe, and taking the number density of neutral hydrogen at
redshift z to be nHI(z) = nHI,0xHI(1+δ )(1+ z)3, we derive the Gunn-Peterson optical depth (Section 1.2),

τα = 2.04×105xHI(1+δ )(1+ z)3/2. (3.4)

Here nHI,0 is the neutral hydrogen number density at present; xHI and δ are neutral fraction and overdensity,
respectively.

1 In our work, we have also alternatively used,

2∆ν
′
α =

√
8kBTK ln(2)

mpc2 να ,

the full-width half-maximum of the line. This makes a small difference since, ∆ν ′α/∆να =
√

2ln(2)' 1.18.
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Mean Free Path: Using Eq. 3.2, the mean free path of a Lyman-α photon at redshift z is,

l̄α =
1

nHI(z)σα

' mec
πe2 fα

2∆να

nHI,0(1+ z)3 . (3.5)

While travelling this distance, the Lyman-α photon has redshifted by,

dνα = να

H(z)
c

l̄α ' να

2me

πe2 fα

H(z)
nHI,0(1+ z)3 ∆να .

Therefore, the number of scattering before the photon is redshifted by its resonance width ∆να is,

nscatter =
∆να

dνα

' (1+ z)3

H(z)
nHI,0πe2 fα

2meνα

' 1.02×104 (1+ z)3/2. (3.6)

The large number of scattering experienced by a Lyman-α photon before it redshifts out of Doppler reso-
nance width, is sufficient to couple the Lyman-α colour temperature Tα to matter kinetic temperature TK

(Wouthuysen [1952], Field [1959]). Lyman-α line has a constant shape once the steady state is reached
(Chen and Miralda-Escudé [2004]). We assume Tα = TK everywhere in our work.

Influence Region: We define Lyman-n influence region as the comoving distance travelled by the Lyman-
(n+1) photons to redshift to Lyman-n frequency. If these photons were emitted at z = ze and absorbed at
z = za with νe = νn+1 and νa = νn, then the comoving distance travelled by the photon before it is absorbed
in an expanding matter dominated universe is (n≥ 2),

R(n)
max =

∫ ze

za

cdz
H(z)

' 2c

H0Ω
1/2
m

[
1

(1+ za)1/2 −
1

(1+ ze)1/2

]
' 2c

H0Ω
1/2
m

1
(1+ ze)1/2

(√
νn+1

νn
−1
)
.

Here, we have used, (1+ za)/(1+ ze) = νa/νe. Lyman-n line frequency is νn ∝ (1− 1/n2), therefore we
can write,

νn+1

νn
=

n(n+2)
(n+1)2

n2

(n−1)(n+1)
.

The Lyman-n influence region is

R(n)
max '

1.6×104 Mpc
(1+ ze)1/2

[(
n3(n+2)

(n−1)(n+1)3

)1/2

−1

]
. (3.7)

These influence regions become smaller with increasing n, as the frequency difference between νn+1 and
νn decreases. The Lyman-α influence region (n = 2) is

R(2)
max '

1422 Mpc
(1+ ze)1/2 . (3.8)

This region is much larger than the mean distance between ionization bubbles at any redshift. For example,
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for ζ = 7.5, the values of mean comoving distance between bubbles at redshifts 25, 20, and 15 is 7.85 Mpc,
2.29 Mpc and 0.96 Mpc respectively. Therefore, Lyman-α influence regions are very large and merge very
early.

3.1.2 Lyman-α Photons Number Density

The Lyman-α contribution at any point arises from two main factors: Lyman-α emitted from the sources
and Lyman-α created due to X-ray photoelectrons (Venkatesan et al. [2001]). The latter is generally small
and we neglect it in our work.

Source Luminosity: We assume that the total Lyman-α luminosity of an ionization bubble of size Rx is
proportional to its ionizing photons (UV) luminosity1:

Ṅt = fLṄion

= fL
4π

3

(
Rx

1+ z

)3

αBCn2
0(z)

= fL
4π

3
R3

xn2
HI,0αBC(1+ z)3. (3.9)

Here we have used the balance between ionization and recombination in the self-ionized HII region (Eq. 1.10)
to connect its ionizing luminosity with the size of the HII region. αB is case-2 recombination coefficient
(Section B) and C is the clumping factor of the halo (Section 1.1.4).

The luminosity of ionizing and Lyman-α photons depends on the type of stellar sources (Schaerer [2002],
Mirocha et al. [2018]). The ratio of ionizing photons and Lyman-α photons emitted from the sources is
between 0.07 and 0.3 (Mirocha et al. [2015]). Lyman-α photons also escape the halo more easily than
ionizing photons (Dijkstra et al. [2008a]). Hence, Chen and Miralda-Escudé [2004] has taken the value of
fL to be between 10 and 100. However, for the sake of completeness, we take 0.1 < fL < 1000 in our work.
Since the stellar population is expected to change with time, the value of fL should evolve with redshift.
We have ignored this effect. We also assume that the sources emit flat spectrum between Lyman-α and
Lyman-limit. Therefore, we have

dN
dtdν

=
Ṅt

νHI−να

. (3.10)

The angle averaged specific intensity of Lyman-α photons (by number) at comoving distance R0 is,

J′ν =
1

4π

dN′

dt ′dν ′dA′

=
1

4π

Ṅt

νHI−να

(1+ z′)2

4πR2
0

. (3.11)

Here, all primed quantities are calculated at the receiving point P, and the unprimed quantities are calculated

1The Lyman-α photons (photons with frequency between Lyman-α and Lyman-continuum lines) also fall in the ultraviolet
spectrum; however, in our work ‘ultraviolet photons’ always refer to ionizing photons with ν > 13.6 eV.
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at the source S. The (physical) number density of Lyman-α photons at a P is

n′α,? =
dN′α
dV ′

=
1
c

dN′α
dA′dt ′

.

The only frequencies which are absorbed at redshift z′ are in the range of ∆να around να . Therefore, we
can write,

n′α,? '
4π

c
2∆ν

′
α

∫
J′ν(x)φ(x−να)dx (3.12)

' 4π

c
2∆ν

′
αS′αJ′α

' S′α
c

Ṅt

4πR2
0

2∆ν ′α
νHI−να

(1+ z′)2.

Here Sα is a correction factor of order unity as defined in Chen and Miralda-Escudé [2004], which depends
on the photon spectrum around Lyman-α line (Hirata [2006], Pritchard and Loeb [2012]). This spectrum is
determined by the process of repeated scattering of Lyman-α photons. Using luminosity from Eq. 3.9, we
get

n′α,? '
S′α
c

1
4πR2

0

(
fL

4π

3
R3

xn2
HI,0αBC(1+ z)3

)
2∆ν ′α

νHI−να

(1+ z′)2

'
S′α fLn2

HI,0αBC

3c
R3

x

R2
0

2∆ν ′α
νHI−να

(1+ z′)2(1+ z)3. (3.13)

When a photon redshifts to the frequency corresponding to one of the Lyman series lines, it gets scattered by
the neutral hydrogen and eventually cascades to frequency corresponding to Lyman-α . Thus, the number
density of Lyman-α photons at any point will be determined by the number of Lyman-n influence regions
the points falls within. If the distance of a point from the source R0 is such that Rmax(n+1)< R0 < Rmax(n),
then the point in question will have n Lyman-α photons due to this source. This means that Lyman-α flux
from the source centre generally falls more rapidly than 1/r2 when this effect is taken into account.

The effect of higher order transitions is expected to be subdominant, because for a continuum source, the
total number of photons emitted between Lyman-β to Lyman-limit is smaller than in the frequency range
between Lyman-β and Lyman-α . Moreover, these photons will be absorbed closer to the source, since their
influence region is smaller.

In our work, we only consider Lyman series lines which have influence regions (R(n)
max) larger than the

ionization bubble radius (Rx):

(
n3(n+2)

(n−1)(n+1)3

)1/2

−1≥ Rx(1+ ze)
1/2

1.6×104 Mpc
.

For an ionization bubble of Rx = 0.3 comoving Mpc, at z = 15, the highest Lyman-n transition that escapes
this bubble is, nmax ' 23. Photons with influence regions smaller than the ionization bubble will redshift
to lower and lower Lyman series lines until they cross the ionization region boundary, where they should
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get absorbed right away. However, their effect would be very small and very close to the boundary of the
ionization region. Here we have assumed that the sources of Lyman-α photon are situated at the exact centre
of the ionization bubble, which is not a good assumption at later redshift when these ionization bubbles are
created due to merging of HII regions of multiple nearby sources. Therefore, in reality, the photons which
escape the ionization bubbles will depend on the distribution of sources within these bubbles and the shapes
of ionized regions. However, this would only affect the number density of Lyman-α photons very close to
the HII regions boundary1. As a first approximation, we can distribute the photons of frequency between
Lyman-nmax and Lyman-continuum uniformly in a thin shell around ionization bubble.

Background Sources: We also calculate the Lyman-α number density due to faraway source by taking thin
shells of width dR0 at comoving distance R0 from the receiving point P and integrating over R0. We replace
the source ionization volume (4π/3) R3

x with 4πR2
0dR0 fi(z), which is the contributing ionized volume at

R0. We take the lower limit of R0 at 0 and the upper limit R(n)
max. This gives, the background number density

of Lyman-α photons due to cascading of Lyman-n photons as,

n′(n)
α,bg =

S′α fLn2
HI,0αBC

c
2∆ν ′α

νHI−να

(1+ z′)2
∫ R(n)

max

0
dR0 fi(z)(1+ z)3. (3.14)

Equivalence Regions: The Lyman-α coupling can be separated into near and far zone. In the near zone,
the emission from a nearby source dominates the coupling. To analyse fluctuations due to inhomogeneous
number density of Lyman-α photons, we can define Lyman-n equivalence region as the distance around
a source of radius Rx up to which the contribution due to that source is more than the contribution due to
all the background sources (n′α,? = n′(n)

α,bg). Roughly, this is the distance R(n)
f from the source where the

following condition is satisfied:

1
3

R3
x(

R(n)
f

)2 (1+ z)3 '
∫ R(n)

max

0
dR0 fi(z)(1+ z)3.

We can take a simple approximation as,

R(n)
f ∼

√
R3

x

3 fiR
(n)
max

.

This would create a new length scale in the correlation function if this distance exceeds the size of the
ionization bubbles.

Lyman-α Photons due to Photoionization of the Medium by X-rays: A small fraction ( fLy) of energy of
the photoelectron emitted due X-rays goes into creating Lyman-α photons (Shull and van Steenberg [1985],
Pritchard and Furlanetto [2007]). Therefore at any point, the number of Lyman-α photons created per unit

1It is not useful to model them in more detail, since, several other assumptions would break down so close to the boundary
(e.g. sphericity of bubbles, sharp boundary of ionization regions).
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time per unit volume is

εX ,α =
dNα

dt ′ dV ′
= fLy

dE ′heat
dt ′ dV ′

1
hνα

. (3.15)

The number density of the Lyman-α created at any point is above quantity multiplied by the survival time
of average Lyman-α photon before they are redshifted out of the resonance width. This survival time is

Tα '
∆να

να

1
H(z)

.

Therefore, Lyman-α number density due to X-rays is,

n′α,X =
dNα

dt ′ dV ′
Tα = fLy

dE ′heat
dt ′ dV ′

1
hνα

∆να

να

1
H(z)

. (3.16)

This expression also matches with Pritchard and Loeb [2012]. We ignore this effect in our work.

Photons between Lyman-α and Lyman-β frequencies (Lyman-Werner photons) can be absorbed by H2

molecule, but we ignore this effect as the number density of H2 is very low in IGM at high redshifts. Also,
the possibility of a Lyman-α photon splitting into two photons through a virtual level is negligible (Field
[1958]) and we ignore this effect.

3.1.3 Coupling Coefficient

Depending on the number of photons available at frequency corresponding to transition 1s-triplet to 2p
state, the atoms in triplet level will be excited to the 2p state. Figure 3.1 shows the levels of 1s and 2p and
the relative strength of transitions between them. An atom which is originally in triplet, can get excited to
all four 2p states shown in the Figure. However, 2P3/2→0 S1/2 and 0P1/2→0 S1/2 transitions are forbidden
through selection rules. Therefore, the triplet atoms which were excited to 2P3/2 (with probability 5/9)
and 0P1/2 (with probability 1/9) levels will only be de-excited back to triplet level and will not experience
hyperfine spin-flip. The triplet atoms which excite to 1P3/2 (with probability 1/9) and 1P1/2 (with probability
2/9), can de-excite to singlet level with probability 2/3 and 1/3, respectively. Therefore, the probability of
an atom in triplet level absorbing a Lyman-α photon and de-exciting to singlet level is,

Pα
10

Pα

= ∑
x
P(t→ x)×P(x→ s) =

(
1
9
× 2

3

)
+

(
2
9
× 1

3

)
=

4
27

. (3.17)

Here Pα is the absorption rate of Lyman-α photons by HI atoms. Similarly, the number of singlet atoms
that transition to triplet level after being excited and de-excited from 2p state is

Pα
01

Pα

= ∑
x
P(s→ x)×P(x→ t) =

(
2
3
× 1

3

)
+

(
1
3
× 2

3

)
=

4
9
. (3.18)

The de-excitation probability from 2p is independent of the available photons number, as the stimulated
emission is negligible. Therefore, the total number of spin-flip transitions depends on the relative inten-
sity of Lyman-α photons at the two frequencies, given by Lyman-α colour temperature Tα (which attains
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Figure 3.1: The 1s and 2p levels of hydrogen atom. The
numbers in the centre are relative strengths. (Courtesy: Field
[1958])

equilibrium with TK through repeated scattering). Therefore, if there are more red photons than blue, then
more triplet atoms are excited and cause spin flip, increasing the population of singlet level. The coupling
coefficient from Eq. 1.28 is,

yα =
Pα

10
A21

T?
Tα

=
4

27
Pα

A21

T?
Tα

.

The rate of scattering of Lyman-α photons by HI atoms is,

Pα = nαcσα '
3nαc3Aα

16πν2
α∆να

, (3.19)

where we use Eqs. 3.2, and 3.3 for the cross-section of Lyman-α line. This gives the coupling coefficient
(Field [1958]),

yα '
4

27
1

A21

T?
Tα

3nαc3Aα

16πν2
α∆να

' hpc4

36πkBν2
α

√
mp

kB

Aα

A21

ν21

να

nα

T 3/2
K

(3.20)

' 5.9×1011 nα

T 3/2
K

,

where we use Eq. 3.1. Hence, Lyman-α coupling coefficient yα is a function of Lyman-α photon number
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density nα and temperature TK . Using Eq. 3.12 in Eq. 3.19, we get

Pα = 4π
πe2

mec
fα

∫
Jν(x)φ(x−να)dx

=
4π2e2

mec
fαJαSα , (3.21)

and the coupling coefficient,

yα =
16π2e2 fα

27A10mec
T?
TK

SαJα , (3.22)

which matches with Pritchard and Loeb [2012]. Using values of Lyman-α photon number density from
Eqs. 3.13 and 3.14, and taking into account the effect of all Lyman-series lines, we have,

yα,?TK '
nmax

∑
n=2

hpc2S′α
18πν2

αkB

Aα

A21

ν21

να

Ṅt

4πR2
0

να

νn+1−νn
(1+ z′)2

'
nmax

∑
n=2

hpc2αB

18πkB

Aα

A21

ν21

ν2
α(νn+1−νn)

(S′α fLn2
HI,0C)

R3
x

R2
0
(1+ z′)2(1+ z)3, (3.23)

yα,bg TK '
nmax

∑
n=2

hpc2αB

18πkB

Aα

A21

ν21

ν2
α(νn+1−νn)

(S′α fLn2
HI,0C)(1+ z′)2

∫ R(n)
max

0
dR0 fi(z)(1+ z)3. (3.24)

The term that appears in the definition of ∆TB (Eq. 1.39) is (1−TCMB/TS). Rearranging this, and ignoring
the effect of collisional coupling, we observe that the influence of yα only appears through yαTK term, since

1− TCMB

TS
=

(
1− TCMB

TK

)(
yαTK

yαTK +TCMB

)
From Eqs. 3.23 and 3.24, we can see that yαTK is independent of local temperature TK at the receiving point.
Thus, the coupling strength yαTK/(yαTK +TCMB), is not a function of TK and for given Lyman-α number
density and TCMB, regions with any temperature will couple equally.

Spin temperature profiles: The size of spin temperature profile around a source depends on the Lyman-α
modelling parameter fL as well as the kinetic temperature profiles (Chapter 2). For low value of fL, spin
temperature TS is weakly coupled to TK and has value closer to TCMB. For hi1gh value of fL, the coupling of
TS to TK is stronger. The number density of Lyman-α photons (and value of yα ) falls away from a source.
Therefore, at high redshifts, the medium immediately surrounding an ionization bubble is strongly coupled,
whereas far away from the source, the coupling can be weak and TS can relax to TCMB. If the profiles of
multiple sources overlap, then there will be stronger coupling in the overlapped regions .

Perfect coupling: If around ionization bubbles certain regions have attained complete coupling, and the
background is only partial coupled, then his creates inhomogeneities in Lyman-α coupling on the scales of
these regions. As the intensity builds in the background owing to the birth of new self-ionized regions and
reaches levels sufficient to cause complete coupling, these inhomogeneities disappear.

We can take RL(Rx) as the distance around an ionization bubble of size Rx up to which there is perfect
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Lyman-α coupling (yα � TCMB/TK) due to that bubble. If

∑
Rx

4π

3
N(Rx)R3

L & 1, (3.25)

then we can assume that Lyman-α coupling is complete and there are no fluctuations due to this field.

3.2 Collisional Coupling

The collisional coupling of spin temperature TS and matter kinetic temperature TK due to scattering of neu-
tral hydrogen and electrons can play an important role (Eq. 1.29). The coupling coefficient is proportional
to the number density of colliding particles,

yc =
(nHIkHI

21 +neke
21)

A21

T?
TK

. (3.26)

For collision rate coefficients, we use the following fits (Zygelman [2005], Pritchard and Loeb [2012]):

ke
21 =

{
exp
(
−9.607+0.5 log(TK) exp

(
− (log(TK))

4.5

1800

))
cm3s−1 TK ≤ 104 K

k21,e(TK = 104K) TK > 104 K

kHI
21 =

{
3.6×10−16T 3.640

K exp(6.035
TK

) cm3s−1 TK ≤ 10 K

3.1×10−11T 0.357
K exp(− 32

TK
) cm3s−1 TK > 10 K.

(3.27)

Here we note that TKyc is not independent of TK , because these rates increase with temperature. Therefore,
there is stronger collisional coupling for hotter gas than for cold gas. This effect is important if the gas
was colder during the cosmic dawn due to exotic physics: the pre-reionization absorption trough might
be shallower, in spite of having larger contrast of matter temperature with the CMB temperature. During
EoR, the electron scattering is more effective close to the sources where there is partial ionization and high
temperature. However, we assume ionization fraction in the neutral regions to be the residual fraction, and
this effect is negligible in our work.
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Chapter 4

Correlation

“She was also, by the standards of other people, lost. She would not see it

like that. She knew where she was, it was just that everywhere else didn’t.”

— Terry Pratchett, Equal Rites

Our aim in this work is to analytically calculate the correlation of HI brightness temperature fluctuations
from the early phase of CD/EoR owing to scales that emerge due to ionization, heating and Lyman-α
coupling inhomogeneities. These inhomogeneities are caused by bubbles of a given size distribution and
their surrounding TS profiles, which evolve with time. For fully coupled and heated universe (TS� TCMB

in the neutral regions), these scales are determined by the size distribution of ionized regions.

We have assumed a topology where there are spherical self-ionized regions, surrounded by isotropic and
concentric spin temperature profiles1. These profiles might overlap with one another and smoothly merge
with the background. The ionization bubbles can be treated as isolated and non-overlapping when the
ionization volume fraction of the universe is small, which is expected during the early phase of reionization.
We further assume that the ionization bubble centres are uncorrelated and later present a simple model where
this assumption is relaxed. We neglect the cross-correlation of density with ionization and spin temperature
inhomogeneities as they contribute negligibly on the scales of interest. We explore possible effects of our
assumptions in Section 5.6.

Our formalism allows us to deal with TS profile fractions up to fh ' 0.5. When fh exceeds this value, we
merge the outer shells of the TS profiles to the background (Section 4.3). In general, at lower redshifts, when
ionization and heating fractions are large, our formalism is not very accurate.

At any redshift, using excursion set formalism (Section 1.1.4) and the matter power spectrum given by
ΛCDM model, we generate size distribution of self-ionized regions. Using Eqs. 1.29, 1.39, 2.21, and 3.23,
we calculate spin temperature in shells around these bubbles.

1 Given the statistical isotropy (we neglect redshift-space distortion) and homogeneity of the process of reionization, heating
and coupling, our assumption of spherical bubbles and isotropic spin temperature profiles hold even though the individual bubbles
might not be spherical.

50



4.1 Auto-correlation of Brightness Temperature TB

Dimensionless brightness temperature fluctuation is defined as (Zaldarriaga et al. [2004]):

ψ = xHI(1+δ )

(
1− TCMB

TS

)
= n(1+δ )(1− s), (4.1)

where we have defined s ≡ TCMB/TS. In our formalism every small volume is either completely neutral or
completely ionized, therefore we use a variable n which is unity if the medium is neutral and zero otherwise.
Variable n can be generalised to take any value between 0 and 1 if partial ionization is considered.

The statistics of ψ allows us to study the main physical processes that cause brightness temperature fluc-
tuations: δ (density perturbations), n (ionization inhomogeneities) and s (fluctuations of spin temperature).
These quantities are functions of the position, and so they contribute to the spatial fluctuation of the signal.
We suppress their dependence on position for notational clarity. The auto-correlation of ψ is,

µ = 〈ψ1ψ2〉−〈ψ〉2

= 〈n1(1+δ1)(1− s1)n2(1+δ2)(1− s2)〉−〈n1(1+δ1)(1− s1)〉2. (4.2)

Here (n1, δ1, s1) and (n2, δ2, s2) are values of ionization, overdensity and temperature1 (TCMB/TS) at point
1 (r1) and at point 2 (r2), respectively. Since the process of reionization is statistically homogeneous and
isotropic, the auto-correlation function µ is function of r = |r2− r1|. Here, we assume that density has no
correlation with ionization or spin temperature. Therefore,

η = 〈nδ 〉= 0 and 〈sδ 〉= 0. (4.3)

The average value of ψ is,

〈ψ〉= 〈1+δ1〉〈n1(1− s1)〉
= (1+ 〈δ1〉)(〈n1〉−〈n1s1〉)
= fn−〈n1s1〉,

where 〈δ 〉= 0 and fn = 〈n〉 is the average neutral volume fraction. We also have,

〈ψ1ψ2〉= 〈(1+δ1)(1+δ2)〉〈n1n2(1− s1)(1− s2)〉
= (1+ξ )〈n1n2(1− s1)(1− s2)〉,

where, ξ = 〈δ (r1)δ (r2)〉 is the auto-correlation function of the HI density perturbation. We compute ξ

using the ΛCDM model linear power spectrum and assume the relative bias between the dark matter and

1In this chapter, TS and s are both referred to as ‘temperature’.
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the HI to be b = 1. Therefore,

µ = (1+ξ )〈n1n2(1− s1)(1− s2)〉− ( fn−〈n1s1〉)2

= (1+ξ )(〈n1n2〉−〈n1n2s1〉−〈n1n2s2〉+ 〈n1n2s1s2〉)− ( fn−〈n1s1〉)2.

We can greatly simplify correlation functions higher than second order. Let us first consider 〈n1n2s1〉. This
corresponds to the joint probability that the point 1 is both neutral and heated to a temperature such that
s = s1, while point 2 is neutral. However, the variable s = TCMB/TS is only defined for neutral medium. In
other words, a point can have s = s1 only if it has n = 1. Therefore the condition of point 1 being neutral
(n1 = 1) is fulfilled by it having temperature s1. Thus we can write,

〈n1n2s2〉= 〈n1n2s1〉= 〈n2s1〉= 〈n1s2〉
〈n1n2s1s2〉= 〈s1s2〉.

These simplifications are direct consequences of ignoring partially ionized regions. Finally, we have,

µ = (1+ξ )(〈n1n2〉−2〈n1s2〉+ 〈s1s2〉)− ( fn−〈n1s1〉)2. (4.4)

Here we have introduced cross-correlations between spin temperature and ionization (〈n1s2〉) and auto-
correlation of heating (〈s1s2〉). These terms have significant effect in brightness temperature correlation.

We can also write,

µ = (1+ξ )〈n1n2−n1n2s1−n1n2s2 +n1n2s1s2〉− ( fn−〈n1s1〉)2

= (1+ξ )〈n1n2−n2s1−n1s2 + s1s2〉− ( fn−〈n1s1〉)2

= (1+ξ )〈(s1−n1)(s2−n2)〉− ( fn−〈n1s1〉)2. (4.5)

Ideally, correlation function derived from Eqs. 4.4 and 4.5 should match.

The correlation functions we calculate in our work are analytically derived. However, a function µ(r) is a
valid correlation function only if it follows certain properties:

• It should be a finite positive value at r = 0, µ(0).

• At any r > 0, the value of correlation function µ(r)< µ(0).

• It should go to 0 at very large distance (µ(r→ ∞)→ 0).

• The Fourier transform of the correlation function should be a positive definite function (power spectrum).

• In between r = 0 and r→ ∞, the correlation function can be positive or negative, with the condition
that its integration over all space must be 0.

We do not satisfy the last condition as we assume an infinite volume (Section 5.6). However, we check for
consistency of our formalism with the rest of the conditions.
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Given that correlation function µ(r) = µ(−r), the power spectrum can be written as

P(k) =
∫

∞

−∞

µ(r)ei2πkrd3r

= 4π

∫
∞

0
µ(r) cos(2πkr) r2dr. (4.6)

4.2 Simplifying Cases and Limits

4.2.1 Ignoring Density Inhomogeneities (ξ = 0)

We define φ = n(1− s) to explore simplifying cases where we temporarily ignore the effect of density
correlation ξ . In such case, the two-point correlation function of φ is,

µ = (1+ξ )〈n1n2(1− s1)(1− s2)〉−〈n(1− s)〉2

= (1+ξ )〈φ1φ2〉−〈φ〉2. (4.7)

4.2.2 Uniform Temperature TS

If the heating and Lyman-α coupling are homogeneous, the neutral gas of the IGM is at the uniform spin
temperature Tbg. Therefore,

ψ = n(1+δ )(1− sb),

where, sb = TCMB/Tbg. The correlation is,

µ = 〈ψ1 ψ2〉−〈ψ〉2

= (1− sb)
2〈n1(1+δ1)n2(1+δ2)〉− (1− sb)

2〈n1(1+δ1)〉2

= (1+ξ )(1− sb)
2〈n1n2〉− (1− sb)

2 f 2
n

= (1− sb)
2((1+ξ )〈n1n2〉− f 2

n ). (4.8)

High Redshift: As early times, Tbg can approach the adiabatically cooled temperature of the IGM gas
which is smaller than TCMB. If ionization fraction is too small, 〈n1n2〉 ' f 2

n ' 1. This gives us,

ψ = (1+δ )(1− sb),

µ = ξ (1− sb)
2.

Here the density fluctuations are enhanced by the temperature contrast between IGM and CMB.

Complete Heating: In later stages of reionization, the gas surrounding ionization regions has heated to
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TK � TCMB. Which gives TS� TCMB (Zaldarriaga et al. [2004]) and s∼ 0 everywhere. Therefore,

ψ = n(1+δ ),

µ =(1+ξ )〈n1n2〉− f 2
n . (4.9)

This reduces the correlation function to the one dominated by density and ionization inhomogeneities.

4.2.3 Very Large Scale

Both ionization and TS inhomogeneities are caused by bubbles of a given size distribution, and their profiles.
For scales greater than the largest profiles, the fluctuations due to the ionization, heating, and Lyman-α cou-
pling inhomogeneities vanish, and the HI correlation function is determined by only density perturbations.
At these scales,

〈n1n2〉= 〈n1〉〈n2〉= f 2
n

〈n1s2〉= 〈n1〉〈s2〉 = fn〈s〉
〈s1s2〉= 〈s1〉〈s2〉 = 〈s〉2.

Therefore, the correlation function is,

µ = (1+ξ )( f 2
n −2 fn〈s〉+ 〈s〉2)− ( fn−〈s〉)2

= ξ ( fn−〈s〉)2. (4.10)

Here the HI brightness temperature correlation function µ scales as the density correlation function ξ .
Because ξ is very small at large scales, µ becomes very small. If at large scale ξ becomes negative, then
we will get negative correlation. We also note that the correlation function at large scale vanishes when
fn = 〈s〉 (close to global heating transition).

4.2.4 Very Small Scale

When the distance between two points is 0 (r2 = r1),

µ0 = (1+ξ0)(〈n1n1〉−2〈n1s1〉+ 〈s1s1〉)− ( fn−〈n1s1〉)2

= (1+ξ0)(〈n〉−2〈s〉+ 〈s2〉)− ( fn−〈s〉)2. (4.11)

As this quantity is RMS, it is very large and positive. Here ξ0 = ξ (0) is the correlation function computed
at zero lag which equals RMS of density perturbations.

We verify Eqs. (4.10) and (4.11) as the large and small scale limits of the HI correlation function computed
using methods described in the next sections.

54



4.2.5 Complete Coupling

We can also try to separate influence of heating and coupling using Eq. 1.31 and using xt = xc + xα as,

ψ = n(1+δ )

(
1− TCMB

TS

)
= n(1+δ )

(
1− TCMB

TK

)
xt

1+ xt

= n(1+δ )(1−κ)(1−χ), (4.12)

where,

κ =
TCMB

TK
and χ =

1
1+ xt

(4.13)

s =κ +χ−κχ. (4.14)

While, Eq. 4.1 is easier to use, Eq. 4.12 is useful if xt is independent of TK . This condition is only true
for Lyman-α coupling and not for collisional coupling (Chapter 3). We check that both the equations give
same results in general cases. In case of complete coupling (xt � 1),

ψ = n(1+δ )

(
1− TCMB

TK

)
. (4.15)

For very weak coupling (xt � 1),

ψ = n(1+δ )

(
1− TCMB

TK

)
xt = n(1+δ )

(
TK

Tγ

−1
)

yt . (4.16)

4.3 Notations and Modelling

In Figure 4.1 we show the geometry of the self-ionized region and the IGM surrounding it. We assume
that at a given z, the ionized bubbles have various radii Rx. The number density of bubbles of radius Rx is
N(Rx). Between Rx and Rh (the outer radius of the spin temperature profile for a given Rx), we take shells
of thickness ∆R(Rx,s), having temperature s = TCMB/TS. Here Rs = R(s,Rx) and ∆Rs = ∆R(s,Rx). In our
model, s gradually changes as we move away from the source and finally approaches the background value
of sb = TCMB/Tbg. We use prime (R′x) if we have more than one bubble in focus. A detailed description of
notations followed in this work is given in Table 1.
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Table 4.1: Notations

Symbols Explanation
δ Over-density of HI gas
n Ionization state of HI gas: Neutral point n = 1 and ionized point n = 0
s Temperature state defined as s = TCMB/TS
ψ Dimensionless brightness temperature: ψ = n(1+δ )(1− s)
φ φ = n(1− s)
ξ Auto-correlation of over density δ : ξ = 〈δ1δ2〉
µ Auto-correlation of dimensionless brightness temperature ψ: µ = 〈ψ1ψ2〉−〈ψ〉2
fi Average ionized volume fraction
fn Average neutral volume fraction: fn = 1− fi
fhb Total volume fraction due to TS profiles (without correcting for the overlaps)
fh Average heated volume fraction after correcting for the overlaps

fb, fbg Average background volume fraction: fb = 1− fi− fh
Rx Radius of given ionization bubble
Rh Outer radius of given TS profile of, Rh = Rh(Rx)
Rs Inner radius of the shell with spin temperature TS = TCMB/s around given bubble

∆Rs Thickness of the shell with spin temperature TS = TCMB/s around given bubble
N(Rx) Number density of ionization bubbles of radius Rx
P(an) Probability of point a being neutral
P(ai) Probability of point a being ionized

P(ai,Rx) Probability that point a belongs to an ionization bubble of radius Rx
P(as) Probability of point a having temperature s
P(ab) Probability of point a being in background

P(as,Rx) Probability of point a having temperature s in the profile of an ionization radius Rx
P(aX ∩bY ) Probability of point a having property X and point b having property Y

where X and Y can be neutral, ionized, heated or background values
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Rh

Rx

Rh

Rx

P1

Neighbours(P2)

r

Figure 4.1: Cartoons for topology of the ionized region and its surrounding IGM. The colour scheme
shows the kinetic temperature TK (left panel) and dimensionless brightness temperature ψ (right panel). TK
in the ionization bubble of radius Rx (with sharp boundary) is 104 K. It falls as the distance from the
source increases and smoothly merges with the background at radius Rh. ψi = 0 in the ionized region. It
might be positive in the neutral, heated and coupled region, and negative in neutral, non-heated and
coupled region. The background is not coupled in this case (ψbg = 0). We can randomly choose a point
and find correlation with its neighbour at distance r.

If a point a is randomly chosen, then the probability that –

it is in ionization bubble of radius Rx: P(ai,Rx) = N(Rx)
4π

3
R3

x

it is ionized: P(ai) = ∑
Rx

P(ai,Rx) = ∑
Rx

4π

3
N(Rx)R3

x = fi

it is neutral: P(an) = 1−∑
Rx

P(ai,Rx) = 1−∑
Rx

N(Rx)
4π

3
R3

x = fn

it has temp s around ion bub of rad Rx: P(as,Rx) = N(Rx)
4π

3
fh

fhb
((Rs +∆Rs)

3−R3
s )

it has temperature s: P(as) = ∑
Rx

P(as,Rx) = ∑
Rx

N(Rx)
4π

3
fh

fhb
((Rs +∆Rs)

3−R3
s )

it is in some TS profile: P(ap) = ∑
s

∑
Rx

P(s,Rx) = ∑
Rx

N(Rx)
4π

3
fh

fhb
(R3

h−R3
x) = fh

it is in background region: P(abg) = 1−∑
Rx

∑
s
P(as,Rx)−∑

Rx

P(ai,Rx)

= 1−∑
Rx

N(Rx)
4π

3

(
fh

fhb
(R3

h−R3
x)+R3

x

)
= fb.
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Overlap

The total contribution due to all profiles, without taking into account their overlaps is (Eq. 2.25),

fhb = ∑
Rx

4π

3
N(Rx)(R3

h−R3
x).

When spin temperature profiles around ionization bubbles are very large and overlap significantly, fhb can
be much larger than unity. After correcting for these overlaps, the volume fraction occupied by heating
bubbles is (Section 2.1.5)

fh '
fhb(1− fi)

1+ fhb
or fh '

(
1+

fi

fhb

)
(1− e− fhb)− fi,

where, the second expression is more accurate. We have used the first expression in Raste and Sethi [2018]
and second expression in Raste and Sethi [2019]. For both expressions, fh approaches fhb when fhb and fi

are small. However, fh remains less than unity even if the value of fhb becomes much larger than unity.

4.4 Complete Model

In this section, we develop a formalism to calculate the correlation of dimensionless brightness temperature
ψ for epochs at which ionization volume fraction is small. This ensures that ionization bubbles are separate
and non-overlapping. However, as described in Section 2.1.5, our formulation allows us to deal with overlap
of TS profiles. If we strictly enforce that the ionization bubbles of their profiles do not overlap, then we get
negative correlation at the intermediate scale. This is clearly an artefact, and so we do not enforce that
condition, but still include some of those cases for the sake of completeness.

To calculate two-point correlation function, we need to find all pairs of points which are separated by
distance r, and multiply them by the HI signal at those points (Figure 4.1).

4.4.1 Correlation of Neutral Region (〈n1n2〉)

To find two-point correlation function of neutral region, we need to find all pairs of points (a and b) which
are separated by distance r and multiply by the neutral fraction n at those points. Since in our work, the
value of n is either 0 or 1, we essentially need to count the pairs which have both points in the neutral region.
Therefore,

〈n1n2〉= 12 P(an∩bn)+0 P(an∩bi)+0 P(ai∩bn)+0 P(ai∩bi)

= P(an∩bn).

If there was no correlation between neutral regions, probability of two points being neutral is,

Pnc(an∩bn) = P(an)P(bn) = f 2
n .

58



r r

Figure 4.2: Finding pairs of points separated by distance r is equivalent to finding points and their
neighbours at distance r.

Here P(an) and P(bn) are the probability of one point being neutral, which is equal to average neutral
fraction fn. The statement that the points do not have any correlation implies that the probability of one
point being neutral is independent of the ionized state of the other point.

For EoR studies, the ionized points are in the HII bubble. The neutral region has a very irregular shape as it
is the remainder of the volume from which spherical bubbles of various sizes have been carved out. Finding
a correlation for this random geometry of the neutral regions is very difficult. Therefore it is desirable if we
can put one of the two points in an ionized region and find the probability of its neighbour being neutral.
Here we choose one point and try to find all its neighbours which are located on the surface of a sphere of
radius r (Figure 4.2). Using Eq. E.3 and Eq. E.1,

P(an∩bn) = P(an)−P(an∩bi).

Now we calculate the probability that point a is neutral and point b is ionized (P(an∩ bi)). Point b lies in
some ionized bubble, so the statement that its neighbor (point a) at distance r is neutral means that point a

lies outside that bubble in which point b is, denoted as out same, and also outside any other bubble, denoted
as out other (Figure 4.3). Using Eq. E.2,

P(an∩bi) = P((a{out same}∩a{out other})∩bi)

= P(a{out other}|(a{out same}∩bi))P(a{out same}∩bi).

P(a{out other}|(a{out same}∩ bi)) is the probability that it is neutral given that point a lies outside the
bubble in which point b is. For large enough distance, this quantity is average neutral fraction fn, as we
assume random bubble distribution.
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Figure 4.3: If one point is ionized, what is
the probability of its neighbour at distance
r being neutral?

There are multiple caveats to this simple assumption: (a) If ionization bubble centres were correlated, then
that would decrease the probability of finding neutral regions surrounding an ionization bubble on certain
scales. (b) If we enforce the condition that the ionization bubbles do not overlap, then the probability of
ionized region right outside a bubble is smaller than fi. This scenario essentially anti-correlates bubble
centres. (c) If we assume that the ionization bubbles can overlap, then the resultant shape will not be
spherical. This will also affect the neutral fraction surrounding ionization bubbles. (d) If we perform
calculations for finite volume (as would be the case for a simulation), the ionized volume fraction around
an ionization bubble will be less than the global ionized volume fraction fi since we need to subtract the
volume occupied by the said ionization bubble1. This effect should cause anti-correlation between bubbles
on certain scales. (e) For finite volume, Poisson fluctuations in the distribution of ionization bubbles would
also affect the probability of finding an ionized or neutral region.

In our work, we ignore all these complications. We assume that bubbles are spherical, uncorrelated, non-
overlapping and randomly distributed. And we assume infinite volume for averaging. Hence, when a point
is outside a certain bubble, its probability to be ionized or neutral is equal to fi or fn respectively.

Now, we need to find P(a{out same}∩bi), the probability that point b is in an ionization bubble and point
a lies out of that bubble. Since point 2 can be in a bubble with any radius Rx, we have

P(a{out same}∩bi) = ∑
Rx

P(a{out same}∩bi(Rx))

= ∑
Rx

P(bi(Rx))P(a{out same}|bi(Rx))

= ∑
Rx

N(Rx)
4π

3
Rx

3D(r,Rx),

1 Example: If there are five red and five blue balls in a box and we choose two balls at random, one after the other, then the
probability of the first ball being red is 5/10 = 0.5, but the probability of second ball being red given that first ball is red is not
5/10, but 4/9 < 0.5.
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where P(a{out same}|bi(Rx)) = D(r,Rx) is the probability that point a is out of the bubble given that point
b is inside a bubble of radius Rx (Appendix F). P(bi(Rx)) is the probability of point b being in an ionization
bubble of radius Rx, which is 4π/3 N(Rx)R3

x (Section 4.3). Therefore,

〈n1n2〉= P(an)−P(an∩bi)

= fn−P(a{out other}|(a{out same}∩bi)) P(a{out same}∩bi)

= fn− fn ∑
Rx

N(Rx)
4π

3
Rx

3D(r,Rx). (4.17)

This expression reduces to the results of Zaldarriaga et al. [2004], when a single scale corresponding to size
of ionized bubbles is taken for a fixed ionization fraction. When the distance between two points r = 0, we
have D(0,Rx) = 0, and

〈n1n2〉= fn− fn ∑
Rx

N(Rx)
4π

3
Rx

3D(r,Rx) = fn. (4.18)

Enforcing No-Overlap Condition for Temperature Profiles: In the above derivation, we have made
no assumptions about the overlap of TS profiles surrounding these ionization bubbles. For the sake of
completeness and to understand our formalism, we can imagine a scenario in which both the ionization
bubbles and their TS profiles are isolated and non-overlapping. For this, we take

P(an∩bn) = P(an)−P(bi)+P(ai∩bi)

= fn− fi +P(ai∩bi).

Here we need to find the probability of both points being ionized, given that their surrounding heating
profiles do not overlap. If point a is inside a bubble of radius Rx, then its neighbour b can be in the same
ionization bubble or another ionization bubble, giving,

P(ai∩bi) = ∑
Rx

P(bi∩ai(Rx))

= ∑
Rx

P(b{same}∩ai(Rx))+∑
Rx

P(b{diff}∩ai(Rx)).

= ∑
Rx

P(ai(Rx))P(b{same}|ai(Rx))+∑
Rx

P(b{diff}∩ai(Rx)).

Here P(b{same}|ai(Rx)) is the probability that point b is in the same ionization bubble in which point a is,
which is given as (1−D(r,Rx)). Therefore,

P(an∩bn) = fn− fi +∑
Rx

P(ai(Rx))P(b{same}|ai(Rx))+∑
Rx

P(b{diff}∩ai(Rx))

= fn− fi +∑
Rx

N(Rx)
4π

3
R3

x−∑
Rx

N(Rx)
4π

3
R3

xD(r,Rx)+∑
Rx

P(b{diff}∩ai(Rx))

= fn−∑
Rx

N(Rx)
4π

3
R3

xD(r,Rx)+∑
Rx

P(ai(Rx))P(b{diff}|ai(Rx)).
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To evaluate this expression, we need to compute P(b{diff}|ai(Rx)), the probability of point b lying in some
other ionization bubble given that point a lies in an ionization bubble of radius Rx. Point b can be in bubble
of any size R′x, therefore,

∑
Rx

P(b{diff}∩ai(Rx)) = ∑
Rx

∑
R′x

P(ai(Rx))P(bi(R′x){diff}|ai(Rx)).

P(bi(R′x){diff}|ai(Rx)) is the probability that if point a is inside ionization bubble of radius Rx, then point b

is inside another ionization bubble with radius R′x. To satisfy the condition of non-overlap, we need point b

to be farther away than distance X from the centre of the bubble which contains point a. Therefore we have,

P(bi(R′x){diff}|ai(Rx)) = E(r,Rx,X)P(bi(R′x)).

And finally,

P(n1∩n2) = fn−∑
Rx

N(Rx)
4π

3
R3

xD(r,Rx)+∑
Rx

∑
R′x

P(ai(Rx))P(bi(R′x))E(r,Rx,X)

= fn +∑
Rx

N(Rx)
4π

3
R3

x

(
∑
R′x

N(R′x)
4π

3
R′x

3E(r,Rx,X)−D(r,Rx)

)
. (4.19)

When there we do not enforce any condition on overlap of TS profiles, we can take X = Rx, which results
in E(r,Rx,Rx) = D(r,Rx) (Appendix F) and Eq. 4.19 reduces to Eq. 4.17. If we take X = Rh, it ensures that
there are no other ionization bubbles within the TS profiles of an ionization bubble; however, it allows the
TS profiles to overlap with one another. To ensure that the temperature profiles themselves do not overlap,
we can take X = Rha +Rhb−Rxb. It should be noted that for small ionized fraction fi, Eq. 4.19 reduces to
Eq. 4.17 irrespective of other assumptions, which shows that Eq. 4.17 is a good assumption at early times.

Eq. 4.19 is not symmetric with respect to Rxa and Rxb. Given two points, the correlation will depend on
which point is taken as point a. However, since we sum over all Rx, the final expression is symmetric with
respect to points a and b.

4.4.2 Correlation between Neutral region and Temperature (〈n1s2〉)

Here we need to find the correlation between neutral and regions with temperature s. The point b needs to be
in the neutral region because the spin temperature is not even defined within an ionized region. Therefore,

〈n1s2〉= sbP(an∩bsb)+∑
s

sP(an∩bs) (4.20)

Here, sb corresponds to the background temperature at any redshift and the summation is over temperature
profiles. The first term can be written as

P(an∩bsb) = P(bsb)−P(bsb ∩ai).
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Here P(bsb) is the average background fraction fb and P(bsb ∩ai) is the probability that point a is ionized
and point b is in background. Point a lies in some ionization bubble, so the statement that its neighbor (point
b) at distance r is in background region means that point b is outside the TS profile corresponding to that

ionization bubble, denoted by out same, and that it is outside any other TS profile, denoted by out other.
Hence,

P(bsb ∩ai) = P((bsb{out same}∩bsb{out other})∩ai)

= P(bsb{out other}|(bsb{out same}∩ai)) P(bsb{out same}∩ai).

P(bsb{out other}|(bsb{out same}∩ai)) gives the probability that point b is in background region given that
point a lies in some ionization bubble and point b lies outside TS profile corresponding to that ionization
bubble. If we assume that the bubbles are non-overlapping and uncorrelated then, this probability equals
the fraction of universe heated at background temperature, fb

1.

P(bsb{out same}∩ ai) is the probability of point a being in an ionization bubble and point b being out of
the TS profile corresponding to that ionization bubble. Given the distribution of radii of ionization bubbles
Rx, we have,

P(bsb{out same}∩ai) = ∑
Rx

P(bsb{out same}∩ai(Rx))

= ∑
Rx

N(Rx)
4π

3
Rx

3P(bsb{out same}|ai(Rx)).

We see that P(bsb{out same}|ai(Rx)), the probability that point b is out of the TS profile (of radius Rh)
corresponding to the ionization bubble of radius Rx in which point a lies is E(r,Rx,Rh). Thus we have

P(an∩bsb) = P(bsb)−P(bs{out other}|(bs{out same}∩ai))P(bs{out same}∩ai)

= fb− fb ∑
Rx

N(Rx)
4π

3
Rx

3E(r,Rx,Rh). (4.21)

When there are no TS profiles (i.e. in the case of uniform heating), we have Rh → Rx, fb → fn, and
E(r,Rx,Rh)→ D(r,Rx), and the Eq. 4.21 reduces to the Eq. 4.53.

Now, we need to find P(an∩bs). Here, point b is in a TS profile, but outside the ionization bubble. This can
be done in two ways.

Method 1

Point b can be in TS profile of any radius, thus,

P(an∩bs) = ∑
Rx

P(s,Rx)P(an|bs(Rx))

= ∑
Rx

N(Rx)
4π

3
fh

fhb
((Rs +∆Rs)

3−Rs
3)P(an|bs(Rx)),

1Refer to the discussion in the previous section.
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where P(s,Rx) is the probability of a point being in the shell with temperature s around an ionization bubble
of radius Rx, and P(an|bs(Rx)) is the probability that point a is in some neutral region given that point b is
in the TS profile of ionization bubble of radius Rx with temperature s. This can be calculated in multiple
ways. None of them is entirely correct.

Overlap Allowed: If point a is outside the ionization bubble corresponding to TS profile in which point b is,
then its probability to be ionized is the probability of there being an ionization bubble at distance r from a
neutral point b. If we assume that the ionization bubbles are randomly distributed and that they can overlap
with the TS profile of one another, then we can use the result of section 4.4.1, and get1,

P(an|bs(Rx)) =

(
1−∑

R′x

N(R′x)
4π

3
R′x

3D(r,R′x)

)
C(r,Rs,Rs +∆Rs,Rx).

Here the C() term accounts for the fact that if point a is inside the ionization bubble corresponding to profile
of point b, then it is definitely not neutral. Therefore we have,

P(an∩bs) = ∑
Rx

N(Rx)
4π

3
fh

fhb
((Rs +∆Rs)

3−R3
s )

(
1−∑

R′x

N(R′x)
4π

3
R′x

3D(r,R′x)

)
C(r,Rs,Rs +∆Rs,Rx),

and the final expression is

〈n1s2〉= sb fb− sb fb ∑
Rx

N(Rx)
4π

3
Rx

3E(r,Rx,Rh)

+

(
1−∑

R′x

N(R′x)
4π

3
R′x

3D(r,R′x)

)
∑
Rx

N(Rx)
4π

3
fh

fhb

∑
s(Rx)

s ((Rs +∆Rs)
3−R3

s )C(r,Rs,Rs +∆Rs,Rx). (4.22)

We use this expression in our calculations. We can also calculate correlation between neutral region and
spin temperature at the same point:

〈s〉= 〈anas〉= bsb fb +∑
Rx

N(Rx)
4π

3
fh

fhb
∑

s(Rx)

s ((Rs +∆Rs)
3−R3

s ). (4.23)

No Overlap: If we enforce that no ionization bubble overlaps with the TS profile of another bubble, then
we get a different answer. If point b is in TS profile of a bubble, then its neighbour is definitely ionized if it
within the ionization bubble, definitely neutral if it is within the profile, and neutral with probability fn if it
outside the profile. Therefore,

P(an|bs(Rx)) = (0)P(an{bubble}|bs(Rx))+(1)P(an{profile}|bs(Rx))+ fnP(an{out}|bs(Rx)).

And if point b is between distance Rs and Rs +∆Rs from the centre of the bubble, then the probability of

1This expression is not the exact answer even if it gives correct result in various limits, because such approximations might
create other problems (e.g. negative power spectrum).
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its neighbour at distance r being at distance between Rx and Rh from the centre of the bubble and outside
distance Rh is respectively,

P(an{profile}|bs(Rx)) =C(r,Rs,Rs +∆Rs,Rx)−C(r,Rs,Rs +∆Rs,Rh)

P(an{out}|bs(Rx)) =C(r,Rs,Rs +∆Rs,Rh).

Therefore,

P(an|bs(Rx)) =C(r,Rs,Rs +∆Rs,Rx)− (1− fn)C(r,Rs,Rs +∆Rs,Rh),

and the final expression is

〈n1s2〉= sb fb− sb fb ∑
Rx

N(Rx)
4π

3
Rx

3E(r,Rx,Rh)

+∑
Rx

N(Rx)
4π

3 ∑
s(Rx)

s ((Rs +∆Rs)
3−R3

s )

(C(r,Rs,Rs +∆Rs,Rx)− (1− fn)C(r,Rs,Rs +∆Rs,Rh)). (4.24)

Here we do not need to include the fh/ fhb factor, since overlaps are explicitly forbidden in this scenario.
This is not a good approximation, and we do not use it in our work.

Method 2

Now, instead of putting one point in a TS profile shell and finding the probability of its neighbour being
neutral, we can put one point in an ionization bubble and find the probability of its neighbour being in
certain shell of a TS profile:

P(an∩bs) = P(s)−P(bs∩ai)

= ∑
Rx

∑
s
P(s,Rx)− (P(bs{same}∩ai)+P(bs{diff}∩ai)),

where, P(bs{same}∩ai) is the probability point b is in the TS profile corresponding to the same ionization
bubble in which point a is, and P(bs{diff}∩ ai) is the probability that point b is in the TS profile of some
other ionization bubble. Because point a can be in ionization bubble of any radius Rx, we have,

∑
s
P(bs{same}∩ai) = ∑

Rx

∑
s(Rx)

P(ai(Rx))P(bs{same}|ai(Rx))

= ∑
Rx

N(Rx)
4π

3
Rx

3
∑

s(Rx)

[E(r,Rx,Rs)−E(r,Rx,Rs +∆Rs)].

In the case where the two points are in different bubbles, we have,

∑
s
P(bs{diff}∩ai) = ∑

Rx

∑
R′x

∑
s(R′x)

P(bs(R′x){diff}∩ai(Rx))
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= ∑
Rx

N(Rx)
4π

3
Rx

3
∑
R′x

∑
s(R′x)

P(bs(R′x){diff}|ai(Rx)),

where P(bs(R′x){diff}|ai(Rx)) is the probability that if a is in the ionization bubble of radius Rx, then point
b is in some different bubble with radius R′x and has temperature s. Again, we can derive this in multiple
ways.

Overlap Allowed: For these two points to be in different bubbles, the main requirement is that point b has
to be outside the TS profile of the bubble in which point a is. Therefore,

P(bs(R′x){diff}|ai(Rx)) = P(s,R′x)C(r,0,Rx,Rh)

= N(R′x)
4π

3
fh

fhb
((R′s +∆R′s)

3−R′s
3
)C(r,0,Rx,Rh).

Putting all terms together, we have

〈n2s2〉= sb fb− sb fb ∑
Rx

N(Rx)
4π

3
Rx

3E(r,Rx,Rh)+∑
Rx

N(Rx)
4π

3
fh

fhb
∑
s

s ((Rs +∆Rs)
3−R3

s )

−∑
Rx

N(Rx)
4π

3
Rx

3
∑
s

s [E(r,Rx,Rs)−E(r,Rx,Rs +∆Rs)]

−∑
Rx

N(Rx)
4π

3
Rx

3C(r,0,Rx,Rh)∑
R′x

N(R′x)
4π

3
fh

fhb
∑

s(R′x)
s ((R′s +∆R′s)

3−R′3s ). (4.25)

No Overlap: If we assume that the TS profiles of two bubbles does not overlap, then the main requirement
is that point b has to be further away than Rh+R′h− (R′s+∆R′s) from the centre of the bubble in which point
a is, otherwise these profiles would be overlapping. Therefore,

P(bs(R′x){diff}|ai(Rx)) =C(r,0,Rx,Rh +R′h− (R′s +∆R′s))P(s,R
′
x).

The final result is,

〈n1s2〉= sb fb− sb fb ∑
Rx

N(Rx)
4π

3
Rx

3E(r,Rx,Rh)+∑
Rx

N(Rx)
4π

3 ∑
s

s ((Rs +∆Rs)
3−R3

s )

−∑
Rx

N(Rx)
4π

3
Rx

3
∑
s

s [E(r,Rx,Rs)−E(r,Rx,Rs +∆Rs)]

−∑
Rx

∑
R′x

N(Rx)N(R′x)
(

4π

3

)2

Rx
3

∑
s(R′x)

s ((R′s +∆R′s)
3−R′3s )C(r,0,Rx,Rh +R′h− (R′s +∆R′s)). (4.26)

4.4.3 Correlation of Temperature (〈s1s2〉)

To calculate auto-correlation of temperature, we need to find pairs where both points can be in background,
one of them in background and another in a TS profile, or both of them some in profiles. Therefore we have,

〈s1s2〉= s2
bP(asb ∩bsb)+2sb ∑

s
sP(asb ∩bs)+∑

s
∑
s′

ss′P(as∩bs′),
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where the summation is over profiles. The first term can be written as,

P(asb ∩bsb) = P(asb)−P(asb ∩bs̃b
),

where, P(asb ∩ bs̃b
) is the probability that point a is in background region, and point b is not. Therefore,

point b is either in ionized region or profile region, and its neighbour point a will be in background region
only if it is outside the profile of the bubble in which point b is, therefore,

P(asb ∩bsb) = fb−P(asb|bi)P(i)−∑
s
P(asb|bs)P(s)

= fb− fb ∑
Rx

N(Rx)
4π

3

(
R3

xE(r,Rx,Rh)+(R3
h−R3

x)
fh

fhb
C(r,Rx,Rh,Rh)

)
. (4.27)

When point a is in background and point b is in a TS profile, point a needs to be outside the profile corre-
sponding the bubble in which point b is and also out of any other profile. Therefore,

P(asb ∩bs) = P((a{out same}∩a{out other})∩bs)

= P(a{out other}|(a{out same}∩bs))P(a{out same}∩bs),

where, P(a{out other}|(a{out same}∩bs)) is the probability that point a is in background region given that
it is out the profile of the bubble in which point b with temperature s. This probability equals the average
background volume fraction, fb. P(a{out same}∩ bs) is the probability that point a is out of TS profile in
which point b is has temperature s. As point b can be in bubble with any ionization radius Rx, we have,

P(a{out same}∩bs) = ∑
Rx

P(s,Rx)P(a{out same}|bs(Rx))

= ∑
Rx

N(Rx)
4π

3
fh

fhb
((Rs +∆Rs)

3−R3
s )C(r,Rs,Rs +∆Rs,Rh).

P(a{out same}|bs(Rx)) is the probability that point a is out of the TS profile which has ionization radius Rx

and which contains point b with temperature s. Finally,

P(asb ∩bs) = fb ∑
Rx

N(Rx)
4π

3
fh

fhb
((Rs +∆Rs)

3−R3
s )C(r,Rs,Rs +∆Rs,Rh). (4.28)

In the case where both points are partially heated, these points can belong to the same bubble or different
bubbles, which gives

P(as∩bs′) = P(as∩bs′{same})+P(as∩bs′{diff}). (4.29)

P(as∩bs′{same}) is the probability that point a and b have temperature s and s′ respectively and that they
belong to the same bubble. We can further take cases when they are within the same shell or different shells,
but it doesn’t make any difference in our final expression. Given the distribution of Rx,

P(as∩bs′{same}) = ∑
Rx

P(s,Rx)P(bs′{same}|as(Rx))
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= ∑
Rx

N(Rx)
4π

3
fh

fhb
((Rs +∆Rs)

3−R3
s )P(bs′{same}|as(Rx)),

where, P(bs′{same}|as(Rx)) is the probability that if point a is in the profile of an ionization bubble of
radius Rx and has temperature s, then point b is in the same profile with temperature s′. However, since we
allow TS profiles to overlap with other ionization bubbles, we get

∑
s

∑
s′

ss′P(as∩bs′{same}) = ∑
Rx

N(Rx)
4π

3 ∑
s(Rx)

∑
s′(Rx)

ss′
fh

fhb
((Rs +∆Rs)

3−R3
s )

(C(r,Rs,Rs +∆Rs,Rs′)−C(r,Rs,Rs +∆Rs,Rs′+∆Rs′))(
1−∑

R′x

N(R′x)
4π

3
R′x

3D(r,R′x)

)
. (4.30)

Now P(as∩bs′{diff}) is the probability that point a has temperature s, point b has temperature s′ and they
both belong to different bubbles, therefore,

P(as∩bs′{diff}) = ∑
Rx

P(s,Rx)P((bs′{diff})|as(Rx)).

Here we take a simple assumption that if point b is outside the profile in which point a is, then its probability
of having temperature s′ is equal to the global probability of s′ temperature shell. Therefore, we have,

∑
s′
P((bs′{diff})|as(Rx)) =C(r,Rs,Rs +∆Rs,Rh)∑

R′x
∑

s′(R′x)
P(s′,R′x)

=C(r,Rs,Rs +∆Rs,Rh)∑
R′x

N(R′x)
4π

3
fh

fhb
∑

s′(R′x)
((R′s′+∆R′s′)

3−R′3s′),

which gives,

∑
s

∑
s′

ss′P(s∩ s′{diff}) = ∑
Rx

N(Rx)
4π

3 ∑
s(Rx)

s fb((Rs +∆Rs)
3−R3

s )

C(r,Rs,Rs +∆Rs,Rh)

∑
R′x

N(R′x)
4π

3 ∑
s′(R′x)

s′ fb((R′s′+∆R′s′)
3−R′3s′). (4.31)

Using Eqs. 4.27, 4.28, 4.30, and 4.31, we get the final expression,

〈s1s2〉= s2
b fb− s2

b fb ∑
Rx

N(Rx)
4π

3

(
fh

fhb
(R3

h−R3
x)C(r,Rx,Rh,Rh)+R3

xE(r,Rx,Rh)

)
+∑

Rx

N(Rx)
4π

3
fh

fhb
∑

s(Rx)

s((Rs +∆Rs)
3−R3

s )C(r,Rs,Rs +∆Rs,Rh)(
2sb fb +∑

R′x

N(R′x)
4π

3
fh

fhb
∑

s′(R′x)
s′((R′s′+∆R′s′)

3−R′3s′)

)
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+∑
Rx

N(Rx)
4π

3
fh

fhb
∑

s(Rx)
∑

s′(Rx)

ss′ ((Rs +∆Rs)
3−R3

s )

× (C(r,Rs,Rs +∆Rs,Rs′)−C(r,Rs,Rs +∆Rs,Rs′+∆Rs′))(
1−∑

R′x

N(R′x)
4π

3
R′x

3D(r,R′x)

)
. (4.32)

We use this expression in our work. We also calculate the correlation of temperature at the same point
(r = 0):

〈s2〉= 〈ss〉= s2
b fb +∑

Rx

N(Rx)
4π

3
fh

fhb
∑

s(Rx)

s2 ((Rs +∆Rs)
3−R3

s ).

Enforcing Non-Overlap of Temperature Profiles: If we assume that the profiles of bubbles do not overlap,
then the calculation is different. Eq. 4.27 is modified as,

P(asb ∩bsb) = fb− fb ∑
Rx

N(Rx)
4π

3
R3

hD(r,Rh), (4.33)

since we can take the ionization bubble and its profile as one bubble of radius Rh and calculate probability
of a point being outside that. In Eq. 4.28, we ignore the correction term due to overlap and get,

P(asb ∩bs) = fb ∑
Rx

N(Rx)
4π

3
((Rs +∆Rs)

3−R3
s )C(r,Rs,Rs +∆Rs,Rh). (4.34)

When both points are in the same bubble, we do not need to consider the modification in the probability
due to overlap, so Eq. 4.30 is modified as

∑
s

∑
s′

ss′P(s∩ s′{same}) = ∑
Rx

N(Rx)
4π

3 ∑
s

∑
s′

ss′ ((Rs +∆R)3−R3(s,Rx))

× (C(r,Rs,Rs +∆Rs,Rs′)−C(r,Rs,Rs +∆Rs,Rs′+∆Rs′)). (4.35)

When both points are in different bubbles, they both can belong to bubble of any size, therefore,

∑
s

∑
s′
P(as∩bs′{diff}) = ∑

Rx

∑
R′x

∑
s(Rx)

∑
s′(R′x)

P(s,Rx)P(bs′(R
′
x){diff}|as(Rx)),

= ∑
Rx

∑
R′x

N(Rx)N(R′x)
(

4π

3

)2

∑
s(Rx)

∑
s′(R′x)

((Rs +∆Rs)
3−R3

s )((R
′
s′+∆R′s′)

3−R′3s′)

C(r,Rs,Rs +∆Rs,Rh +R′h− (R′s′+∆R′s′)) (4.36)

where, P(bs′(R′x){diff}|as(Rx)) is the probability that if point a has temperature s in profile of an ionization
bubble of radius Rx, then point b has temperature s′ in profile of a different ionization bubble with radius
R′x. For these two profiles to not overlap, the main requirement is that point b has to be further away than
distance Rh +R′h− (R′s′+∆R′s′) from the centre of the bubble in which point a is.
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Using Eqs. 4.33, 4.28, 4.35, and 4.36, we finally obtain the expression for the heating correlation function,

〈s1s2〉= s2
b fb− s2

b fb ∑
Rx

N(Rx)
4π

3
R3

hD(r,Rh)

+2sb fb ∑
Rx

N(Rx)
4π

3 ∑
s(Rx)

s ((Rs +∆Rs)
3−R3

s )C(r,Rs,Rs +∆Rs,Rh)

+∑
Rx

N(Rx)
4π

3 ∑
s(Rx)

∑
s′(Rx)

ss′ ((Rs +∆Rs)
3−R3

s )

(C(r,Rs,Rs +∆Rs,Rs′)−C(r,Rs,Rs +∆Rs,Rs′+∆Rs′))

+∑
Rx

∑
R′x

N(Rx)N(R′x)
(

4π

3

)2

∑
s(Rx)

∑
s′(R′x)

ss′ ((Rs +∆Rs)
3−R3

s )((R
′
s′+∆R′s′)

3−R′3s′)

C(r,Rs,Rs +∆Rs,Rh +R′h− (R′s′+∆R′s′)). (4.37)

4.4.4 Alternative Method (〈φ1φ2〉)

Since we have already assumed that the cross correlation of density with ionization or spin temperature is
negligible, we try to find the auto-correlation of φ = n(1− s) (henceforth referred to as ‘temperature’ in
this section) (Eq. 4.7). Therefore to calculate correlation at scale r, we need to find pairs of points a and b

which are separated by distance r and multiply them by temperatures at those points as,

〈φ1φ2〉= φ
2
bgP(abg∩bbg)+2φbg ∑

Rx

∑
s(Rx)

φsP(abg∩bs)

+∑
Rx

∑
s(Rx)

R′x ∑
s′(R′x)

φsφs′P(as∩bs′). (4.38)

When both points are in background, we get

P(abg∩bbg) = P(abg)−P(abg∩bi)−∑
Rx

∑
s(Rx)

P(abg∩bs). (4.39)

In the case where both points are partially heated, these points can be within the same bubble or different
bubbles. Within the same bubble, they can be in the same shell or different shells. This gives,

∑
Rx

∑
s(Rx)

∑
R′x

∑
s′(R′x)

φsφs′P(as∩bs′) = ∑
Rx

∑
s(Rx)

φ
2
s P(as∩bs{same})

+∑
Rx

∑
s(Rx)

∑
s′(Rx)6=s

φsφs′P(as∩bs′{same})

+∑
Rx

∑
s(Rx)

∑
R′x

∑
s′(R′x)

φsφs′P(as∩bs′{diff}), (4.40)

where, P(as∩bs{same}) is the probability that both points are in the same bubble with the same temperature
φs. This is straightforward to calculate. However, since we allow overlap of heated profiles, the simplest
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derivation is not necessarily correct. Instead, we expand it further,

∑
Rx

∑
s(Rx)

φ
2
s P(as∩bs{same}) = ∑

Rx

∑
s(Rx)

φ
2
s

(
P(as)−P(as∩bbg)−P(as∩bi)

)
−∑

Rx

∑
s(Rx)

∑
s′(Rx)6=s

φ
2
s P(as∩bs′{same})

−∑
Rx

∑
s(Rx)

∑
R′x

∑
s′(R′x)

φ
2
s P(as∩bs′{diff}). (4.41)

Putting Eqs. 4.39, 4.40 and 4.41 in Eq. 4.38, we get,

〈φ1φ2〉= φ
2
bgP(abg)−φ

2
bgP(abg∩bi)+ 〈φ 2

s 〉
−∑

Rx

∑
s(Rx)

φ
2
s P(as∩bi)−∑

Rx

∑
s(Rx)

(φbg−φs)
2P(abg∩bs)

+∑
Rx

∑
s(Rx)

∑
s′(Rx)

φs(φs′−φs)P(as∩bs′{same})

+∑
Rx

∑
s(Rx)

∑
R′x

∑
s′(R′x)

φs(φs′−φs)P(as∩bs′{diff}), (4.42)

where we define,

〈φs〉= ∑
Rx

4π

3
N(Rx) ∑

s(Rx)

φs
fh

fhb
((Rs +∆Rs)

3−R3
s )

〈φ 2
s 〉= ∑

Rx

4π

3
N(Rx) ∑

s(Rx)

φ
2
s

fh

fhb
((Rs +∆Rs)

3−R3
s ). (4.43)

The probability of point a being in background and point b being ionized is

P(abg∩bi) = fb ∑
Rx

N(Rx)
4π

3
R3

xC(r,0,Rx,Rh). (4.44)

Here the probability of point a being in background region is fb, given that it is outside the temperature
profile of the bubble in which point b is. Similarly, the probability of point a being in background and point
b having temperature φs is,

∑
Rx

∑
s(Rx)

P(abg∩bs) = fb ∑
Rx

N(Rx)
4π

3 ∑
s(Rx)

fh

fhb
((Rs +∆Rs)

3−R3
s )C(r,Rs,Rs +∆Rs,Rh). (4.45)

When point a has temperature φs and point b is ionized, they both can be in the same bubble or in different
bubbles, which respectively give first and second terms on the right hand side of the following equation:

∑
Rx

∑
s(Rx)

φ
2
s P(as∩bi) = ∑

Rx

∑
s(Rx)

φ
2
s

4π

3
N(Rx)Rx

3(1− fi)[C(r,0,Rx,Rs)−C(r,0,Rx,Rs +∆Rs)]

+∑
Rx

4π

3
N(Rx)Rx

3C(r,0,Rx,Rh)〈φ 2
s 〉. (4.46)
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Here we have taken a simple assumption that if point a is outside the profile of the bubble in which point b is,
then its probability of having temperature φs is equal to the global probability of shell with that temperature.
And because ionization bubbles can overlap with profiles, point a can be neutral with probability 1− fi.
Now, P(as ∩ bs′{diff}) is the probability that points a and b are in profiles of different bubbles and have
temperature φs and φs′ respectively. Here, we can pick either point a or b to be in a profile and find the
probability of it neighbour in another profile. Therefore,

∑
Rx

∑
s(Rx)

∑
R′x

∑
s′(R′x)

φs(φs′−φs)P(as∩bs′{diff}) = ∑
Rx

N(Rx)
4π

3 ∑
s(Rx)

fh

fhb
((Rs +∆Rs)

3−R3
s )

∑
R′x

N(R′x)
4π

3 ∑
s′(R′x)

fh

fhb
((R′s′+∆R′s′)

3−R′s′
3
)φs(φs′−φs)

C(r,Rs,Rs +∆Rs,Rh)+C(r,R′s′,R
′
s′+∆R′s′,R

′
h)

2
. (4.47)

The probability that points a and b have temperatures φs and φs′ 6= φs, respectively, and they both belong to
the same bubble is,

∑
Rx

∑
s(Rx)

∑
s′(Rx)6=s

φsφs′P(as∩bs′ ∩ (same)) = ∑
Rx

N(Rx)
4π

3 ∑
s(Rx)

fh

fhb
((Rs +∆Rs)

3−R3
s )

∑
s′(Rx)6=s

φsφs′(1− fi)[C(r,Rs,Rs +∆Rs,Rs′)

−C(r,Rs,Rs +∆Rs,Rs′+∆Rs′)]. (4.48)

We put Eqs. 4.44, 4.45, 4.46, 4.47, and 4.48 in Eq. 4.42, include the influence of ξ and simplify in terms of
F(x,P,Q,R) = 1−C(x,P,Q,R), getting

µ = ξ ( fbφbg + 〈φs〉)2 +(1+ξ )

(
(φ 2

bg fb + 〈φ 2
s 〉)∑

Rx

4π

3
N(Rx)R3

xF(r,0,Rx,Rh)

+ fb ∑
Rx

4π

3
N(Rx) ∑

s(Rx)

(φbg−φs)
2 fh

fhb
((Rs +∆Rs)

3−R3
s )F(r,Rs,Rs +∆Rs,Rh)

+∑
Rx

4π

3
N(Rx)Rx

3
∑

s(Rx)

φ
2
s (1− fi)[F(r,0,Rx,Rs)−F(r,0,Rx,Rs +∆Rs)]

−∑
Rx

4π

3
N(Rx) ∑

s(Rx)

fh

fhb
((Rs +∆Rs)

3−R3
s ) ∑

s′(Rx)

φs(φs′−φs)(1− fi)

[F(r,Rs,Rs +∆Rs,Rs′)−F(r,Rs,Rs +∆Rs,Rs′+∆Rs′)]

−∑
Rx

4π

3
N(Rx) ∑

s(Rx)

fh

fhb
((Rs +∆Rs)

3−R3
s )∑

R′x

4π

3
N(R′x) ∑

s′(R′x)

fh

fhb
((R′s′+∆R′s′)

3−R′s′
3
)

φs(φs′−φs)
1
2
[F(r,Rs,Rs +∆Rs,Rh)+F(r,R′s′,R

′
s′+∆R′s′,R

′
h)]

)
. (4.49)

72



The correlation for r = 0 is,

µ0 = 〈φ 2〉= (1+ξ0)(φ
2
bg fb + 〈φ 2

s 〉)− ( fbφbg + 〈φs〉)2

= (1+ξ0)

(
fbφ

2
bg +∑

Rx

N(Rx)
4π

3 ∑
s(Rx)

φ
2
s

fh

fhb
((Rs +∆Rs)

3−R3
s )

)

−
(

fbφbg +∑
Rx

4π

3
N(Rx) ∑

s(Rx)

φs
fh

fhb
((Rs +∆Rs)

3−R3
s )

)2

. (4.50)

Comparing Eq. 4.49 with results from previous subsections (Eqs. 4.17, 4.22, and 4.32), we see they match
very well. Therefore,

〈φ1φ2〉 ' 〈n1n2〉−2〈n1s2〉+ 〈s1s2〉, (4.51)

which agrees with Eq. 4.4. However, we find that Eq. 4.49 is more robust during extreme cases. It is also
possible to taken into account effects of ionization and temperature cross correlation with density and the
velocity fluctuations if we expand φ to include those effects; however, we do not attempt such model in our
work.

4.5 Simple Models

In the early phase of CD/EoR, the fluctuations have scales linked to the sizes of heated and coupled regions.
It is difficult to analyse these scales for our complete formalism, where we try to realistically model the
condition of the early universe. However, to understand our formalism, we study a few simple models.

4.5.1 Uniform Temperature TS

We can assume a scenario where there are no TS profiles around ionization bubbles. Therefore the sum over
heating shells is 0. In this limit, we obtain,

Rh = Rx, E(r,Rx,Rx) = D(r,Rx),

fb = fn, and ∆Rs = 0.

Simplifying result of section 4.4.4, we get

µ = ξ f 2
n φ

2
bg +(1+ξ ) fnφ

2
bg ∑

Rx

4π

3
N(Rx)R3

x(1−D(r,Rx))

= fnφ
2
bg(1+ξ )

(
1−∑

Rx

4π

3
N(Rx)R3

xD(r,Rx)

)
− f 2

n φ
2
bg

= φ
2
bg
(
(1+ξ )〈n1 n2〉− f 2

n
)
. (4.52)
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We also get the same expression after simplifying results from section 4.4.1, 4.4.2, 4.4.3 with φbg = 1− sb.
This expression agrees with Eq. 4.8 from section 4.2.2, where

〈n1n2〉= fn− fn ∑
Rx

N(Rx)
4π

3
Rx

3D(r,Rx). (4.53)

This result is derived and explored in Zaldarriaga et al. [2004]. Here if we take, only one bubble size, we
have,

µ = fnφ
2
bg((1+ξ )(1− fiD(r,Rx))− fn). (4.54)

4.5.2 Uniform Bubble Size

We try to reduce the final expression of µ (Eq. 4.49) for the case where there is only one bubble size, we
have,

µ = ξ ( fbφbg + 〈φs〉)2 +(1+ξ )

(
(φ 2

bg fb + 〈φ 2
s 〉) fiF(r,0,Rx,Rh)

+ fb ∑
s
P(s)(φbg−φs)

2F(r,Rs,Rs +∆Rs,Rh)

+ fi ∑
s

φ
2
s (1− fi)[F(r,0,Rx,Rs)−F(r,0,Rx,Rs +∆Rs)]

−∑
s
P(s)∑

s′
φs(φs′−φs)(1− fi)[F(r,Rs,Rs +∆Rs,Rs′)−F(r,Rs,Rs +∆Rs,Rs′+∆Rs′)]

−∑
s
P(s)∑

s′
P(s′)φs(φs′−φs)

1
2
[F(r,Rs,Rs +∆Rs,Rh)+F(r,Rs′ ,Rs′+∆Rs′,Rh)]

)
. (4.55)

Two Shells

If there are only two TS shells, then replacing Rs→ Rx, Rs +∆Rs = Rs′ → Rt and Rs′+∆Rs′ → Rh gives,

µ = ξ ( fbφbg + 〈φs〉)2 +(1+ξ )
(
(φ 2

bg fb + 〈φ 2
s 〉) fiF(r,0,Rx,Rh)

+ fb(P(s)(φbg−φs)
2F(r,Rx,Rt ,Rh)+P(s′)(φbg−φs′)

2F(r,Rt ,Rh,Rh))

+ fi fn(φ
2
s [F(r,0,Rx,Rx)−F(r,0,Rx,Rt)]+φ

2
s′[F(r,0,Rx,Rt)−F(r,0,Rx,Rh)])

− fnP(s)φs(φs′−φs)[F(r,Rx,Rt ,Rt)−F(r,Rx,Rt ,Rh)]

− fnP(s′)φs′(φs−φs′)[F(r,Rt ,Rh,Rx)−F(r,Rt ,Rh,Rt)]

+P(s)P(s′)(φs−φs′)
2 1

2
[F(r,Rx,Rt ,Rh)+F(r,Rt ,Rh,Rh)]

)
. (4.56)

If in Eq. 4.56 we assume ξ = 0 and φbg = 0, then

µ = fi(P(s)φ 2
s +P(s′)φ 2

s′)F(r,0,Rx,Rh)

+ fb(P(s)φ 2
s F(r,Rx,Rt ,Rh)+P(s′)φ 2

s′F(r,Rt ,Rh,Rh))
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+ fi fn(φ
2
s [F(r,0,Rx,Rx)−F(r,0,Rx,Rt)]+φ

2
s′[F(r,0,Rx,Rt)−F(r,0,Rx,Rh)])

− fnP(s)φs(φs′−φs)[F(r,Rx,Rt ,Rt)−F(r,Rx,Rt ,Rh)]

− fnP(s′)φs′(φs−φs′)[F(r,Rt ,Rh,Rx)−F(r,Rt ,Rh,Rt)]

+P(s)P(s′)(φs−φs′)
2 1

2
[F(r,Rx,Rt ,Rh)+F(r,Rt ,Rh,Rh)]. (4.57)

Further assuming fi = 0 (Rx = 0) in Eq. 4.57, we have

µ = fb(P(s)φ 2
s F(r,0,Rt ,Rh)+P(s′)φ 2

s′F(r,Rt ,Rh,Rh))

− fnP(s)φs(φs′−φs)[F(r,0,Rt ,Rt)−F(r,0,Rt ,Rh)]

− fnP(s′)φs′(φs−φs′)[1−F(r,Rt ,Rh,Rt)]

+P(s)P(s′)(φs−φs′)
2 1

2
[F(r,0,Rt ,Rh)+F(r,Rt ,Rh,Rh)]. (4.58)

If we instead assume P(s) = P(s′) = fs/2 in Eq. 4.57, we have

µ = fi
fS

2
(φ 2

s +φ
2
s′)F(r,0,Rx,Rh)+ fb

fs

2
(φ 2

s F(r,Rx,Rt ,Rh)+φ
2
s′F(r,Rt ,Rh,Rh))

+ fi fn(φ
2
s [F(r,0,Rx,Rx)−F(r,0,Rx,Rt)]+φ

2
s′[F(r,0,Rx,Rt)−F(r,0,Rx,Rh)])

− fn
fs

2
(φs′−φs)(φs[F(r,Rx,Rt ,Rt)−F(r,Rx,Rt ,Rh)]−φs′[F(r,Rt ,Rh,Rx)−F(r,Rt ,Rh,Rt)])

+
f 2
s
4
(φs−φs′)

2 1
2
[F(r,Rx,Rt ,Rh)+F(r,Rt ,Rh,Rh)]. (4.59)

Assuming φs =−φs′ = φ in Eq. 4.57, we have

µ = φ
2
(

fi(P(s)+P(s′))F(r,0,Rx,Rh)+ fi fn[F(r,0,Rx,Rx)−F(r,0,Rx,Rh)]

+ fb(P(s)+P(s′))F(r,Rx,Rh,Rh)

+2 fn(P(s)[F(r,Rx,Rt ,Rt)−F(r,Rx,Rt ,Rh)]+P(s′)[F(r,Rt ,Rh,Rx)−F(r,Rt ,Rh,Rt)])

+2P(s)P(s′)[F(r,Rx,Rt ,Rh)+F(r,Rt ,Rh,Rh)]
)
, (4.60)

because P(s)F(r,Rx,Rt ,Rh)+P(s′)F(r,Rt ,Rh,Rh)= (P(s)+P(s′))F(r,Rx,Rh,Rh). Assuming P(s)=P(s′)=

fs/2 in Eq. 4.60, we have,

µ = φ
2
(

fi fsF(r,0,Rx,Rh)+ fi fn[F(r,0,Rx,Rx)−F(r,0,Rx,Rh)]

+ fn fs[F(r,Rx,Rh,Rh)+F(r,Rx,Rt ,Rt)−F(r,Rx,Rt ,Rh)+F(r,Rt ,Rh,Rx)−F(r,Rt ,Rh,Rt)].

(4.61)

Assuming fi→ 0 (Rx = 0) in Eq. 4.61, we get,

µ = φ
2 fs[F(r,0,Rh,Rh)+F(r,0,Rt ,Rt)−F(r,0,Rt ,Rh)−F(r,Rt ,Rh,Rt)]. (4.62)
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One Shell

If there is only one TS shell, then simplifying Eq. 4.49 gives,

µ = ξ ( fbφbg + fhφs)
2 +(1+ξ )

(
(φ 2

bg fb +φ
2
s fh) fiF(r,0,Rx,Rh)

+ fb fh(φbg−φs)
2F(r,Rx,Rh,Rh)+ fi fnφ

2
s [F(r,0,Rx,Rx)−F(r,0,Rx,Rh)]

)
. (4.63)

Assuming ξ = 0 and φbg = 0 in Eq. 4.63, we get,

µ = φ
2
s

(
fh fiF(r,0,Rx,Rh)+ fb fhF(r,Rx,Rh,Rh)+ fi fn[F(r,0,Rx,Rx)−F(r,0,Rx,Rh)]

)
. (4.64)

If we instead assume fi→ 0 (Rx = 0) in Eq. 4.63, we get,

µ = ξ ( fbφbg + fhφs)
2 +(1+ξ ) fb fh(φbg−φs)

2F(r,0,Rh,Rh). (4.65)

Further assuming ξ = 0 and φbg = 0 in Eq. 4.65, we get,

µ = fb fhφ
2
s F(r,0,Rh,Rh). (4.66)

4.5.3 Toy Model: One Bubble Size, Flat Temperature Profile

We take a simple toy model with a single bubble size and a shell with a uniform spin temperature around it
(flat profile). Thus there are small ionization bubbles embedded in larger heated bubbles (Figure 4.4). We
first ignore density fluctuations (ξ ) for simplicity in this section and later present the results including ξ . In
this case, there are only three values of φ = n(1− s) in the universe: in the ionized region, φi = 0 as n = 0;
in the heated and the background regions respectively,

φh = (1− sh) = 1− TCMB

Theat

and φbg = (1− sbg) = 1− TCMB

Tbg
.

If N is the number density of bubbles, Rx the ionization bubble radius and Rh the heating bubble radius,
then the total ionized volume fraction, heated volume fraction after correcting for overlap (Section 2.1.5),
and the remaining background volume fraction are respectively,

fi = N
4π

3
R3

x , fh =
fhb(1− fi)

1+ fhb
and fbg = 1− fi− fh.

Here the total dimensionless temperature correlation at distance r is,

µφ (r) = 〈φ1φ2〉−〈φ〉2

= φ
2
h P(ah∩bh)+2φhφbgP(ah∩bbg)+φ

2
bgP(abg∩bbg)−〈φ〉2. (4.67)
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Rx

Rh

Figure 4.4: A toy model: an ionization bubble
(φi = 0) has one TS shells around it.
Background is unheated.

Now we derive each term separately. When both points a and b are heated,

P(ah∩bh) = P(ah)−P(bh̃∩ah)

= fh−P(bbg∩ah)−P(bi∩ah). (4.68)

Here P(ah) is the probability that point a is heated; this is equal to the total heated volume fraction fh.
P(bbg∩ ah) is the probability that point a is heated and point b is in background. We assume that if point
b is outside the heated shell in which point a is then its probability to be in background is equal to the
background volume fraction fbg. Therefore,

P(bbg∩ah) = fh fbgC(r,Rx,Rh,Rh). (4.69)

P(bi∩ah) is the probability that point a is heated and point b is ionized. If point b is ionized, then point a

can be in the heated shell of the same bubble or different bubble. Therefore,

P(bi∩ah) = P(bi)P(ah(same)|bi)+P(bi)P(ah(diff)|bi).

Here P(bi) is the probability of point b being ionized, which is equal to fi. The probability of point a being
in the shell of the ionization bubble in which point b is (C(r,0,Rx,Rx)−C(r,0,Rx,Rh)), and its probability
to be heated in this shell is 1− fi since this shell is allowed to overlap with other ionization bubbles.
The probability of point a being outside the shell corresponding to ionization bubble in which point b is
C(r,0,Rx,Rh) and its probability to be heated outside this shell is fh. Therefore, we have,

P(bi∩ah) = P(bi)P(ah(same)|bi)+P(bi)P(ah(diff)|bi)

= fi(1− fi)[C(r,0,Rx,Rx)−C(r,0,Rx,Rh)]+ fi fhC(r,0,Rx,Rh). (4.70)
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Putting, Eqs. 4.69 and 4.70 in Eq. 4.68, we get

P(ah∩bh) = fh− fh fbgC(r,Rx,Rh,Rh)− fi fhC(r,0,Rx,Rh)

− fi(1− fi)[C(r,0,Rx,Rx)−C(r,0,Rx,Rh)]. (4.71)

When both points are in background region,

P(abg∩bbg) = P(abg)−P(abg∩bb̃g)

= P(abg)−P(abg∩bh)−P(abg∩bi), (4.72)

where P(abg) is the probability of point a being in background, and it is equal to fb. P(abg ∩ bi) is the
probability that point a in background region given that point b is ionized. The probability of point a being
in background is fbg if it is outside the shell of the bubble in which point b is. Therefore,

P(abg∩bi) = fi fbC(r,0,Rx,Rh). (4.73)

Using Eqs. 4.69 and 4.73 in Eq. 4.72, we get,

P(abg∩bbg) = fbg− fbg fhC(r,Rx,Rh,Rh)− fbg fiC(r,0,Rx,Rh). (4.74)

Putting Eqs. 4.71, 4.69 and 4.72 in Eq. 4.67, we get

µ = φ
2
h ( fh− fh fbgC(r,Rx,Rh,Rh)− fi fhC(r,0,Rx,Rh)

− fi(1− fi)[C(r,0,Rx,Rx)−C(r,0,Rx,Rh)])

+2φhφbg fh fbgC(r,Rx,Rh,Rh)

+φ
2
bg fbg(1− fhC(r,Rx,Rh,Rh)− fiC(r,0,Rx,Rh))− ( fhφh + fbgφbg)

2. (4.75)

If the impact of density correlation ξ is included we finally have,

µ = (1+ξ )
(

φ
2
h ( fh− fh fbgC(r,Rx,Rh,Rh)− fi fhC(r,0,Rx,Rh)

− fi(1− fi)[C(r,0,Rx,Rx)−C(r,0,Rx,Rh)])

+2φhφbg fh fbgC(r,Rx,Rh,Rh)

+φ
2
bg fbg(1− fhC(r,Rx,Rh,Rh)− fiC(r,0,Rx,Rh))

)
− (φbg fbg +φh fh)

2. (4.76)

Writing this in terms of F(r, .., .., ..) = 1−C(r, .., .., ..), we can simplify further as,

µ = ξ ( fbφbg + fhφh)
2 +(1+ξ )

(
(φ 2

bg fb +φ
2
h fh) fiF(r,0,Rx,Rh)

+ fb fh(φbg−φh)
2F(r,Rx,Rh,Rh)

+ fi fnφ
2
h [F(r,0,Rx,Rx)−F(r,0,Rx,Rh)]

)
, (4.77)
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which matches with Eq. 4.63 with φs replaced with φh. To verify the validity of our formalism, we need to
consider Eqs. 4.75 and 4.76 in different limits:

• Small Scale: At r = 0, µ0 = (1+ξ0)(φ
2
h fh+φ 2

bg fbg)−(φbg fbg+φh fh)
2, which is the expected result.

• Large Scale: At r→ ∞, all the functions C(., ., ., .) tend to unity. In this case, Eq. 4.75 vanishes and
Eq. 4.76 approaches the correct large scale limit (Eq. 4.10).

• No Heating Profile: If we take Rh→ Rx, fh = 0, and fbg = fn, we get,

µ = (1+ξ )
[
φ

2
bg fn(1− fiC(r,0,Rx,Rx))

]
− (φbg fn)

2

= φ
2
bg fn[(1+ξ )(1− fiC(r,0,Rx,Rx))− fn].

This is the same result as Eq. 4.54.

• Uniform Heating: We also get Eq. 4.54 if we take φh = φbg and fn = fh + fb. In this case there is no
distinction between the heated bubble and the background.

This simple case does not allow for negative correlation since within the heated shell, the φ is positively
correlated and it is un-correlation outside it. However, if we add a little negative correlation between bubble
centres then the overall correlation does become negative for large scales.

Enforcing No-Overlap of Heated Shells: If we assume that there is no overlap between heated shells of
different ionization bubbles, then the calculations are different. When both point a and b are heated they
can belong to the same shell or different shells, therefore,

P(ah∩bh) = P(ah)P(bh(same)|ah)+P(ah)P(bh(diff)|ah)

= fh[(C(r,Rx,Rh,Rx)−C(r,Rx,Rh,Rh)]+ fhC(r,Rx,Rh,Rh)). (4.78)

When both the points are in the background region, we get,

P(abg∩bbg) = P(abg)−P(bb̃g)P(abg|bb̃g)

= fbg− (1− fbg) fbgC(r,0,Rh,Rh), (4.79)

as probability of point a being in background is fbg if it outside the ionization bubble and shell in which
point a is. Putting Eqs. 4.78, 4.69 and 4.79 in Eq. 4.67, and including the impact of density correlations, we
get,

µ = (1+ξ )
(

φ
2
bg fbg(1− (1− fbg)C(r,0,Rh,Rh))

+2φbgφh fbg fhC(r,Rx,Rh,Rh)

+φ
2
h fh(C(r,Rx,Rh,Rx)− (1− fh)C(r,Rx,Rh,Rh))

)
− (φbg fbg +φh fh)

2. (4.80)

This expression does not reduce to correct values for some of the limiting cases explored above.
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Figure 4.5: Evolution of ionized and heating
fractions for a fiducial model for ζ = 10,
Nheat = 1.0 and α = 1.5
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Figure 4.6: Evolution of correlation function for a set of scales for a model in Figure 4.5. The background
temperature and profile temperature is allowed to increase in the left panel, whereas they are held constant
in the right panel.

Results

We show the evolution of ionized, heated, and background fractions ( fi, fh and fbg) in Figure 4.5. Here,
we have kept the ratio of heating shell radius Rh to ionization bubble radius Rx constant. We have also
neglected the impact of density perturbations. The initial radius of the ionization bubble (heated shell) is
assumed to be 0.1 Mpc (0.7 Mpc). The initial ratio of the heated and ionized fraction is the cube of the ratio
of these radii. Initially, nearly 90% of the universe is in the background region. As the universe evolves,
the ionization bubbles grow and so do the heated regions, resulting in an increase in both fi and fh with a
decrement in fb. This process is accompanied by an increase in the background and heated temperature. At
certain redshift, the heated shells begin to merge, driving the background fraction to zero. Eventually, the
ionized fraction becomes large enough to drive the heated fraction to zero.

The evolution of correlation function (normalized using Eq. 1.39) for a set of scales is shown in Figure 4.6.
Here the background temperature is assumed to evolve according Eq. 2.23 for modelling parameters: ζ =

10, Nheat = 1.0 and α = 1.5, while the heating bubble temperature is kept at a constant value above the
background temperature. Initially, the correlation function is small which is expected, because fi and fh

approach zero in the absence of density perturbations. The correlation function rises as fh increases and
then decreases again as the background and shell temperatures rise (s decreases).
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This behaviour is generic to all models even though the evolution in the range of scales displayed in Fi-
gure 4.6 could change as it is determined by the sizes of the bubbles. For instance, in Figure 4.6 the
correlation on the scales of ' 3Mpc remains close to zero at all times owing to our choices of initial scales.
T−1

h fh + T−1
bg fbg reaches T−1

CMB at z ' 16; at this redshift, the global HI signal vanishes and the universe
makes a transition from being observable in the HI signal from absorption to emission. However, the reds-
hift at which the correlation function reaches its minimum is determined by a multitude of other causes.
The minimum of the correlation function at z' 15 signals the beginning of the phase in which the universe
is uniformly heated. The signal at this time reaches nearly zero for all scales in our case because at this
redshift, the ionization inhomogeneities are small ( fi ' 0.01) and we ignore density perturbations. As fi

increases, the ionization inhomogeneities start rising, reaching a peak at around fi ' 0.5 and subsequently
decline as the universe becomes fully ionized. The peak of the correlation function when it is dominated by
ionization inhomogeneities is smaller than when it is determined by heating inhomogeneities because s is
larger than unity in the earlier phase and it is zero during the latter phase.

To isolate the impact of merging of heating profiles from the effect of heating of the medium on the evolution
of correlation function, we show a different model in the right panel of Figure 4.6. This model is also based
on the evolution of ionization and heating fractions shown Figure 4.5, but here the background temperature
and the temperature inside the heated shell is kept at is 5K and 10K, respectively, throughout the redshift
evolution. Therefore, in this case, the temperature inhomogeneities are destroyed by merging of heating
bubbles and not heating, which delays the transition to the uniform heating regime as compared to Figure 4.6
from z∼ 15 to z∼ 9.

Figure 4.6 allows us to identify the relevant physical processes involved in the modelling of the correla-
tion function in the phase when heating inhomogeneities dominate, the end of this phase (owing to either
heating of the medium above CMB temperature or merger of profiles), and the transition to ionization in-
homogeneities domination phase. As we shall notice later, the features seen in the Figures are also present
for complete models.

4.5.4 Toy Model: One Bubble Size, Two Shells, 〈φ〉= 0

We can construct another simple scenario where there is only one bubble size and the heating profile around
the sources have two shells. The first shell is heated and coupled through Lyman-α radiation. The second
shell is non-heated but still coupled. The region outside the second shell (background region) is neither
heated nor coupled (Figure 4.7).

This gives three values of φ = n(1− s) when we ignore density fluctuations: φi = 0 in the ionized regions;
φh = φ > 0 in the first shell where TS > TCMB; φu =−φ < 0 in the second shell since TS < TCMB; and φb = 0
in the background region which is uncoupled. For simplicity we have assumed that the volume occupied by
the two shells is the same, fh = fu = fs/2 and φh =−φu = φ . Therefore, 〈φ〉= fhφh + fuφu = 0. Here we
allow the shells of different bubbles to overlap with one another and with other ionization bubbles.

From Figure 4.7, we can see that the correlation will be positive (∝ φ 2) if both points are either in shell 1
or both in shell 2. If one point is in shell 1 and another in shell 2, then the correlation is negative (∝−φ 2).
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Rx

Rs
Rh

Figure 4.7: A toy model: an ionization bubble
(φi = 0) has two TS shells around it. The
background is uncoupled (φb = 0).

When one point is out of the bubble, its average value is 0. Therefore, we essentially only count pairs of
points which belong to the same bubble. The two-point correlation function without density perturbation is,

µ = φ
2
hP(ah∩bh)+φ

2
uP(au∩bu)+φhφu(P(ah∩bu)+P(au∩bh))

= φ
2(P(ah∩bh)+P(au∩bu)−P(ah∩bu)−P(au∩bh)). (4.81)

When both the points are in the first (heated) shell or second (unheated) shell, then we have, respectively,

P(ah∩bh) = P(ah)−P(ah∩bi)−P(ah∩bbg)−P(ah∩bu),

P(au∩bu) = P(au)−P(au∩bi)−P(au∩bbg)−P(au∩bh).

Putting them in Eq. 4.81, we get

µ = φ
2
(

fh−P(ah∩bi)−P(ah∩bbg)−2P(ah∩bu)

+ fu−P(bu∩ai)−P(bu∩abg)−2P(au∩bh)
)
. (4.82)

Now, the probability of point a being in a shell and point b being ionized is,

P(ah∩bi) = fi(1− fi)[C(r,0,Rx,Rx)−C(r,0,Rx,Rs)]+ fi fhC(r,0,Rx,Rh)

P(bu∩ai) = fi(1− fi)[C(r,0,Rx,Rs)−C(r,0,Rx,Rh)]+ fi fuC(r,0,Rx,Rh) (4.83)

where, the first terms and second terms of both equations give probability of both point being in the same
bubble (and its profile), and probability of them being in different bubble (and their profiles), respectively.
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The probability of point a being in a shell and point b being in the background is,

P(ah∩bbg) = fh fbgC(r,Rx,Rs,Rh)

P(au∩bbg) = fu fbgC(r,Rs,Rh,Rh). (4.84)

And the probability of both point being in different shells is,

P(ah∩bu) = (1− fi) fh[C(r,Rx,Rs,Rs)−C(r,Rx,Rs,Rh)]+ fh fuC(r,Rx,Rs,Rh)

P(ah∩bu) = (1− fi) fu[C(r,Rs,Rh,Rx)−C(r,Rs,Rh,Rs)]+ fh fuC(r,Rs,Rh,Rh), (4.85)

where the first terms and second terms give probability of both points being in shells of the same bubble
and in shells of different bubbles, respectively. Note that P(ah∩ bu) = P(au∩ bh); however, we still keep
both these terms, because it makes the final expression more symmetric. Using Eqs. 4.83, 4.84, and 4.85 in
Eq. 4.82, and substituting fh = fu = fs/2 we get,

µ = φ
2
(

fs− fi fn[C(r,0,Rx,Rx)−C(r,0,Rx,Rh)]− fi fsC(r,0,Rx,Rh)

− fn[ fhC(r,Rx,Rs,Rh)+ fuC(r,Rs,Rh,Rh)]

− fs fn[C(r,Rx,Rs,Rs)−C(r,Rx,Rs,Rh)+C(r,Rs,Rh,Rx)−C(r,Rs,Rh,Rs)]
)
.

= φ
2
(

fs− fi fn[C(r,0,Rx,Rx)−C(r,0,Rx,Rh)]− fi fsC(r,0,Rx,Rh)

− fs fn[C(r,Rx,Rh,Rh)+C(r,Rx,Rs,Rs)−C(r,Rx,Rs,Rh)+C(r,Rs,Rh,Rx)−C(r,Rs,Rh,Rs)]
)
.

(4.86)

Here we have used, fhC(r,Rx,Rs,Rh)+ fuC(r,Rs,Rh,Rh) = fsC(r,Rx,Rh,Rh) (Appendix F) in the last step.
This result matches Eq. 4.61 when we use F(r, .., .., ..) = 1−C(r, .., .., ..). To verify the validity of our
formalism, we need to consider this model in different limits:

• Large Scales: At large scales, all the functions C(.., .., .., ..) tend to unity. In this case, Eq. 4.86
approaches 0. This is expected, as fo r > 2Rh, the two-point correlation should vanish without ξ .

• Small Scale: When r = 0, µ = fsφ
2, this is also as expected because there is no probability of two

points being in different shells when they are so close.

Eq. 4.86 takes negative value for a range of r, where the two points are more likely to be in different shells
than in the same shell. In Figure 4.8, we have shown one such case where the auto-correlation is negative
at certain scales. For scales Rx +Rs < r < Rs +Rh, depending on the values of various radii, two randomly
chosen points can have a higher probability of being in different shells than in the same shell, driving the
correlation to negative value. For larger scales, Rs +Rh < r < 2Rh, both the points have a finite probability
of being in the outer shell, and zero probability of being in different shells of the same bubble, which leads
the overall correlation at these scales to be positive. On scales r > 2Rh, the correlation function is zero. We
note that the possibility of negative correlation at any scale depends on values of Rx, Rs and Rh and their
differences. It is entirely possible to have models where correlation function remains positive at all scales.
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4.6 Correlation between Ionization Bubble Centres

To analyse the effect of correlation between ionization bubbles centres, we can again study the simple model
introduced in Section 4.5.3. We choose an ionization bubble and a shell of width ∆l at distance l > Rx from
its centre. The fraction of volume within this shell being ionized by another bubble at distance x from the
centre of the first bubble is (Appendix F),

lim
∆l→0

V
(
x, l + ∆l

2 ,Rx
)
−V

(
x, l− ∆l

2 ,Rx
)

4π

3

[(
l + ∆l

2

)3−
(
l− ∆l

2

)3
] =

A(x, l,Rx)

4πl2 . (4.87)

If we assume that there is no correlation between ionization bubble centres, then the probability of there
being another bubble at distance x (in a shell of volume 4πx2dx) from the centre of an ionization bubble is
N4πx2dx. Therefore, using Eq. 4.87, the probability of a point at distance l from the centre of an ionization
bubble being ionized is

Pi,0 =
∫

N 4πx2 A(x, l,Rx)

4πl2 dx = N
4π

3
R3

x .

This is the global ionization fraction fi, as expected.

Now if we assume that there is correlation between ionization bubble centres, then the probability of there
being another bubble at distance x (in a shell of volume 4πx2dx) from the centre of an ionization bubble is
N4πx2dx[1+ I(x)], where I(x) is the correlation function of ionization bubble centres at distance x. Now,
the probability of a point at distance l from the centre of a bubble in a shell of width ∆l to be ionized is

Pi =
∫

N 4πx2 [1+ I(x)]
A(x, l,Rx)

4πl2 dx

= fi +
N
l2

∫
x2 I(x) A(x, l,Rx) dx

= fi(1+Gi(l,Rx)). (4.88)
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Figure 4.9: Evolution of correlation function for a
set of scales for a model in which the background
temperature is held constant. Here the curves from
bottom to top show cases for no correlation (left
panel of Figure 4.6), correlation with b = 1 and with
b = 2.

Using a similar argument, the probability of there being a heated region at distance l from a centre of an
ionization bubble given the correlation between bubble centres is,

Ph =
∫

N 4πx2 [1+ I(x)]
fh

fhb

A(x, l,Rh)−A(x, l,Rx)

4πl2 dx

= fh +
N
l2

fh

fhb

∫
x2 I(x) [A(x, l,Rh)−A(x, l,Rx)]dx

= fh(1+Gh(l,Rx,Rh)). (4.89)

When I(x) = 0, we have Pi = fi and Ph = fh. Hence, we can get the probability of there being an ionized
or heated region at a distance l from a centre of an ionization bubble if we know the correlation function
between ionization bubble centres:

fiGi(l,Rx) =
N
l2

∫
x2 I(x) A(x, l,Rx) dx

fhbGh(l,Rx,Rh) = fi[Gi(l,Rh)−Gi(l,Rx)]. (4.90)

If there was positive correlation between ionization bubble centres, the overlap of heated profiles would
increase, and the heated volume fraction ( fh) would decrease. Eq. 4.75 will be modified as

µ = (φ 2
h fh +φ

2
b fb)− ( fhφh + fbφb)

2

+
∫ Rh+r

Rh

(
(φh−φb)

2 fh(1− fi(1+Gi(y))− fh(1+Gh(y)))
dC(r,Rx,Rh,y)

dy

+ (φ 2
b fi(1− fi(1+Gi(y))− fh(1+Gh(y)))+φ

2
h fi fh(1+Gh(y)))

dC(r,0,Rx,y)
dy

)
dy

+
∫ Rh

Rx

φ
2
h fi(1− fi(1+Gi(y)))

dC(r,0,Rx,y)
dy

dy. (4.91)
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We further assume that the correlation of ionization bubble centres follows the same form as the density
auto-correlation I(r) = bξ (r) with a constant bias b. We take two possible values of bias: b = 1 and b = 2.
Figure 4.9 shows the modified correlation for these two cases for the model considered in Figure 4.6. We
notice that the HI signal increases due to the correlation of ionization bubble centres. This effect is more
significant at later times and on larger scales. This might also introduce correlations on scales at which
the signal would be very small or zero without bubble centre correlations, e.g. correlation at r = 5Mpc in
Figure 4.9.
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Chapter 5

Results

“‘I daresay you haven’t had much practice,’ said the Queen.

‘When I was your age, I always did it for half-an-hour a day.

Why, sometimes I’ve believed as many as six impossible things

before breakfast.’”

— Lewis Carroll, Through the Looking-Glass

To compute the global 21 cm brightness temperature and its fluctuating component, we calculate the size
distribution of ionization bubbles through excursion set formalism (Eq. 1.19), and the spin temperature
profiles around them due to X-ray heating (Eq. 2.21), collisional coupling (Eq. 3.27) and Lyman-α coupling
(Eq. 3.13). These profiles have a number of shells and they might overlap with one another due to the
random distribution of ionization bubbles. The sizes of these profiles, their temperatures and the background
temperature depend on multiple physical processes and modelling parameters.

We first present results for the complete model (Section 4.4.4) for the ΛCDM universe in the redshift range
10–30. However, the results below redshift z ∼ 12 are not entirely reliable since several approximations
used in our formalism (including excursion set formalism) become less valid and eventually break down
when the ionization volume fraction is large ( fi > 0.1).

5.1 Modelling Parameters

In our work, we have explored five modelling parameters:

1. ζ = Ionization efficiency factor. ζ (Eq. 1.15) determines the size distribution of ionization bubbles
and through that, temperature profiles (Figure 1.5). For smaller value of ζ , the ionization bubbles are
smaller and the heating is less efficient. However, this does not significantly affect the overall tempe-
rature, since the number of X-ray photons is determined from collapse fraction and other parameters,
which are independent of ζ . The value of ζ affects Lyman-α coupling strongly because we assume
that number of Lyman-α photons emitted is proportional to the number of ionizing photons, which is
determined by ζ .
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In our model, ζ is constrained by reionization optical depth τreion. We usually take ζ ∼ 7.5, which
corresponds to τreion ' 0.055 (Planck Collaboration et al. [2018]). We also present some results for
ζ ∼ 10.0, which was in agreement τreion ' 0.066 (Planck Collaboration et al. [2016a]).

2. Nheat = Number of X-ray photons emitted per stellar baryon. For higher value of Nheat, more X-ray
photons are emitted. This increases the temperature of the medium in the background as well as
profiles around ionization bubbles. For our study, we assume Nheat in the range: 0.1–10.0.

3. α = X-Ray spectrum power index. For higher value of α , there are more photons at low frequency.
These soft photons more efficiently heat up the medium, as they have a higher probability of being
absorbed (Figure 2.1). We take three possible values of α , 1.0, 1.5 and 2.0, with α = 1.5 to be the
standard case.

4. νmin = Minimum X-ray frequency escaping source halo with the number of X-ray photons kept
constant. For a given Nheat, a higher value of νmin implies that the emitted photons are more energetic
with smaller interaction cross-section with neutral atoms. These photons are ineffective for heating
the gas. They free stream into the medium and heat it with uniformly. We take two possible values of
νmin, 100 eV and 1 keV. Unless mentioned otherwise, we always use νmin = 100 eV.

5. fL = Ratio of source luminosity in the range between Lyman-α and Lyman-limit to the luminosity
of ionizing photons. As the value of fL increases, the coupling between TS and TK is stronger, and TS

has higher contrast with TCMB. Therefore, it increases the absolute value of ∆TB in both emission and
absorption. In our work, we take fL in the range: 0.1–1000 (Section 3.1.2).

We present results for only a subset of these parameters. We have not considered scenarios for which the
modelling parameters evolve with time. For such models, the shape of the power spectrum and correlation
functions would change. To explore more complicated models where the X-ray spectrum is not power law
(e.g. Fialkov et al. [2014]), we can take Nheat and α to be a function of frequency ν and time. However, we
do not explore such models in our work.

5.2 Global Brightness Temperature

In Figures 5.1 and 5.2, we show the evolution of global HI brightness temperature (Eq. 1.40) as function
of redshift for various combination of modelling parameters. At z ' 30, the global signal starts slightly
negative as weak collisional coupling drives the spin temperature towards matter temperature which is below
the CMB temperature (Eq. 1.29). This coupling becomes inefficient at lower redshift due to decreasing
number density of particles.

At z < 30, Lyman-α photons start coupling TS once again to TK , which is colder than the CMB, and the
global 21 cm signal is seen in absorption. The gas is soon heated due to X-ray heating and the signal
approaches 0 when 〈TK〉 ' TCMB. This point is called the ‘heating transition’ from absorption to emission.
The maximum strength of the emission signal is determined by the redshift of this transition and ionization
fraction. At lower redshifts, the global signal again declines as the medium becomes ionized and goes to
zero with the completion of reionization. We do not show results from this last epoch since our formalism
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Figure 5.1: Global brightness temperature as
function of redshift for various values of α , Nheat,
and νmin. All plots have ζ = 10.0 and fL→ ∞

(TS = TK).
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Figure 5.2: Global brightness temperature as
function of redshift for various values of fL ranging
from 1.0 to 1000 and for Nheat =10 (solid lines), 1.0
(long dashed lines), and 0.1 (short dashed lines). All
plots have ζ = 7.5, α = 1.5, and νmin = 100 eV.

is only applicable when the ionization fraction is small ( fi < 0.1).

The shape of the global brightness temperature signal is completely determined by the modelling parame-
ters. The value of Nheat is proportional to the total number of X-ray photons; therefore it is determined by
the efficiency of X-ray sources and the escape fraction of these photons from source halos. For higher effi-
ciency and escape fraction (higher value of Nheat), the heating starts earlier and the absorption troughs are
shallower (Pacucci et al. [2014], Mirocha et al. [2015], Cohen et al. [2017]). Hard X-ray photons generated
in X-ray Binaries and mini-quasar are inefficient compared to soft photons to heat up the medium (Fialkov
et al. [2014], Pacucci et al. [2014]). For higher value of α and lower value of νmin, there are more soft
X-ray photons. This increases global temperature faster with shallower absorption trough. However, for
the values of α and νmin explored in our work, the effect of X-ray spectra on the global signal is smaller
compared to the effect of overall X-ray luminosity (Nheat).

If the stellar population has more low mass stars (e.g. Pop II stars), then the there are more Lyman-α
photons emitted compared to ionizing photons and the value of fL is larger (Furlanetto et al. [2006], Mirocha
et al. [2015]). This value is also higher if the escape fraction of ionizing photons is smaller Mirocha et al.
[2018]. For higher value of fL, the coupling starts earlier, and the overall strength of the signal is larger at
all redshifts before the complete coupling is achieved. This corresponds to deeper and earlier absorption
troughs. The emission signal for very small fL is smaller than the maximum value, which shows that the
coupling has not saturated. The values of ζ we explored in our work do not change the global brightness
temperature significantly for the redshift range of interest. Its only effect is to slightly shift the whole
brightness temperature curve in redshift.

The redshift of heating transition is dependent on the heating (Nheat, α and νmin) and is almost independent
of Lyman-α coupling ( fL). It happens sooner for higher value of Nheat and α , and lower value of νmin.
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Figure 5.3: Evolution of auto-correlation of HI brightness temperature for r = 0.5 Mpc (top left panel),
r = 2.0 Mpc (top right panel), r = 4 Mpc (bottom left panel)and r = 8 Mpc (bottom right panel) for
ζ = 7.5, a range of fL varying from 0.1 to 1000 and three values of Nheat: 10 (solid lines), 1.0 (long dashed
curves) and 0.1 (short dashed lines). The dot-dashed line represents a fiducial model that matches with
EDGES observations.

5.3 Two-point Correlation Function

During the epoch of cosmic dawn and reionization, the inhomogeneous X-ray heating and Lyman-α cou-
pling are expected to introduce fluctuations of spin temperature in addition to density and ionization in-
homogeneities. The size distribution of ionization bubbles (Figure 1.6) introduces a range of scales in the
correlation function. The X-ray photons create shallow temperature profiles around these bubbles (Figu-
res 2.1 and 2.2), but their size distribution (Figure 2.3) makes it harder to identify the direct impact of
heating and coupling on the correlation function.

Most of the studies of fluctuation in 21 cm brightness temperature from CD/EoR have been in the Fourier
space. However, studying the correlation function in real space allows us to readily understand the impact
of various parameters and physical processes. Our formalism has been built on geometric arguments, which
are intuitively easier to visualize in real space. Our entire correlation structure can be written in terms of a
single polynomial function: C(., ., ., .) and its limits given by the functions E(., ., .) and D(., .) (Appendix F).
Taking Fourier transform with respect to the first argument r of this function yields the power spectrum.

In Figure 5.3, we show the evolution of correlation function at scales r = 0.5–8Mpc for different values of
Nheat and fL, using Eqs. 1.39, 2.21, 3.13, and 4.49. In Figure 5.4, we show the evolution of the correlation
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Figure 5.4: Evolution of two-point correlation function for a range of scales (including the RMS
corresponding to r = 0) for α = 1.5, and ζ = 10. The thick curves are for νmin = 100 eV and the thin
curves are for νmin = 1 keV. Nheat is 0.1 (top left panel), 0.5 (top right panel), 1.0 (bottom left panel), and
5.0 (bottom right panel).

function for a range of scales1 for different values of Nheat and νmin, assuming perfect Lyman-α coupling at
z≤ 20 ( fL→ ∞).

At z ' 30, only the weak collisional coupling is effective, so all the curves shown in Figure 5.3 start with
small values, and the correlation functions have similar strength for different modelling parameters. For
small fL, the correlations decline with time as the collisional coupling weakens. This situation is only
reversed when Lyman-α coupling becomes efficient. For higher value of fL, this coupling occurs sooner,
leading to an increase in fluctuations with time until complete coupling is achieved. After this period, the
fluctuations are determined by only heating, ionization and density inhomogeneities.

At high redshifts, the correlation function is large due to smaller background temperature. The fluctuations
are dominated by density perturbations because the number density of ionizing sources is small and the
volume fraction of ionization bubbles and spin temperature profiles is tiny. The position of the first peak at
high redshift in Figure 5.3 depends strongly on the thermal evolution of the medium, and hence on heating
parameters. For higher value of Nheat, the gas temperature is higher everywhere; this results in a decrease
in the correlation function, which scales as (1−TCMB/TS) during this phase.

1We also show the evolution of the RMS which corresponds to the plot for r = 0 to guide the eye. For an experiment,
the relevant quantity would be the RMS smoothed with the three-dimensional resolution of the radio interferometer, which, as
discussed below could be around 3–5 Mpc for ongoing and upcoming experiments. Therefore, the measured RMS would always
be smaller than the quantity shown in Figure 4.6.

91



10-2

10-1

100

101

102

103

104

105

 10  15  20  25  30

B
ri

g
h
tn

e
ss

 T
e
m

p
e
ra

tu
re

 C
o
rr

e
la

ti
o
n
 (

m
K
2
)

redshift (z)

fL = 0.1
1.0
10

100
1000

EDGES

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

 10  15  20  25  30

B
ri

g
h
tn

e
ss

 T
e
m

p
e
ra

tu
re

 C
o
rr

e
la

ti
o
n
 (

m
K
2
)

redshift (z)

fL = 0.1
1.0
10

100
1000

EDGES

Figure 5.5: Evolution of auto-correlation of HI brightness temperature for r = 0.5 Mpc, including density
perturbations (left panel) and without density perturbations (ξ = 0) (right panel), for ζ = 7.5, a range of fL
varying from 0.1 to 1000 and three values of Nheat: 10 (solid lines), 1.0 (long dashed curves) and 0.1 (short
dashed lines). The dot-dashed line represents a fiducial model that matches with EDGES observations.

There are three distinct mechanisms that can wipe out the information on the correlation scales generated
by TS inhomogeneities: (1) Increase in temperature in the profiles and the background: when these tem-
peratures rise substantially above TCMB, s = TCMB/TS is driven to zero causing both autocorrelation of s

and its cross-correlation with ionization inhomogeneities to approach zero. (2) Decrease in the gradient
of temperature between the heated profiles and the background: This can happen at later stages when the
higher number density of X-ray sources would raise the temperature uniformly. It can also be achieved
when νmin is increased or α is decreased as seen in Figure 2.1; in this case, the heating around the bubble
decreases and most of the X-ray photons are used in raising the background temperature homogeneously.
(3) Merging of profiles: this process destroys the distinction between heated profile and background thereby
erasing correlation information on the scales of the profiles. The difference between this case and case (2)
is that the latter is possible for even small spin temperature profile fractions, fh. All these reasons play some
role in determining the transition from heating to ionization inhomogeneities regime. For the parameters
we consider in our work, the effect of both (1) and (3) can be suppressed by considering a small Nheat while
the scenario considered in (2) can be achieved by varying νmin.

When 〈TCMB/TS〉 decreases, reaching fn at a certain redshift, the correlation function at large scales become
negligible (Eq. 4.10). This happens very close to heating transition since fn ∼ 1 at large redshifts. For
smaller value of Nheat and larger value of νmin the heating transition is delayed and the signal is larger
during the era of partial heating. This result is in qualitative agreement with similar analyses on delayed
heating (e.g. Fialkov et al. [2014]). Inhomogeneous collisional coupling and shape of the temperature
profiles, which are determined by spectrum of X-ray photons (α and νmin), can potentially change the
redshift and depth of heating transition by a small amount. We do not study this effect.

An increase in νmin causes shallow heating profiles, which results in reducing the gradient of temperature
between the heating bubbles and the background, thereby reducing the correlation on a given scale for
the same average temperature. Similarly, for smaller value of α , the temperature is more uniform and the
correlation function is smaller. However, assuming a very large value of α does not change the correlation
structure substantially, as this only increases the temperature right outside the ionization bubbles and the TS
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Figure 5.6: The evolution of auto-correlation of HI brightness temperature at various scales, including
density perturbations (left panel) and without density perturbations (ξ = 0) (right panel), for ζ = 10,
fL = 10, and Nheat = 0.5.

profile sizes remain the same. Generically, a larger Nheat for a fixed Rx results in larger temperature profiles
and therefore causes correlation at larger scales. However, these profiles also merge sooner and wipe out
heating fluctuations at those scales. All these parameters have a much stronger effect on correlation than ζ

for most of the relevant redshifts in our work.

After the heating transition, the effect of inhomogeneous TS decreases and the main source of fluctuations is
ionization inhomogeneity. Their effect is suppressed if the heating or coupling is not saturated (very small
values of Nheat and fL).

The correlation functions are generally large at smalls scales (Eq. 4.11) and decrease as the distance bet-
ween two points increases. At very large scale, they approach Eq. 4.10, where the density inhomogeneity
is enhanced by 〈1− TCMB/TS〉, which could be large at early times. Therefore, large scales correlation
function at early times could be a reliable measure of density correlation (ξ ) and its statistical anisotropy,
in agreement with results of Tashiro and Sugiyama [2013], Mesinger et al. [2013].

In Figure 5.5 and 5.6 the evolution of correlation function is shown without taking into account the cor-
relation of density inhomogeneities (ξ = 0). The impact of Lyman-α coupling, heating and ionization
fluctuations can be clearly observed in these figures. In Figure 5.5, the correlation goes slightly negative
(also see Figure 5.9) at certain redshifts which depends strongly on Nheat and fL. As the density correlation
function, ξ is positive for all the scales we consider in our work, inclusion of this term generally makes our
overall correlation function positive.

5.4 Power Spectrum

In Figure 5.7, we show the evolution of the power spectrum ∆2 = k3P(k)/2π2 for a range of k1 and various
values of Nheat and fL. In Figure 5.8, we present a range of Fourier modes k for different values of Nheat

and νmin, assuming complete coupling at z≤ 20 ( fL→∞). These figures show similar evolutionary trend as
the correlation functions (Figures 5.3 and 5.4). They are also in agreement with analyses that have studied

1Generally, a wavenumber k will contribute to a range of spatial scales, but for making a comparison between real space
correlation function and power spectrum, one can use the approximate conversion r ' π/k.
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Figure 5.7: Evolution of ∆2(k) = k3P(k)/2π2 for k = 2Mpc−1 (top left panel), k = 1Mpc−1 (top right
panel), k = 0.5Mpc−1(bottom left panel)and k = 0.125Mpc−1 (bottom right panel) for ζ = 7.5, a range of
fL varying from 0.1 to 1000 and three values of Nheat: 10 (solid lines), 1.0 (long dashed lines) and 0.1
(short dashed lines). The dot-dashed line represents a fiducial model that matches with EDGES detection.

the impact of partial heating and density perturbations at large scales (e.g. Tashiro and Sugiyama [2013],
Mesinger et al. [2013]) or the impact of late heating on the fluctuating component of the signal (Fialkov
et al. [2014]).

While comparing our results with simulations, we have focused on three features: (a) the number of peaks
in the power spectrum, (b) the amplitude of ∆2(k) for a range of scales k ∼ 0.1–0.5Mpc−1 and (c) the
difference between the redshift of heating transition and the redshift of the power spectrum minimum.

Existing results in the literature show that, for k' 0.1–0.5Mpc−1, there are generally two or three peaks of
power spectrum as a function of redshift (Santos et al. [2008], Baek et al. [2010], Mesinger et al. [2013],
Ghara et al. [2015], Mesinger et al. [2016], Fialkov et al. [2017]). At high redshifts, when the Lyman-α
coupling and X-ray heating commence, they will create fluctuations of TS in the medium. If fluctuations
in these two fields dominate at widely different times, there will be two distinct peaks at high redshift:
one due to coupling inhomogeneities and the other (generally at lower redshift than former) due to heating
inhomogeneities (Chen and Miralda-Escudé [2008], Pritchard and Furlanetto [2007], Ahn et al. [2015a]).
After the heating transition, there is a third, smaller peak at low redshifts, when the power spectrum is
dominated by ionization inhomogeneities (e.g. Pritchard and Furlanetto [2007], Fialkov et al. [2014], Ghara
et al. [2015]).

In our results, for the modelling parameters that we have used, we do not have separate Lyman-α and
X-ray heating peaks; there is one peak due to TS fluctuations at high redshift and a smaller peak due to
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Figure 5.8: Evolution of ∆2 = k3P(k)/2π2 ((mK)2) for a range of scales for α = 1.5, and ζ = 10. The
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correspond to Nheat = 0.1 and Nheat = 0.5, respectively.

ionization inhomogeneities at low redshifts. Generally, the possible additional peak is masked by density
perturbations. When we neglect the impact of density perturbations in Figures 5.5 and 5.6, we see an
additional peak. However, in the complete model, we find a weak peak owing to this effect only at small
scales in the power spectrum (k = 2Mpc−1 in Figure 5.7). Also, this feature is generally absent from plots
of the evolution of correlation function (Figure 5.3).

The strength of the high redshift peak can be understood in terms of the evolution of number density
of large self-ionized regions at early times and influence region of Lyman-α photons. For z < 30, the
number density of self-ionized regions build exponentially in the excursion set formalism. While this creates
inhomogeneities owing to geometry seen in Figure 4.7, it also causes a rapid build-up of the background
Lyman-α photons, destroying the contrast between the near and far zone. At any point the background flux
gets nearly equal contribution from sources within the (comoving) radius R(n)

max (Eq. 3.7). This radius is
close to 600 Mpc for n = 2 at z ' 25. This large influence region contributes to wiping out the contrast in
Lyman-α number density a short span. After this, the inhomogeneities in Lyman-α coupling arises owing
to the influence regions R(n)

max for large principal quantum numbers n, which affects the medium very close
to the sources. These fluctuations are destroyed only when complete Lyman-α coupling is established.

We note that R(n)
max (for small principle quantum numbers n > 2) determines the length scale at which the

physics needs to be captured to study the Lyman-α generated inhomogeneities. It might be difficult to
achieve it using an N-body simulation as the box size is generally smaller than this length scale. In our
results for large Nheat and small fL, we get three peaks at large k (top left panel of Figure 5.7), since the hea-
ting, and by extension collisional coupling inhomogeneities dominate before the Lyman-α inhomogeneities
commence.

While our ∆2(k) agrees with the results of simulations for smaller scales, for k ' 0.1Mpc−1, our results
give less power as compared to simulations (bottom right panel of Figure 5.7). Given the small sizes of
ionization bubbles at high redshifts, the only contribution to fluctuations at k ∼ 0.1Mpc−1 is due to density
and spin temperature inhomogeneities. For the models of heating and Lyman-α coupling used in our work,
the contribution due to heating and coupling is dominated by faraway sources which diminish fluctuations
at large scales. Therefore at these scales, the spin temperature inhomogeneities are negligible and only the
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Figure 5.9: Neglecting density perturbations
(ξ = 0), the auto-correlation of HI signal at z = 20
for ζ = 7.5, fL = 1.0 and Nheat = 1.0.

density fluctuations are enhanced by the average contrast of HI spin temperature with the CMB temperature.
While it is conceivable that the higher power at large scales in simulation is owing to finite box size (for a
discussion see Zahn et al. [2011], Ghara et al. [2015]), which might not allow one to take into account the
contribution of far-away sources whose impact tends to homogenize the fluctuations of TS at large scales, a
more detailed comparison with simulations is hard as the parameter range used is generally not the same.

When the average spin temperature equals the CMB temperature during the heating transition, the power
spectrum at small k reaches a minimum value (Figure 5.7). However, for larger k (small r), even during
the heating transition there are significant fluctuations due to inhomogeneities of spin temperature and
ionization which delays the minima of the power spectrum. Figure 5.7 shows that, for k = 2Mpc−1, the
minima of power spectrum depends on the value of fL even though the heating transition is independent
of it. In general, the minimum of power spectrum occurs during or after the global heating transition,
depending on scales and modelling parameters. This is in agreement with simulations that have explored
the dependence of these inhomogeneities on modelling parameters (Mesinger et al. [2013], Ghara et al.
[2015], Mesinger et al. [2016], Fialkov et al. [2017]).

5.5 Non-Standard Scenarios

5.5.1 Negative Correlation

Our formalism allows for negative correlation, but we do not encounter cases with negative µ in our com-
plete model. If we ignore ξ , which is positively correlated at all scales of interest, we can still identify cases
where the auto-correlation of φ goes negative. We show one such case in Figure 5.9. Also, if the ionization
bubble centres were anti-correlated (Section 4.6), then we can get negative correlations even after including
the impact of density fluctuations. While such a situation doesn’t obtain for ΛCDM model, except at much
larger scales, the detection of negative correlation might point to another source of density fluctuations
during the early universe.
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5.5.2 Possible Explanations for EDGES Detection

An observation by Experiment to Detect the Global Epoch of Reionization Signature (EDGES) low band
instrument reported a global brightness temperature absorption trough of strength ∆T ' −500mK in the
frequency range of 70–90 MHz, corresponding to a redshift range of 15–19 (Bowman et al. [2018]). This
detection implies a sharp trough in the signal at z ' 19 and an equally sharp rise at z ' 15. This detection
can be explained using Eqs. 1.29 and 1.39 if TK . 2.5K at z' 17. For standard recombination and thermal
history, the minimum temperature of the gas at z ' 17 is TK ∼ 7K, and the absorption trough can have
a maximum amplitude of ∼ 200mK at z ' 17. Therefore, this detection might indicate additional exotic
channels of cooling the medium.

As the noise level for the detection is ' 20mK, the drop at higher redshift can arise from strong Lyman-α
coupling (TKyα � TCMB) being established close to z ' 19, with the rapid heating being responsible for
the sharp rise at z ' 15. It should be noted that one of the implications of the EDGES results is that fL

cannot be too large, otherwise the complete Lyman-α coupling would be established at a higher redshift
and even in the absence of additional cooling, the signal would be close to −150mK at z > 19, which
should be observable but is not seen by EDGES. Mirocha and Furlanetto [2019] have suggested that the
star formation efficiency at high redshift should be higher than expected to account for the rapid buildup of
Lyman-α photons and rapid TS coupling.

Dark Matter-Baryon Interaction

One possible explanation of EDGES result is the additional cooling of baryons through their interactions
with dark matter (Barkana [2018], Muñoz and Loeb [2018], Fialkov et al. [2018]). To understand our
formalism better, we have taken a fiducial model of the form described in Barkana [2018] which fits the
EDGES data: We have assumed dark matter-baryon interaction with cross-section σ1 = 5×10−24 cm2 and
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the ratio of dark matter to proton mass mdm/mp = 0.001. Such an interaction helps cooling the baryon
gas temperature much below what is predicted by the standard scenario, resulting in very large absorption
troughs (Figure 5.10). For fL = 2 and Nheat = 0.08, we get an absorption trough in the global signal similar
to the one observed by EDGES data (Figure 5.11).

In Figures 5.3 and 5.7, we have shown the correlation functions and power spectrum for a range of scales,
taking into account this fiducial model to replicate the EDGES results. The main impact of these observation
on the fluctuating component is to boost the signal by nearly an order of magnitude in the redshift range
15 < z < 19, even as compared to the most optimistic models1 (low Nheat and high fL) in the usual case.
Even when the TS field is uniform, with complete Lyman-α coupling and unheated gas, the low TS would
enhance the underlying density inhomogeneities. As we have shown in Section 4.5.4, the spin temperature
field can be negatively correlated at some scales. In such scenarios, the fluctuating component of the signal
could be less than given by Eq. 4.8. We tried to produce such models for parameters needed to explain the
EDGES data and found it very difficult to anti-correlate the TS field. Hence we infer that the minimum value
of correlation function which corresponds to the EDGES signal is given by Eq. 4.8, using the value of TK

derived from the trough in the global signal. If the global signal has a trough of ∼ 500 mK at z' 17, then
assuming complete coupling and no heating (no fluctuations due to these two fields), the autocorrelation
function at r = 2 Mpc and r = 4 Mpc should be ∼ 5100 (mK)2 and ∼ 2500 (mK)2 respectively.

As EDGES results imply a smaller value of fL, it results in smaller signal for z > 19 as compared to models
with larger fL that give a significantly higher signal (Figure 5.7). We also notice a decrease in the signal
z' 30, which is owing to cooler baryons causing a decrease in the efficiency of collisional coupling.

Effect of Residual Ionization Fraction

With residual ionization at the time of cosmic dawn xres ' 2× 10−4, the minimum matter temperature
is TK ' 7.15 K (Figure 1.3), which leads to maximum absorption signal of ∆TB ∼ 225 mK. If we take
xres ' 2× 10−6, we have minimum TK ' 1.32 K and maximum absorption signal of ∆TB ∼ 1.3 K. The
EDGES absorption trough can be achieved by reducing xres by one order of magnitude. However, there are
no known phenomena which can lower the residual ionization fraction, as its value is fixed by the physics
of recombination epoch which is extremely well constrained by the observation of CMB anisotropies.

Excess Radio Background

Another possible explanation of the EDGES result is the additional radio background at z≤ 19. In this case
we can replace TCMB with TCMB +Tradio in Eq. 1.29 (Feng and Holder [2018], Ewall-Wice et al. [2018],
Sharma [2018]), and with suitable choice of Tradio, we can re-derive all our results for compatibility with
EDGES detection. The results of the previous two mechanisms would hold even when this excess radio
background is responsible for the deep absorption feature, as s increases by a similar factor in that case too.
It might be possible to distinguish this scenario from the ones involving lower spin temperature if the radio
background sources themselves exhibit spatial fluctuations with their own characteristic scales.

1We have not incorporated the enhancement in the signal due to the inhomogeneous velocity-dependent cooling of gas within
this model (Fialkov et al. [2018], Muñoz et al. [2018]).
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5.6 Certain Assumptions and their Impact on Results

In our work, we have made many assumptions to simplify our formalism. We list some of the major
assumptions and their possible impact below.

ΛCDM Model of the Universe and the HI Bias

The size distribution of self-ionized regions is calculated using the excursion set formalism, which assumes
that the density perturbations at small scales are given by the ΛCMD model. In many extensions of this mo-
del, the power at small scales can differ substantially from the standard model (e.g. Sethi and Subramanian
[2009], Sarkar et al. [2016]). Our formalism can be extended to such models by using their matter power
spectrum to generate the size distribution of self-ionized regions. This would result in different TS profiles,
correlation functions and power spectrum strengths at various scales.

We assume the HI bias to be unity. If the HI distribution was biased with respect to underlying dark matter,
the signal owing to density perturbations could be larger/smaller depending on the value of this bias.

Minimum Mass and Cooling

We have assumed the minimum mass of the collapsed objects (Mmin) to correspond to virial temperature
Tvir = 104 K. However, if there were other channels of cooling (e.g. H2), then this minimum mass could
be smaller, which would lead to smaller ionization bubbles. This would shift the correlation function and
power spectrum strength to lower scales. Conversely, if there were heating mechanisms which hampered
the atomic cooling, the minimum mass of halos and ionization bubbles would be larger.

Excursion Set Formalism

For the ΛCDM model, the sources of radiation are expected to be highly clustered at high redshifts. Thus,
within a self-ionized region, there are many such clustered sources. We assume that these self-ionized
regions are unclustered and non-overlapping.

At smaller redshift (z . 12, depending on the parameter ζ ), the excursion set formalism begins to break
down when the ionization fraction ( fi) becomes large and there is substantial overlap between ionization
bubbles (Furlanetto and Oh [2016], Giri et al. [2018]). In this regime, our results are not very accurate,
however, we still show results up to z' 10, to emphasize the transition from the era of TS inhomogeneities
to ionization inhomogeneities.

Correlation of Ionization Bubble Centres

We have assumed that the ionization bubbles are uncorrelated in space. The correlation of these bubble
centres is expected to follow the correlation function of the density field with a bias (e.g. Dodelson [2003]
and references therein). The mean bubble separation is large at high redshifts, where the density correlation
function is much smaller than unity and the HI density fluctuations do not have a large bias with respect to
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underlying dark matter density field. Thus, this assumption has greater validity at higher redshifts when the
mean separation between the bubble centres is large.

If HI field is highly biased with respect to the underlying density field, the centres of ionization bubbles can
be correlated (Ahn et al. [2015b]). In that scenario, there can be a significant correlation at scales much
larger than sizes of the spin temperature profiles. We consider the case of correlated ionization bubble
centres in Section 4.6 for a toy model and show that while this effect doesn’t alter our results qualitatively
it can introduce correlations at new scales.

Sphericity of Ionization Bubbles

Given the statistically isotropic and homogeneous process of the photoionization, X-ray heating and Lyman-
α coupling, our assumption of spherical bubbles and isotropic spin temperature profiles hold even though
the individual bubbles might not be spherical. At low redshifts, when the ionization fraction is very large,
the ionized region geometry would vary substantially from spherical bubbles.

Ignoring Partly Ionized Regions

We have assumed that a small point in space is either completely ionized (n = 0) or completely neutral
(n = 1). This is a good assumption as the HII regions have sharp boundaries. The boundary thickness is of
the order of mean free path of an ionizing photon in the neutral medium, which is smaller than the sizes of
ionization bubbles and spin temperature profiles.

We have also ignored the partial ionization caused by X-rays. It has been shown that X-rays can ionize
medium up to 10% (Shull and van Steenberg [1985], Venkatesan et al. [2001]). This effect can be easily
accommodated in our results (Section 4.4.4) by changing the value of φ = xHI(1− s). This would reduce
the correlations by a small amount. However, Shull and van Steenberg [1985] have shown that the fraction
of energy of a photoelectron which goes into heating the medium increases from fH ∼ 0.15 for a completely
neutral medium to fH > 0.5 for a medium with ionization fraction xi ∼ 0.1. Thus, the temperature within
the partially ionized regions will increase faster. This would increase the global temperature as well as
profile temperature for the same number and spectrum of X-ray photons. We have ignored this effect in our
work.

Spectra of X-rays and Lyman-α Radiation

We have assumed that the X-ray luminosity is power-law with power index α and minimum frequency νmin

(Furlanetto [2006], Pritchard and Loeb [2012], Mesinger et al. [2011]). However, if this spectrum had a
more complicated shape (Fialkov et al. [2014]), then we would be required to use multiple combinations of
these two parameters to capture such a shape. In that case, the effect of these modelling parameters would
be more difficult to analyze.

We have also assumed that the spectrum of radiation between Lyman-α and Lyman-limit is flat. If this
spectrum had a different shape, then the Lyman-α contribution to a point from different distances would
depend on this spectrum. For example, if there were more photons emitted at a frequency just below Lyman-
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β than the number of photons at frequency just above Lyman-α , then for the same number of photons, the
coupling would be more homogeneous, since more photons originate from far-away sources (with more
redshifting) than from nearby sources.

Coupling of Tα to TK

Throughout our work, we have assumed that the Lyman-α colour temperature Tα is coupled to matter kine-
tic temperature TK through repeated scattering (Wouthuysen [1952], Field [1958]). Given the high number
of scatterings undergone by every Lyman-α photon in the neutral medium, this is a good assumption. Ho-
wever, if for any reason, Tα < TK , then the Lyman-α photons can bring TS to a temperature colder than given
by the kinetic temperature of the medium and increase the strength of both global signal and its fluctuating
component.

Redshift Space Distortion

We have neglected redshift-space distortion in our work, which would add anisotropy to the observed HI

field. However, this effect is small and our formalism is still valid for scales perpendicular to the line of
sight. As long as the ionization and heating sources are isotropic, their correlation is not affected by this
anisotropy. Moreover, the regions which are most affected by the redshift space distortion, are the sites of
structure formation and first regions to be ionized (McQuinn et al. [2006], Mesinger et al. [2011]). This
reduces the anisotropy due to redshift space distortion at later redshifts.

Density Cross-correlation with Ionization and Temperature

For the sake of simplicity, we have ignored cross-correlation of density with ionization and temperature in
this work. Most of the non-linear density fluctuation peaks are sites of source formation and these regions
will be first to ionize. Thus, density is positively correlated with ionization. Using excursion set forma-
lism, Furlanetto et al. [2004] computed this cross-correlation and showed that it is generally subdominant
compared to auto-correlation terms (section 3.5, Figure 5 of their paper).

Similarly, high-density regions are more likely to produce and capture X-ray photons and heat up, which
results in positive density-temperature correlation. High density and high-temperature regions would have
higher collisional coupling. High-density regions near the sources will also receive more Lyman-α photons,
which would suggest a positive correlation between the density and TS coupling. However, on the scale of
TS profiles, the density correlation is smaller at high redshifts. Simulations show that the density-heating
cross-correlation is sub-dominant compared to other contributions (Ghara et al. [2015]).

Overlap of Spin Temperature Profiles

Due to the assumption of random distribution of ionization bubbles, there is a finite probability that their
spin temperature profiles will overlap with one another even when the total volume fraction occupied by
such profiles is much smaller than unity. We have taken into account this effect in Section 4.3. However, in
cases where there is a large overlap of profiles, our formalism gives unexpected results (e.g. negative power
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spectrum). To avoid such unphysical results, we enforce that the total volume fraction of TS profiles in our
formalism remains small.

Evolution of Modelling Parameters

In our work, we have not considered scenarios for which the modelling parameters evolve with time. If these
parameters are allowed to evolve, the ionization bubbles size distribution, spin temperature profiles and the
background heating and coupling would require more complicated modelling. For instance, if Rx is larger
at an earlier epoch owing to the evolution of ζ , the heating bubbles could be larger causing correlations on
much larger scales than shown in our work. Our formalism can be easily extended to take into account such
effects.

Infinite Volume for Correlation Calculation

While calculating correlations, if one point is inside a bubble or its profile, and the second point is outside
that bubble and profile, then we have assumed that the probability of the second point being ionized or
heated with certain temperature is the global volume fraction of ionized regions or regions with that tempe-
rature. However, we should ideally correct this fraction by taking into account the existence of ionization
bubble and profile in which the first point is (see discussion in Section 4.4.1). This is a minor effect and
we ignore it since we have assumed an infinite universe with an infinite number of bubbles; therefore, the
presence of one bubble does not significantly alter the global fractions.

If correlation function was calculated on a box of finite length L with periodic boundary condition, then
the conservation of the number of bubbles will introduce negative correlations at scales close to the half
the box size. In our formalism, the negative correlations should appear at much larger scales than given
by simulations. For ΛCDM universe, the correlation function of density is negative for very large scales
and we can assume that the ionization and spin temperature correlations would also have negative values
for such scales. A small value of negative correlation at very large scale will compensate for large positive
correlation at small scale. This effect is quantifiable for finite volume, but difficult to calculate for an
infinite volume. Since we do not calculate correlations on such large scales, we do not attempt to satisfy
the condition that the integration of correlation overall space should be zero.
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Chapter 6

Conclusion

“And she never could remember; and ever since that day what

Lucy means by a good story is a story which reminds her of

the forgotten story in the Magician’s Book.”

— C. S. Lewis, The Voyage of the Dawn Treader

Theoretically understanding the physical processes during the epoch of cosmic dawn and reionization re-
mains a challenge given a large amount of uncertainty in the physics of ionizing sources, IGM, feedback
mechanisms, etc. The detection of 21 cm signal from this time period is an outstanding goal of modern
cosmology, which can not only shed light on the first sources of radiation but also help us gain a deeper
understanding of cosmological structure formation.

6.1 Detecting HI 21 cm Signal

The global brightness temperature of 21 cm signal from the CD/EoR (redshift range of 25 > z > 8) is
expected to be in the range of −200 mK to 20 mK (Eq. 1.39), corresponding to the frequency range of
50–150 MHz (Madau et al. [1997], Tozzi et al. [2000], Gnedin and Shaver [2004]). The fluctuating com-
ponent of the signal is likely to be an order of magnitude smaller on scales in the range 3–100 Mpc, which
implies angular scales of ' 1–30 arc-minutes (e.g. Pritchard and Furlanetto [2007], Pritchard and Loeb
[2012], Natarajan and Yoshida [2014], Morales and Wyithe [2010]). Currently, many ongoing and plan-
ned experiments are attempting to detect both the global HI signal and its fluctuating component from the
CD/EoR. This signal is very weak, and it is buried under foregrounds, ionospheric distortion as well as
terrestrial noise and systematic errors – all of which are orders of magnitude stronger than the signal.

Radio Foregrounds: Synchrotron continuous emission from galactic and extragalactic sources are the
main sources of contaminations to the redshifted 21 cm signal from the EoR. The foreground flux, S(ν) ∝

ν−0.7, is higher at lower frequencies, which means that the HI signal from higher redshifts is more conta-
minated. Various methods have been developed to mitigate the impact of foregrounds (Harker et al. [2009],
Bernardi et al. [2015], Chapman et al. [2015], Sathyanarayana Rao et al. [2017]). Iteratively removing point
sources, along with modelling diffuse emission should ideally leave only signal and Gaussian noise in the
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data. However, there is a possibility that residual from point sources might contaminate the signal (Harker
et al. [2009]). Other methods try to exploit the difference in spectral properties of the signal and foregrounds
to isolate the latter from the former in the data. As the frequency structure of the signal translates to the
evolution of the HI spatial structure with redshift, the signal is not spectrally smooth; whereas the fore-
grounds are expected to have smooth frequency response due to their power-law spectra. Delay transform
methodology can be used to make a certain region of the spectrum (EoR window) arbitrarily clean (Parsons
et al. [2012], Paul et al. [2016]).

Ionosphere: Earth’s atmosphere is transparent to radio waves, but the free electrons in the ionosphere
distort the signal through refraction and absorption (Vedantham et al. [2014], Sokolowski et al. [2015b],
Datta et al. [2016]). This effect is dependent on the ionospheric electron density, which varies with time
and place. To avoid contamination of the 21 cm signal due to this effect, observational projects have been
proposed to study this signal from the far side of the moon (Dark Ages Radio Explorer (DARE) - frequency
range of 40-120 MHz) (Burns et al. [2017]).

Radio Frequency Interference: The radio frequency interference (RFI) due to terrestrial sources such
as FM and TV transmission, power lines, satellites and radio communications can also contaminate data.
Given the time and place dependent nature of such interference, radio-quiet zones are chosen as sites of
observations.

6.1.1 Global Signal

The thermal noise level required to detect the global 21 cm signal can be achieved within a few minutes to
a few hours of integration time. However, the main challenge is in designing an instrument which does not
introduce any spectral shapes that can confuse or distort the original signal. It is also important to develop
algorithms to separate this signal from foregrounds, ionospheric distortions and internal systematics of the
instrument. Observational projects that are attempting to detect the global signal are,

• LEDA: Large Aperture Experiment to Detect the Dark Ages (Bernardi et al. [2015], Price et al.
[2018]), operating in the frequency range of 40-85 MHz has constrained the amplitude of the signal
∆TB . −890 mK with width greater than 6.5 MHz (corresponding to ∆z > 1.9 at redshift z = 20) in
the range 13.2 < z < 27.4 (100 > ν > 50 MHz) at the 95% confidence level (Bernardi et al. [2016]).

• BIGHORNS: Broadband Instrument for Global HydrOgen ReioNisation Signal is operating in the
frequency range of 70-200 MHz (Sokolowski et al. [2015a]).

• SCI-HI: Sonda Cosmológica de las Islas para la Detección de Hidrógeno Neutro is operating in the
frequency range of 40-130 MHz (Voytek et al. [2014]).

• SARAS: Shaped Antenna measurement of the background Radio Spectrum (Singh et al. [2017,
2018]), operating in the frequency range of 40-200 MHz has examined a large number models for
21 cm global signal predicted by the semi-numerical simulation of Cohen et al. [2017]. With data
acquired over 13 nights, they have rejected models where the reionization was rapid and the IGM
temperature TK (and TS, which is coupled with it) was very low due to late or no heating.
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• EDGES: Experiment to Detect the Global EoR Signature (Bowman et al. [2018]) is operating in the
frequency range of 50-200 MHz. They have ruled out rapid reionization (∆z < 0.06) in the redshift
range of 6 < z < 13 at 95% confidence level (Bowman and Rogers [2010]). Assuming TS� TCMB,
their high-band instrument predicts ∆z≤ 1 at z≈ 8.5 and ∆z≥ 0.4 across most of the observed redshift
range. For TS not being heated to a large temperature, they reject ∆z ≤ 2 over most of the observed
redshift range at ≥ 2σ significance (Monsalve et al. [2017]).

Their recent detection of a broad global absorption trough of strength 500 mK at ν ' 78±10 MHz is
the only positive detection of global HI signal (Bowman et al. [2018]). This result cannot be explained
by the standard scenario of cosmic dawn and reionization (Section 5.5.2). Models have been proposed
where interaction of baryons with cold dark matter will cool the gas and increase its contrast with the
CMB (Barkana [2018], Muñoz and Loeb [2018], Fialkov et al. [2018]). Increased radio background
due to early the radio sources has also been considered (Ewall-Wice et al. [2018], Sharma [2018]).
It was also proposed that the signal could have been mimicked by spinning dust in the local universe
(Draine and Miralda-Escudé [2018]) or might be an artefact of the data modelling (Hills et al. [2018],
Singh and Subrahmanyan [2019]). If confirmed, this unexpectedly deep absorption trough will open
new avenues to investigate exotic physics.

Apart from these single-element radiometers, interferometers can also be used to detect the global 21 cm
signal. They have the advantage of reduced systematics level, at the cost of less sensitivity to the mono-
pole component (Presley et al. [2015], Vedantham et al. [2015], Singh et al. [2015], Mahesh et al. [2015],
McKinley et al. [2018]).

6.1.2 Fluctuating Components

In principle, radio interferometers can image the spatial fluctuations of 21 cm signal. However, given the
nature of foregrounds, which are orders of magnitude brighter than the underlying HI signal (Pritchard and
Loeb [2012]), it is easier to probe the statistical properties of the signal instead of directly imaging the field.
It is customary in the literature to present the sensitivity of radio interferometers for the detection of HI

signal in terms of power spectrum, partly because the radio interferometers measure the Fourier component
of the HI signal. These radio interferometers directly measure visibilities; their correlations can be related
to the power spectrum of the HI signal (Bharadwaj and Sethi [2001], Zaldarriaga et al. [2004]).

Many of the ongoing and upcoming experiments have the capability to detect the fluctuating component
of the HI signal in hundreds of hours of data integration in the redshift range 8 < z < 25 (e.g. Ahn et al.
[2015a], Mesinger et al. [2014]). The best upper limits of ∆2(k) ' (50mK)2 for k ' 0.1 Mpc−1 has been
obtained by these experiments:

• GMRT: The Giant Metrewave Radio Telescope Epoch of Reionization experiment provided the first
upper limit of ∆2(k)≤ (248 mK)2 for k = 0.50 h Mpc−1 at z≈ 8.6 (Paciga et al. [2013]).

• LOFAR: The ongoing experiment Low-Frequency Array High-Band Antenna’s best upper limit cor-
respond to ∆2(k) = (79.6 mK)2 (k' 0.053 h cMpc−1) in the redshift range 9.6 < z < 10.6 in 13 hours
of integration (Patil et al. [2017]). LOFAR has the frequency range to probe the redshift range of glo-
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bal trough observed by EDGES. If the noise properties at smaller frequencies (' 80 MHz) behave
roughly as the one observed at higher frequencies (' 110 MHz), LOFAR might be able to detect the
signal in a few hundred hours of integration.

• MWA: The Murchison Widefield Array placed a systematic-limited upper limit on the HI power
spectrum of ∆2(k)≤ 2.7×104 mK2 at k = 0.27 h Mpc−1 and z = 7.1 with integration of 32 hours of
data (Beardsley et al. [2016]). At frequency between 113 and 75 MHz (11.6 . z . 17.9) they have
placed upper limit of ∆2(k) ≤ (104 mK)2 at comoving scales k . 0.5 h Mpc−1 with three hours of
observations (Ewall-Wice et al. [2016]).

• PAPER: Precision Array for Probing the Epoch of Reionization claimed upper limit of ∆2(k) ≤
(22.4mK)2 in the range 0.15 < k < 0.5 h Mpc−1 at z = 8.4 with observation of 135 days (Ali et al.
[2015]). However, due to signal loss estimation issue, they have retracted this limit (Cheng et al.
[2018]).

• HERA: Hydrogen Epoch of Reionization Array is the successor of PAPER experiment and it is
expected to observe the HI signal from CD/EoR in the range of 50-250 MHz (DeBoer et al. [2017]).

• SKA: For a deep survey with Square Kilometre Array (SKA1-LOW), the error on the power spectrum
(∆2(k)) is expected to vary from 0.1 (mK)2 at z ' 9 to 5 (mK)2 at z ' 25 for k = 0.1 Mpc−1. At
z ' 16, it is expected to detect the HI signal with a signal-to-noise varying from 100 to 10 for 0.1 <

k < 0.6 Mpc−1 for a signal strength of ∆2(k) ' 100 (mK)2. The expected error is 2 (mK)2 at k =

0.1 Mpc−1, and it increases to 10 (mK)2 for k ' 0.5 Mpc−1. SKA1-LOW (and SKA2) have the
capability to detect the EoR signal in the redshift range 20 < z < 25. A signal of 100 (mK)2 at z' 25
is detectable by a deep SKA1-LOW survey with signal-to-noise of 5 for k < 0.1 Mpc−1. SKA1-LOW
will also be able to directly image the HI field from scales of arc-minutes to degrees over most of the
redshift range z∼ 6−28 (Ahn et al. [2015a], Koopmans et al. [2015]).

The angular scale above which the HI signal can be reliably measured for most ongoing and upcoming radio
interferometers is a few arcminutes. 1′ corresponds to nearly 3 Mpc (comoving) at z' 15. Therefore, these
telescopes are sensitive to linear scales larger than 5–10 Mpc (comoving). However, these telescopes have
frequency resolution which correspond to much smaller linear scales (e.g. MWA’s frequency resolution of
40 kHZ corresponds to nearly 1 Mpc (comoving) along the line of sight).

Data analysis of these interferometers can readily be extended to the image plane (which is a byproduct of
the analysis pipeline e.g. Patil et al. [2017] for LOFAR). This means real-space correlation functions can
also be used for computation of the signal (Sethi and Haiman [2008]). Along with the global HI signal, the
statistical detection of the fluctuating component can be used to constrain the epoch of Lyman-α coupling,
X-ray heating and ionization, which would help us understand the properties of first sources and their
surrounding medium better.
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6.2 Summary and Conclusions

The main aim of our work is to present a new analytic formalism to study the HI 21 cm signal fluctuations
from CD/EoR due to density, ionization, heating, and spin temperature coupling inhomogeneities. Our
formalism takes into account size distribution of ionization bubbles using excursion set formalism for the
ΛCDM model, and isotropic spin temperature profiles surrounding them using X-ray heating, collisional
coupling and Lyman-α coupling. These profiles might overlap with one another and merge smoothly with
the background. We study the evolution of these HII bubbles and their surrounding medium in the redshift
range 10≤ z≤ 30 for five modelling parameters: efficiency of ionization (ζ ), number of X-ray photons per
stellar baryon (Nheat), the spectral index of X-ray photons (α), the minimum frequency of X-ray photons
(νmin) and the ratio of number of Lyman-α to ionizing photons ( fL).

We use geometric and probabilistic arguments to calculate two-point correlation function and power spectrum
for this geometry. We compute the ionization autocorrelation, spin temperature autocorrelation, and spin
temperature-ionization cross-correlations while neglecting the density cross-correlation with ionization and
TS. We explicitly show that our formalism reduces to the correct form in various limits. We study two
simple toy models to understand the prediction of our formalism.

We also apply our method to study the fluctuating signal which would correspond to the global HI signal
detected by EDGES group in the redshift range 15< z< 19. Generically, EDGES detection results in higher
correlation signal in the redshift range of the detection but lower signal at higher redshifts, as compared to
the most optimistic standard models (Figures 5.3 and 5.7). We do not attempt to physically explain the
anomalous EDGES result in our work, but merely wish to demonstrate the power of our formalism to study
such cases.

We find reasonable agreement with existing semi-analytic and N-body simulation results. As we compute
correlation functions in both real and Fourier space, we find a possible case where the correlation function
in real space is negative owing to partial heating and Lyman-α coupling (Figure 4.8). Since our formalism is
not limited by the size of the simulation box, we can easily incorporate a variety of physical processes at very
small or very large scale, e.g. the influence region of Lyman-α photons. This formalism is computationally
cheaper, which means we can explore a large set of modelling parameters and their degeneracies at a
fraction of computation resources taken by N-body simulation. While N-body simulations are important
to understand and image the HI field, analytic methods, like the one presented in this thesis, are suitable
to compute the statistical quantities like the correlation function and the power spectrum. Since N-body
simulations, semi-analytic, and analytic formalisms each have their own set of assumptions, strengths, and
weaknesses, it is beneficial to apply all these methods to unravel the complex physics of reionization.

6.3 Future Prospects

While developing our formalism, we have made several assumptions (Section 5.6). We can extend our for-
malism by taking into account the redshift space distortion and cross-correlation of density with ionization
and TS fields; these terms can help us better understand of the underlying dark matter model and its effect
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on 21 cm signal. This would also allow us to investigate alternative dark matter models.

We can also apply our formalism to study cross-correlation of various lines at high redshift (e.g. 21 cm
hyperfine line, 3 cm fine structure line, recombination lines, He lines). In the post-recombination era, such
methods can be applied to study the Lyman-α forests. We can also extend our formalism to compute three-
point correlation function to study non-gaussianity in the early universe. Establishing general properties of
two- and three-point correlation functions of the 21 cm signal (or power spectrum and bispectrum in Fourier
space) can help us distinguish the HI signal from foregrounds and other contaminants, which have different
statistical properties.

108



Appendix

A Physical Constants

c 3×1010 cm s−1 speed of light
hp 6.626×10−27 cgs Planck constant
G 6.67×10−8cm2g−1s−2 gravitational constant

me 9.11×10−28 g mass of electron
mp 1.67×10−24 g mass or proton
e 4.8×10−10 esu charge of electron

kB 1.38×10−16 erg/K Boltzmann constant
8.617×10−5 eV/K

ar 7.56×10−15 cgs radiation constant
σT 6.65×10−25 cm2 Thomson cross-section

1 eV 1.602×10−12 erg
' 104 K

1 parsec 3.0857×1018 cm
M� 1.99×1033 g Solar mass

B Hydrogen and Helium

21 cm Hyperfine Transition of HI

∆E21 5.9×10−6 eV energy difference
λ21 21.1 cm wavelength
ν21 1420.4 MHz frequency
A21 2.85×10−15 s−1 spontaneous transition rate
T? 0.068 hpν21/kB

Ionization of Hydrogen and Helium

EHI 13.6 eV
EHeI 24.6 eV
EHeII 54.4 eV
σ0,HI 6.3×10−18 cm2

σ0,HeI 7.4×10−18 cm2
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Lyman-series

∆Eα 10.2 eV Lyman-α energy difference
λα 1216×10−8 cm Lyman-α wavelength
να 2.468×1015 Hz Lyman-α frequency
νβ 2.925×1015 Hz Lyman-β frequency
νγ 3.083×1015 Hz Lyman-γ frequency
Aα 6.2581×108 s−1 Lyman-α spontaneous transition rate
fα 0.4162 Lyman-α oscillation strength

Case A and B recombination coefficient: Case A recombination coefficient takes into account recom-
bination to all the states of the hydrogen atom, whereas Case B recombination coefficient only takes into
account recombination to n ≥ 2. When the matter is optically thick for the recombination photon, we use
Case B recombination coefficient.

αA = 4.2×10−13 cm3s−1 at 104 K

αB =
2.6×10−13

(TK/104K)0.8 cm3s−1

C Cosmology

Cosmological Parameters (Planck Collaboration et al. [2018])

T0 2.725 K CMB temperature at z = 0
h 0.677 Hubble parameter

Ωm 0.310 matter density fraction
Ωb 0.049 baryon density fraction
ΩΛ 0.690 dark energy density fraction

Ωbh2 0.022
Ωmh2 0.142

σ8 0.808 density fluctuations at 8 h−1Mpc at z = 0
ns 0.967 power spectrum spectral index

τreion 0.055 reionization optical depth

Redshift: In the expanding universe, if the photons were emitted at redshift z = ze, and observed at z = zo:

a(to)
a(te)

=
1+ ze

1+ zo
=

νe

νo
=

λo

λe
dz

1+ z
=

dν

ν
=−da

a
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ΛCDM Universe: We assume that the universe is statistically homogeneous and isotropic.

ρ̇ +3
ȧ
a
(ρ + p) = 0

ä
a
=−4πG

3
(ρ +3p)+

Λ

3
ȧ2

a2 =
8πG

3
(ρm+ργ +ρΛ +ρk) =

8πG
3

(ρm +ργ)+
Λ

3
− k

a2

Hubble’s constant: H(z) =
ȧ
a
= H0

(
Ωγ(1+ z)4 +Ωm(1+ z)3 +Ωk(1+ z)2 +ΩΛ

)1/2

Critical density for k = 0: ρc =
3H2

0
8πG

Matter-radiation equality: Ωm(1+ z)3 = Ωγ(1+ z)4 ⇒ 1+ zeq =
Ωm

Ωr
' 3380

Matter-dark energy equality: Ωm(1+ z)3 = ΩΛ ⇒ 1+ zeq2 =

(
ΩΛ

Ωm

)1/3

' 1.306

Matter dominated epoch: (zeq > z > zeq2) H(z)' H0Ω
1/2
m (1+ z)3/2.

valid assumption for epochs of dark ages, cosmic dawn and reionization.

Baryons:

mass density fraction at z = 0: ΩH = xHΩb '
3
4

Ωb and ΩHe = xHeΩb '
1
4

Ωb

number density at z = 0: nH,0 =
ΩHρc

mp
' 3

4
Ωbρc

mp
and nHe,0 =

ΩHeρc

mHe
' 1

4
Ωbρc

4mp

number density fraction:
nH

nb
=

nH

nH +nHe
' 12

13
and

nHe

nb
=

nHe

nH +nHe
' 1

13
.

number density of baryons at z = 0: nb,0 = nH,0 +nHe,0 '
13
16

Ωbρc

mp
= 1.125×10−5 13

16
Ωbh2.

number density of hydrogen: nHI = 1.125×10−5 xHI xH Ωbh2(1+ z)3

Cosmological Parameters

H0 h×100 km s−1Mpc−1 Hubble’s constant
h×3.24×10−18 s−1

ρc h2×1.8786×10−29 g cm−3 critical density z = 0
nb,0 9.140×10−6 Ωbh2 cm−3 number density of nucleons at z = 0
nH,0 8.437×10−6 Ωbh2 cm−3 number density of hydrogen at z = 0
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Distances: Line element in spatially flat (k = 0) FRW metric is

ds2 = dt2−a2(t)(dr2
0 + r2

0dΩ),

where, r0 is the coordinate (comoving) distance between two points. This distance remains constant with
the expansion of the universe. If we trace the path of a photon between two points, we need to take into
account the evolution of the scale factor a while the photon is travelling by using the light-travel distance
rγ . If a photon was emitted at te (ze) and observed at to (zo), then

Comoving distance: r0 =
∫ to

te

c
a

dt =
∫ ze

zo

c
H(z)

dz

Light-travel distance: rγ =
∫ to

te
c dt =

∫ ze

zo

c
H(z)(1+ z)

dz

Physical (proper) distance: dr = a(t)dr0

Luminosity distance: rL = r0
1+ ze

1+ zo

Angular diameter distance: rA = r0
1+ zo

1+ ze
.

Structure Formation with Linear Perturbation Theory:

Position and Motion of Particle: −→r = a(t)−→x , −̇→r = a−̇→x +−→x ȧ

Linear Perturbation Theory: −̇→v +−→v H =−
−→
∇ φ

a
, δ̇ +

−→
∇ ·−→v

a
= 0

δ̈ +2
ȧ
a

δ =
∇2P
ρba2 +4πGρbδ

Solutions: δ1 =
X1/2

a

∫ a 1
X3/2 da, δ2 =

X1/2

a

X =
8π

3
Gρba2 +

Λ

3
a2− k
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D Radiative Transfer

Specific intensity: Iν =
dE

dtdΩdAdν
(Rybicki and Lightman [1979])

Angle averaged specific intensity: Jν =
1

4π

∫
IνdΩ, J̄ =

∫
φ(ν)Jνdν

Flux: Fν =
∫

IνcosθdΩ =
dE

dtdAdν

Energy density: µν =
1
c

∫
IνdΩ =

4π

c
Jν =

dE
dV dν

Number density of photons: nν =
4π

c
2∆ν

hpν
Jν =

dN
dV

Emission coefficient: jν =
hpν

4π
n2A21φ(ν) =

dE
dV dΩdtdν

Absorption coefficient: αν =
hpν

4π
(n1B12−n2B21)φ(ν) = σνn1

(
1− g1n2

g2n1

)
Optical depth: τν =

∫
nσνds =

∫
ανds

Source function: Sν =
jν

αν

=
n2A21

n1B12−n2B21

Mean free path: l̄ν =
1

αν

=
1

nσν

Cross-section: σν =
hpν

4π
B12φ(ν) =

g2

g1

A21λ 2

8π
φ(ν)

Doppler broadening line profile: φ(ν) =
1√
π

1
∆νD

exp

[
−
(

ν−ν0

∆νD

)2
]

;
∫

φ(ν)dν = 1

Einstein coefficients: g1B12 = g2B21 and A21 =
2hpν3

c2 B21

Without medium, static universe:
dIν

ds
= 0

Without medium, expanding universe:
Iνo

ν3
o
=

Iνe

ν3
e

Medium:
dIν

ds
=−αν Iν + jν ;

dIν

dτν

=−Iν +Sν

∴ Iν(τν) = Iν(0)e−τν +Sν(1− e−τν )

Planck law for blackbody: Bν(T ) =
2hpν3

c2
1

exp
(

hpν

kBT

)
−1

Rayleigh-Jeans limit (hpν � kBT ): Bν(T )'
2ν2kBT

c2

Brightness temperature in RJ limit: TB '
c2

2ν2kB
Iν

TB(τν)' TB(0)e−τν +T (1− e−τν ).
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E Probability

P(A|B) = P(A∩B)
P(B)

(E.1)

P((A∩B)|C) =
P(A∩B∩C)

P(C)

=
P(A∩B∩C)

P(B∩C)

P(B∩C)

P(C)

= P(A|(B∩C)) P(B|C) (E.2)

P(A) =P(A∩B)+P(A∩ B̃)

∴ P(A∩B) = P(A)−P(A∩ B̃) (E.3)

F Geometry

AAA(((ddd,,,PPP,,,QQQ)))

When two spheres of radius P and Q overlap, then the surface area of the sphere with radius P that lies in
sphere of radius Q is (Weisstein [2007a,b]),

A(d,P,Q) =
πP(Q−P+d)(Q+P−d)

d
,

where d is the distance between two sphere centres. If d > P+Q, then these two spheres do not overlap. If
Q > P and d < Q−P, then the first sphere lies entirely within the second sphere. If P > Q and d < P−Q,
then the first sphere entirely encloses the second sphere. Therefore,

A(d,P,Q) =


0 d > P+Q

0 d < P−Q

4πP2 d < Q−P
πP(Q−P+d)(Q+P−d)

d Otherwise.

(F.1)

VVV (((ddd,,,PPP,,,QQQ)))

Given two spheres of radius P and Q, the overlapped volume is

V (d,P,Q) =


0 d > P+Q

4π

3 Q2 d < P−Q
4π

3 P2 d < Q−P
π(Q+P−d)2(d2+2d(P+Q)−3(P−Q)2)

12d Otherwise,

(F.2)
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where d is the distance between two sphere centres. Here we note that,

d
dP

V (d,P,Q) = A(d,P,Q). (F.3)

F.1 D(x,R)

R

R− x

P1

P1

x

x

Figure F.1: Case a: x≤ R

R

x−R
P1

P1

x

x

Figure F.2: Case b: R≤ x≤ 2R

R

P1
x

Figure F.3: Case c: x≥ 2R

If point 1 is inside a sphere of radius R, then the probability that its neighbour (point 2) at distance x is
outside the sphere is D(x,R). Here we take a to be the distance of point 1 from the centre of the sphere.

(a) x < R: If a < R− x, then all the neighbors of point 1 are inside the sphere. For a > R− x, we can use
Eq. F.1 (Figure F.1) and get,

D(x,R) =

[
4π

3 (R− x)3

4π

3 R3

]
(0)+

∫ R

R−x

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 R3
da =

3x
4R
− x3

16R3 .

Here Ax = 4πx2 is the surface area of a sphere with radius x.

(b) R < x < 2R: If a < x−R, then all neighbors of point 1 are outside the sphere (Figure F.2). Therefore,

D(x,R) =

[
4π

3 (x−R)3

4π

3 R3

]
(1)+

∫ R

x−R

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 R3
x

da =
3x
4R
− x3

16R3 .

(c) 2R < x: All neighbors of point 1 are outside the sphere (Figure F.3), giving D(x,R) = 1.

Putting them all together, we finally get,

D(x,R) =

{
3x
4R − x3

16R3 x < 2R

1 x > 2R.
(F.4)
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Also note that,

1−D(x,R) =
V (x,R,R)

VR
. (F.5)

Here VR = 4πR3/3. Therefore, the probability that neighbour of a point in sphere of radius R lies within
that sphere is the fraction of volume that is overlapped by two spheres of radius R at distance x.

F.2 E(x,Q,R)

If point 1 is inside a sphere of radius Q, then the probability that its neighbour (point 2) at distance x is
outside the concentric sphere of radius R is E(x,Q,R). a is the distance of point 1 from the centre of the
sphere.

(a) R > Q and x < R−Q: All neighbors of point 1 are inside the sphere of radius R, giving E(x,Q,R) = 0.

(b) R > Q and R−Q < x < R: R− x < Q. If a < R− x, all neighbors of point 1 are inside the sphere with
radius R. For a > R− x, we can use Eq. F.1, and get

E(x,Q,R) =

[
4π

3 (R− x)3

4π

3 Q3

]
(0)+

∫ Q

R−x

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 Q3
da

=
1
2
− R3

2Q3 +
3R4

16Q3x
− 3R2

8Qx
+

3Q
16x

+
3R2x
8Q3 +

3x
8Q
− x3

16Q3 .

(c) R > Q and R < x < R+Q: x−R < Q. If a < x−R, all neighbors of point 1 are outside the sphere with
radius R. We have,

E(x,Q,R) =

[
4π

3 (x−R)3

4π

3 Q3

]
(1)+

∫ Q

x−R

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 Q3
da

=
1
2
− R3

2Q3 +
3R4

16Q3x
− 3R2

8Qx
+

3Q
16x

+
3R2x
8Q3 +

3x
8Q
− x3

16Q3 .

(d) R+Q < x: All neighbors of point 1 are outside the sphere of radius R, giving E(x,Q,R) = 1.

(e) Q > R, x < Q−R and x < R: R− x > 0 and x+R < Q. If a < R− x, all neighbors of point 1 are inside
the sphere of radius R. If a > R+ x, all neighbors of point 1 are inside the sphere with radius R. We have,

E(x,Q,R) =

[
4π

3 (R− x)3

4π

3 Q3

]
(0)+

∫ x+R

R−x

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 Q3
da+

[
4π

3 (R+ x)3

4π

3 Q3

]
(1) = 1− R3

Q3 .

(f) Q > R, x < Q−R and R < x < Q+R: x−R > 0 and x+R < Q. If a < x−R, all neighbors of point 1
are outside the sphere of radius R. If a > R+ x, all neighbors of point 1 are inside the sphere with radius R.
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We have,

E(x,Q,R) =

[
4π

3 (x−R)3

4π

3 Q3

]
(1)+

∫ x+R

x−R

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 Q3
da+

[
4π

3 (R+ x)3

4π

3 Q3

]
(1) = 1− R3

Q3 .

(g) Q > R, x > Q−R and x < R: R− x > 0. If a < R− x, all neighbors of point 1 are inside the sphere of
radius R. We have,

E(x,Q,R) =

[
4π

3 (R− x)3

4π

3 Q3

]
(0)+

∫ Q

R−x

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 Q3
da

=
1
2
− R3

2Q3 +
3R4

16Q3x
− 3R2

8Qx
+

3Q
16x

+
3R2x
8Q3 +

3x
8Q
− x3

16Q3 .

(h) Q > R, x > Q−R and R < x < Q+R: x−R > 0. If a < x−R, all neighbors of point 1 are outside the
sphere of radius R. We have,

E(x,Q,R) =

[
4π

3 (x−R)3

4π

3 Q3

]
(1)+

∫ Q

x−R

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 Q3
da

=
1
2
− R3

2Q3 +
3R4

16Q3x
− 3R2

8Qx
+

3Q
16x

+
3R2x
8Q3 +

3x
8Q
− x3

16Q3 .

Putting all cases together, we get,

E(x,Q,R) =


0 x < R−Q

1− R3

Q3 R−Q < x < Q−R
1
2 − R3

2Q3 +
3R4

16Q3x −
3R2

8Qx +
3Q
16x +

3R2x
8Q3 + 3x

8Q − x3

16Q3 |R−Q|< x < R+Q

1 x > R+Q.

(F.6)

Also note that,

1−E(x,Q,R) =
V (x,Q,R)

VQ
. (F.7)

F.3 C(x,P,Q,R)

If point 1 is located between distance P and Q from the centre of a sphere (Q > P), then C(x,P,Q,R) is the
probability that its neighbour at distance x (point 2) is located outside the concentric sphere of radius R. We
take a to be the distance of point 1 from the centre of the sphere.

(a) x ≤ R−Q: None of the neighbours of point 1 are outside the sphere of radius R (Figure F.4), giving
C(x,P,Q,R) = 0.

(b) x ≤ P−R: All of the neighbours of point 1 are outside the sphere of radius R (Figure F.5), giving
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Figure F.4: Case a: x≤ R−Q
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Q
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P1
x

Figure F.5: Case b: x≤ P−R

P

QR

P1
x

Figure F.6: Case c: x≥ R+Q

C(x,P,Q,R) = 1.

(c) x ≥ R+Q: All of the neighbours of point 1 are outside the sphere of radius R (Figure F.6), giving
C(x,P,Q,R) = 1.

P

Q
R

S

T

P1

P1

x

x

Figure F.7: Case d.a: R−Q≤ x≤ R−P,
x≤ Q−R

P

Q
R

S

P1

P1

x

x

Figure F.8: Case d.b: R−Q≤ x≤ R−P,
x≥ Q−R

(d) R−Q≤ x≤ R−P: Taking S = R−x, we can see that all the neighbours of the points between distance
P and S (the red shaded area in Figure F.7 and Figure F.8) are inside the sphere of radius R. Therefore we
have,

C(x,P,Q,R) =

[
4π

3 (S3−P3)
4π

3 (Q3−P3)

]
(0)+

∫ Q

S

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 (Q3−P3)
da.

(d.a) If x ≤ Q−R: Taking T = x+R, we see that all neighbours of points between distance T and Q (the
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green shaded area in Figure F.7) are outside the sphere of radius R. Therefore,

C(x,P,Q,R) =
∫ T

S

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 (Q3−P3)
da+

∫ Q

T

(
1− 0

Ax

)
4πa2

4π

3 (Q3−P3)
da

=
1
2

T 3−S3

Q3−P3 +
3
8x

T 2−S2

Q3−P3

[
T 2 +S2

2
+(x2−R2)

]
+

Q3−T 3

Q3−P3

=
Q3−R3

Q3−P3 .

(d.b) Otherwise (Figure F.8),

C(x,P,Q,R) =
1
2

Q3−S3

Q3−P3 +
3
8x

Q2−S2

Q3−P3

[
Q2 +S2

2
+(x2−R2)

]
=

1
2

Q3− (R− x)3

Q3−P3 +
3
8x

Q2− (R− x)2

Q3−P3

[
Q2 +(R− x)2

2
+(x2−R2)

]
.
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S T
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x

x

Figure F.9: Case e.a: P−R≤ x≤ Q−R,
x≥ P+R

P

Q

R
S

P1

P1

x

x

Figure F.10: Case e.b: P−R≤ x≤ Q−R,
x≤ P+R

(e) P−R≤ x≤ Q−R: Taking S = R+ x, we can see that all the neighbours of the points between distance
S and Q (the larger green shaded area in Figure F.9 and Figure F.10) are outside the sphere of radius R.
Therefore we have,

C(x,P,Q,R) =

[
4π

3 (Q3−S3)
4π

3 (Q3−P3)

]
(1)+

∫ S

P

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 (Q3−P3)
da.

(e.a) If x ≥ P+R: T = x−R, we can see that all the neighbours of the points between distance P and Q

(the smaller green shaded area in Figure F.9) are outside the sphere of radius R. Therefore we have,

C(x,P,Q,R) =

[
4π

3 (Q3−S3)
4π

3 (Q3−P3)

]
(1)+

∫ T

P

(
1− 0

Ax

)
4πa2

4π

3 (Q3−P3)
da+

∫ S

T

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 (Q3−P3)
da
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= 1− R3

Q3−P3 .

(e.b) For x ≤ P+R, there are two probabilities. If x < R−P, we are left with the case (d.b) (Figure F.8).
Otherwise (Figure F.10),

C(x,P,Q,R) =
Q3−S3

Q3−P3 +
1
2

S3−P3

Q3−P3 +
3
8x

S2−P2

Q3−P3

[
S2 +P2

2
+(x2−R2)

]
=

Q3− (R+ x)3/2−P3/2
Q3−P3 +

3
8x

(R+ x)2−P2

Q3−P3

[
(R+ x)2 +P2

2
+(x2−R2)

]

P

Q
R

S

P1

P1x

x

Figure F.11: Case f.b: R+P≤ x≤ R+Q,
x≥ Q−R

P

QR

P1

x

Figure F.12: Case g: x≥ Q−R, x≥ R−P,
x≤ P+R

(f) R+P≤ x≤ R+Q: Taking S = x−R, we can see that all the neighbours of the points between distance
S and P (the green shaded area in Figure F.11 and the smaller green shaded area in Figure F.9) are outside
the sphere of radius R. Therefore we have,

C(x,P,Q,R) =

[
4π

3 (S3−P3)
4π

3 (Q3−P3)

]
(1)+

∫ Q

S

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 (Q3−P3)
da.

(f.a) If x ≤ Q−R: Taking T = x+R, we can see that all the neighbours of the points between distance T

and Q (the larger green shaded area in Figure F.9) are outside the sphere of radius R. This is the same case
as (e.a) (Figure F.9) (with T and S exchanged). Therefore we have,

C(x,P,Q,R) = 1− R3

Q3−P3 .

(f.b) Otherwise (Figure F.11),

C(x,P,Q,R) =
S3−P3

Q3−P3 +
1
2

Q3−S3

Q3−P3 +
3
8x

Q2−S2

Q3−P3

[
Q2 +S2

2
+(x2−R2)

]
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=
(x−R)3−P3

Q3−P3 +
1
2

Q3− (x−R)3

Q3−P3 +
3
8x

Q2− (x−R)2

Q3−P3

[
Q2 +(x−R)2

2
+(x2−R2)

]
.

(g) For the last case, when x≥ Q−R, x≥ R−P, x≤ P+R (Figure F.12), we have

C(x,P,Q,R) =
∫ Q

P

(
1− A(x,R,a)

Ax

)
4πa2

4π

3 (Q3−P3)
da

=
1
2
+

3
8x

P+Q
P2 +PQ+Q2

[
P2 +Q2

2
+(x2−R2)

]
.

C(x,P,Q,R) =



0 x≤ R−Q

1 x≤ P−R

1 x≥ R+Q
1
2

Q3−(R−x)3

Q3−P3 + 3
8x

Q2−(R−x)2

Q3−P3

[
Q2+(R−x)2

2 +(x2−R2)
]

R−Q≤ x≤ R−P, x > Q−R
Q3−R3

Q3−P3 R−Q≤ x≤ R−P, x≤ Q−R
1
2

2Q3−(R+x)3−P3

Q3−P3 + 3
8x

(R+x)2−P2

Q3−P3

[
(R+x)2+P2

2 +(x2−R2)
]
|P−R| ≤ x≤ Q−R, x < P+R

1− R3

Q3−P3 P+R≤ x≤ Q−R,
1
2
(x−R)3+Q3−2P3

Q3−P3 + 3
8x

Q2−(x−R)2

Q3−P3

[
Q2+(x−R)2

2 +(x2−R2)
]

R+P≤ x≤ R+Q, x > Q−R
1
2 +

3
8x

P+Q
P2+PQ+Q2

[
P2+Q2

2 +(x2−R2)
]

R−P≤ x≤ P+R, x≥ Q−R

(F.8)
We note that C(x,P,Q,R) always appear as (Q3−P3)C(r,P,Q,R) in Chapter 4, where the first term (Q3−
P3) cancels out the denominator from above equation. We note that D(x,R), E(x,P,R) and C(x,P,Q,R) are
functions with values between 0 and 1:

D(x,R) = E(x,R,R) =C(x,0,R,R) (F.9)

E(x,Q,R) =C(x,0,Q,R). (F.10)

We can also write,

1−C(x,P,Q,R) =
∫ Q

P

4πa2da
4π

3 (Q3−P3)

(
A(x,R,a)

Ax

)
=

V (x,Q,R)− (x,P,R)
VQ−VP

(F.11)

d
dR

C(x,P,Q,R) =
A(x,P,R)−A(x,Q,R)

VQ−VP
.

(Q3−P3)C(r,P,Q,y)+(R3−Q3)C(r,Q,R,y) = (R3−P3)C(r,P,R,y) (F.12)

Q3C(r,0,Q,y)−P3C(r,0,P,y) = (Q3−P3)C(r,P,Q,y) (F.13)

P3E(r,P,Q) = Q3E(r,Q,P). (F.14)
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Fourier Transform

Three dimensional Fourier transform of 1−C(x,P,Q,R) is useful while calculating power spectrum:s

FT (1−C(x,P,Q,R)) =
∫

∞

0
(1−C(x,P,Q,R))

sin(kr)
kr

dx x2

=
12π([kQ cos(kQ)− sin(kQ)]− [kP cos(kP)− sin(kP)])[kR cos(kR)− sin(kR)]

k6(Q3−P3)
.

(F.15)
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