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Homifly, the work of Edward Witten and

quantum groups

Ravi Kulkarni

Recent developments in mathematical physics have
generated much excitement amongst workers in this
field. Much of this stems from the work of Edward
Witten of the Institute for Advanced Studies in
Princeton. What is striking about these results is that it
relates areas that appear entirely distinct from one
another. On the one hand theoretical physicists study
what they call ‘exactly solvable models’, on the other,
algebraists have, for some time been studying rather
esoteric objects called ‘quantum groups’ and surpri-
singly, the algebraists’ work provides a complete
solution to the physicists’ problems! Even more
dramatic was Witten’s demonstration that the theory of
knots (yes, ordinary everyday knots) is closely linked to
quantum field theory. And to complete the circle, it is
now becoming clear that quantum groups have close
connections with knot theory! In this article I have
attempted to explain some of the main ideas involved.

Guide for the reader

One of the main ingredients in this pot-pourri of ideas
is the theory of knots (and something called Homlfly . . .
read on!). This theory is really very elementary and
section two below provides a concise introduction to
the subject. This section should be considered as being
the major part of this review. A careful reading (of this
section) will enable the reader to calculate the Homfly
or the Jones polynomial of any knot. The reader is
urged to work her way through the calculations—they
are easy, fun to do and require nothing more than the
ability. to draw simple pictures and multiply poly-
nomials. This section can be read independently of the
other two (which need not be read at all).

The first section provides a quick look at Witten’s
basic discovery of a link between Chern-Simons field
theory and the knot invariants. The description is
mainly qualitative.

The third section is on quantum groups and
presupposes some algebraic sophistication—not for the
lay reader! This section shows why the theory of
quantum groups (to be more precise, the representation
theory of quasi-triangular Hopf algebras) is of relevance
to statistical mechanics (in low dimensions).
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1. Chern-Simons field theory and knot invariants

The aim of this section is to give a qualitative descrip-
tion of Witten’s discovery of a deep relationship
between what physicists call Chern—Simons field theory
and the theory of knots. First a quick look at CS field
theory.

A field theory is prescribed once an action functianal
is chosen. For some time now physicists have been
interested in a particular action functional (in three
dimensions) which does not require the choice of a
metric in the space. (The standard Yang-Mills action
does require a metric.) The CS action functional is

S=ITr(A/\dA +§ AAAAA),

where A is a connectior for a gauge group G. Such a
theory is completely- topological in nature—there are
no dynamical degrees of freedom, but there are
topological degrées of freedom and the theory therefore
is not entirely vacuous. A natural choice of observabies
in this theory are the so called Wilson lines. Given an
irreducible representation R of G, the Wilson line (or
loop) is associated to any circle C in this space and is
defined to be

Wa(C)=Trg Pexp| A-dx.

Observe that no metric is needed to define this
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bservable and therefore W(C) should be a topological
avariant.

Knot theory makes an appearance because a circle C
-an be embedded in a three-dimensional space in a
-ariety of ways:

or -

Also, one is interested in expectation values of products
<W(L)>=<W(C,)... W(C,)>,

where C,, ... C, are circles in the space—which could
be linked in complicated ways. Mathematicians have
for a long time been interested in distinguishing one
knot or link from another and have invented various
link invariants. A link invariant is an object (a
polynomial say) associated to a knot such that
deforming the knot does not change this invariant (and
thus the name). But the Wilson line W(C) has precisely
this property! Since W(C) does not depend on a metric,
deforming the loop (knot) should not change W(C). It
was suspected therefore that there should be a relation
between the Wilson line expectation valucs and link
invariants discovered by mathematicians. A prime
choice was an invariant called the Jones polynomial.
Following a suggestion by Atiyah, Edward Witten
showed that the coefficients of the various terms in a
perturbative expansion of W(C) are related to the
coeflicients of the Jones polynomial for the link C. The
Jones polynomial, which had hitherto seemed a totally
mysterious object admitted an ‘explanation’ in terms of
quantum field theory! This was the result that surprised
mathematicians and physicists alike and led to Witten’s
sharing of the Fields medal for this year.

The next section is an elementary exposition of knot
theory and describes what the Jones polynomial is.
Actually it is just as easy to describe a more general
invariant called the Homfly and we now proceed to
this.

2. Homfly and the Jones polynomial

There is a basic convention followed in drawing
pictures of knots on paper. The diagram below of two

strings crossing

2.1)
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means that the string going from lower right to upper
left passes over the other string. In short a broken line
is an underpass, an unbroken line an overpass.

Ordinary everyday knots have the ends hanging
loose as shown below

Since mathematicians do not like to leave any loose
ends, they conventionally identify them:

and all the knots we will talk about will have their
loose ends identified thus, producing closed knots. With
this convention, the unknot, that is an unknotted piece
of string .

\_________\

becomes a circle:

(2.4)

The advantage of this is obvious. An ordinary knot can
be untied, but the ‘knot’ in (2.3) can never be made to
look like (2.4) by any process {except cutting and
rejoining of course, but this is not allowed!]. Actually
we need to talk about objects more general than
knots—they are called links. A knot is made from a .
single piece of string while links are constructed from
several pieces (all loose ends being identified). The
simplest link is:

0O-00:

two unknots linked or unlinked. Each piece of string in
a link is called a component of the link. A knot
therefore is a single component link.

The Reidemeister moves

In untangling a knot or a link, one goes through a
series of physical moves—trying to push one loop
through another ... we have all done this.... The
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mathematician Reidemeister showed that one really
only needs three moves, these are called the Reidemeister
moves. As the following pictures show they are obvious
moves. In the sequel, the symbol =between two links
will mean that one link can be physically deformed into

)0 )(

(2)

A\

——

(1)

(3)

While it is obvious that these moves are valid, what
Reidemeister did was to show that are all you need in
trying to untangle a given link. Here is an example of
the use of the Reidemeister moves.

OC

Of course you may begin with a genuine knot and then
no amount of deformation will ever unknot it! So, a
central problem of knot theory is to be able to say
when a given knot diagram represents the unknot, or
whether two given knots can be deformed into one
another. Can you deform these two knots into one
another?

D

An even more interesting example is provided by
these two knots

Q) O
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(2.6)

It appears as if they are the same knot, but they are
not! Check that no deformation will change one to the
other! These are called the right-handed and left-
handed trefoil knots and they are mirror images of each
other. Some technical terminology: What we have
loosely been refering to as deformation—any process
using the three Reidemeister moves—is called ambient
isofopy by knot theorists. Thus the two knots above are
not ambient isotopic to one another.

Knot theorists have solved these problems of
distinguishing one knot from the other by associating a
certain polynomial (called the Homfly) with each knot.
This Homfly has the property that if the polynomials of
two knots are different, then the knots are distinct and
cannot be deformed into each other!

We need a technicality before we go any further.
Each link comes with an orientation—this is a choice of
direction along each component of the link, marked by
an arrow. Thus the second link in (2.5) for instance can
have two orientations

OO-00

and as oriented links, these must be considered distinct.

In order to understand what Homfly is, we must first
understand the skein relations for a link. Every link can
be given one of three names L., L_ or L,. This is done
as [ollows. Given a link, draw a little circle over the
knot-diagram such that inside this littie circle there are
only two strings with one of the following crossings
inside. (The little circle is marked by a thin line.)

0 O-

(Remember, each string comes with an orientation.) The
link gets its name from one of these pictures. The name
of the link therefore depends on where one chooses the
little circle. As an example, here is a link named in two
different ways.

L L

But now, given any link we can construct two other
links said to be skein-related to the first link. Name the
first link using the procedure just outlined. Now draw
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two other links which are the same everywhere except
inside the little circle and such that the strings inside
the little circle are of the type L,, L_or L,. If the given
link is called Ly, the two other links are L, and L_. An
example to illustrate:

(2.9}

L_

The reader will recognize L , as the trefoil and L _as the
unknot, and is urged to construct her own examples.

And we are now ready to understand what the
Homily is. The Homfly of a link is a polynomial in two
variables ¢ and z. However it is the kind of polynomial
which can have negative powers of ¢ and z (in other
words it is a Laurent polynomial). Here is an example:
222 =2t7227 +¢7'z, More important it has the
property that its coeflicients are always integers (so we
are talking about an element inZ[t, t7!, z, z7']).
Given a link, name it and construct the two skein-
related links. We therefore have three links named L, ,
L_and L,. The Homfly polynomial P[L] of the first link
Lis defined by the following conditions:

(1) tP[L,]—-+"'P[O=2zP[L,]
(2) P[unknot]=1
(3) The Homfly is invariant under ambient isotopy.

The reader should notice the following fact: If the
given link is cailed L,, we need to know P[L_] and
P[L,] in order to calculate P[L, ]! But one can follow
a recursive procedure to simplify a given link. At this
point the reader may wonder exactly what it is that this
polynomial signifies. T should make it clear that the
polynomial is just a representative of the link in the
sense I spoke about earlier: if the polynomials of two
links are different then the links are different. This is
characteristic of the method of topology: in order to
distinguish between geometric objects, one associates
certain algebraic objects to it (vector spaces, groups,
etc). If the algebraic objects thus associated are
different, then so are the geometrical objects.

But now let us see how to calculate the Homfly
polynomial of a link—Iet us try the trefoil knot. We
begin with a simpler calculation however. Let us first
find the Homfily of two unlinked unknots.

1304

(2.10
By the second Redemeister move, this is the same as
@2.11)

and with the choice above, this link is L, The skein-
related links are -

& &

and are both unknots. The Homlly relation (1) now telis
us what P[L,] is ’
tP[L,)—t"'"P[L_T1=zP[L,]

Therefore t—t '=zP[L,] and P[Ly]=tz"'—¢"'z7 %
(212)
Notice that we used all the three defining relations of
the Homfly polynomial: invariance under ambient
isotopy in going from (2.9) to (2.10) and the Homfly
relations (1) and (2) in obtaining (2.12). We now know
the Homfly polynomial of the link (2.10).
Now let us try the trefoil.

’

(2.13)
L+
The two skein-related links are
L_ = unknot 2.14)
L (2.15)
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So if we know the Homily of the link (2.15) we know
that of the trefoil because
tP{L.]~t"'P[L_]=2zP[L,]
tP{trefoil] —t~'=z- P[the link 2.15].
So let us find the Homfly of the link (2.15). Calling it L,

would clearly be useless because that would give the
trefoil as L. But there is an aiternative;

(2.16)

(2.15a)
L,
The two-skein related knots now are

(2.17)

L_ Lo
L will be recognized as the link (2.9) whose Homily we
know: equation (2.12)! And we are through:
P[link 2.15]= P [link 2.15a]
=(1/t) [zP [unknot]+:~'P[link 2.9]]
=(1/)[z+t7 (=t Y)/2)]) (2.18)
Putting this into (2.16) gives the Homfly of the trefoil.
At this point the reader is urged to calculate the
Homfly of the other trefoil (2.6), and to check that the
two Homfly polynomials are not the same. By the
property of ambient isotopy invariance of the Homfly
polynomial this is a proof that the two trefoils cannot
be deformed into cach other. Also, as another exercise,
try this link

Some properties of the Homfly must now be stated.
First of all, what the knot is named is immaterial—the
Homfly remains the same.(provided you can calculate
it! With a bad choice of name you can end up with
more complicated skein-related knots). Finally the
Homfly must be used with care: it is possible for two
distinct (in the scnse of ambient isotopy) links to have
the same Homfly. Thus the Homfly polynomial can say
with certainty when two links are distinct, but cannot
guarantee that two links are ambient isotopic.

The Jones polynomial which is a little older than the
Homlfly is a one variable polynomial and is obtained
from the Homfly simply by setting z=1'2—¢~%2 The
Homfly is more general because it can sometimes
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distinguish between knots when the Jones polynomial
cannot. These then are the polynomial invariants which
were shown to be relevant to quantum field theory by
Witten. For another approach to the Jones polynomial,
see the article by V. S. Sunder, page 1285 this issue.

Braids

Braids are more general objects than links and at this
point, the reader is urged to read about them from the
first few sections of Sunder’s article on Vaughan Jones.
The braid relations quoted there

9i9;=99s i#j£1

9i9i+14i= i+ 199i 1 » .
will make a surprising comeback in the next section!
Braids are closely related to links and the reader is
referred to Sunder’s article for details.

Before concluding, I should remind you that I have
not shown you a proof of the existence of a polynomial
satisfying the basic Homfly relations (1), (2) and (3); I
have merely shown you how to compute it. Such a
proof exists (the Homfly reference below) and I should
end by telling you that the invariant Homfly is named
after the six men who discovered it: Hoste, Ocneanu,
Millett, Freyd, Lickorish and Yetter in 1985. A good
reference for knot theory is Louis Kauffmanns book
‘On Knots’, Annals of Mathematics Studies, No. 115.

3. Quantum groups

This section is logically independent of the previous
sections and is more technical in nature.

The motivation for the study of quantum groups
comes from the study of the quantum inverse scattering
problem and that of exactly solvable statistical models.
Indeed, the two subjects are very closely related. There
seem to be various approaches to the definition of
quantum groups—in what follows I will provide a
bird’s eye view of the subject omitting details which can
be found in the literature. We begin by looking at a
typical statistical mechanical model in the plane.

Consider a two-dimensional square lattice where
each link can be assigned different states.

(An early prototypes of this kind of model is the Ising
model.) Let V denotes the vector space of states along
the links.
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Each vertex is assigned an energy E(a,b.c,d) where
a,b,c,d label the links determining the vertex and the
total Hamiltonian is

#= Y -E(abecd).

all vertices

The partition function Z=2Z ¢ and each vertex thus
has a ‘Boltzmann weight’ of

R? t=exp [BE (a,b,c,d) ].
Observe that the upper indices label the vertical links
and the lower label the horizontal links. This R-matrix
as it is called, can be thought of as acting on V% V
(vertical space ® horizontal space) and plays a
fundamental role in the theory. To see what this is, we
need to define the monodromy matrix. First define
(tap)ew=R% Y.ty therefore acts on V. The monodromy
matrix then is

Tup: = O lua, ® Lapu, ® ...
u;
The trace of the monodromy matrix, the so called row-
to-row transfer matrix, is an important object because
its trace is the partition function Z. So, diagonalizing
the transfer matrices is equivalent to knowledge of the
partition function. It turns out that this is possible if
RAT, @ T))=(T, & T\)-R
where T:=T® 1l and T,: =1 ® T. A consistency
condition for the above cquation is

Ri3R3R3=Ry3R 3R, 2

& [“.f:-"‘

where R,,eV ® V ® V and the indices a,b mean that R
acts on the ath and bth factors of V¥ ® V ® V. Either of
the two equations above is referred to as the Yang-
Baxter (YB) equation (or the quantum Yang-Baxter
equation, the adjective quantum being used because
precisely the same equation crops up in the quantum
inverse scattering problem and to distinguish it from its
linearized version which is called the classical Yang-
Baxter equation). Thus an exactly solvable statistical
mechanical model in the plane is determined once we
find a matrix R satisfying the YB. One approach to the
theory of quantum groups is through trying to
formalize this structure—and the resulting structure is
called a quasi-triangular Hopf algebra. The point is that
if we know matrix representations of these Hopf
algebras, then we will also have explicitly constructed
R-matrices satisfying the YB. The theory of Hopf
algebras therefore appears to be the natural language to
study exactly solvable models in statistical mechanics
and the quantum inverse scattering problem. Below, I
give the definition of these algebras and provide
examples.

A Hopf algebra is an algebra A with unit and three
maps A:A—A ®A4, S:A—A and &:A- C called
respectively the comultiplication, the antipode and the

1306

counit. A and § are homomorphisms and ¢ is an anti-
homomorphism. These maps are required to satisfy

(id®A)A(a)=(A ® id) Ala)

(id® S)A(q)=(S®id)A(a)=¢(a) 1

(e®id)A(a)=(id ®e)A(a)=a.
(The reader will recognize that a Hopf algebra is
nothing but a bialgebra equipped with an antipode
map. It is best to think of these conditions in terms of
diagrams.)

Example: Consider the group ring kK[G] of a finite
group G. This has the structure of a Hopf algebra with
Ag=yg®g, eg=1, Sg=¢~' with geG and extended by
linearity to all of K[G].
Example: The universal enveloping algebra U(8) of a
Lie algebra g with ' ’
Aa=axl+1®a,
ea=0, Su=—ua
for aeg.

Now let P:A®A—-A®A denote the permutation
map P(x®y)=ywx. It is easy to check that il A is a
comultiplication, then so is PoA.

Finally, a quasi-triangular Hopf "algebra is a Hopf
algebra A, together with a matrix ReA ® A satislying

PoA(a)=RA(@)R™!
and

(idwA)R=R 3R,

(A®id)R=R3R;;

(S®id)R=R™!
where R,, denotes the embedding of R in A xA®A,
acting on the ath and bth factors. The relation to the
exuctly solvable models is now obvious—indeed the
entire definition of quasi-triangularity was motivated by
the physical problem.

The last set of conditions of R imply

R3R 3R;3=Ry3R 3R,

the Yang-Baxter equation. Further, it is clear that if p
is a representation of A then (p®p) R satisfics the YB.
Thus classifying all representations of these Hopf
algebras is equivalent to classifying all exactly solvable
models! It has been shown that the classical Lie
algebras lead naturally to examples of quasi-triangular
Hopf algebras by a process of deformation—and these
are the so-called quantum groups (so, a quantum group
is not a group: it is a deformation of (the universal
enveloping algebra of) a classical Lie algebra. Some
authors also refer to a quasitriangular Hopf algebra as
a quantum group).

Example: Ughksi(2)]. This is the {non-commutative)
algebra generated by I,¢"/% X,X and q "2 (The
notation is standard: H is the generator of the Cartan
subalgebra of sl(Z) and X, and X _ are the ‘raising’ and
‘lowering’ operators.) modulo the relations
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q:tH/2q¥H/2= 1
qirXxq Hi=g1X,
H__.,—-H
x,,x 1= -2,
q9—q
q is considered an indeterminate in the above algebra.
Observe that as g—1. U, [sl(2)] reduces to U [sl{2)].
U,[s1(2)] as defined here is a quasitriangular Hopf
algebra. The relevant maps are

AqHH2=gxH2 @ g H]2

AX ., =X, oq+q H20 X,
eqrHR2=] gX, =0
SX,=—q*1X,, SqtH2=gFH]2,

This shows that U,[sl(2)] is a Hopf aigebra.
Quasitriangularity is demonstrated by checking that the
matrix given below is an R-matrix, i.e. it satisfies the
YB.

0 —_ g2y
R=qH®H/2 ¥ (_I.._L_)-
. n=0 [n],,!

[qllllx+ ®q—ll/2 X_]" qn(n—l)lz }
We have used the ‘quantum’ notation:

='L’1_—q"_,—, [nl,!=[n], ... (11,
This example of a solution to the YB was constructed
by Drinfeld in 1985. (There are some topological
niceties here which we have ignored.) For other
examples and more information, the reader is referred
to the article on Drinfeld by Vyjayanthi Chari and
Dinesh Thakur (page 1297) appearing in this issue.
There are at least two other approaches to the
subject of quantum groups. In the above example we
were interested in explicitly determining a solution of
YB. One can reverse this procedure and start with an R-
matrix, ie. a solution of the YB. The objective then
would be to construct a quasitriangular Hopf algebra
corresponding to this R-matrix. Thus, it is possible to

(],

construct Hopf algebras corresponding to the known
exactly solvable models. When a Hopf algebra A is
constructed this way, it frequently depends on a
parameter g in such a way that as g—1, A4 reduces to
the algebra of functions on a classical group. 4 is then
referred to as a quantum group. The relation between
this approach and the first is not yet clear for all the
classical Lie algebras.

And finally there is the approach of Manin via
noncommutative differential geometry. Let x and y
denote coordinates in the plane, but subject to the
relation xy=q ' yx, i.e. x and y do not commute (g is a
parameter). One can now look for linear transformations
of the plane which preserve this relationship between
the two coordinates. The resulting set of transformations
has also been referred to as a quantum group. Again
there is an R-matrix associated to this structure which
satisfies the YB. As will be obvious from these remarks,
much work is still being done in order to understand
the interplay between models and the algebraic and
geometric structure inherent in them.

We end by making contact with considerations of the
previous section. Given an R-matrix define R=poR, p
being the permutation map. If R acts on V® V define
matrices R;=1l® ... ® R® ... ®1, R sitting in the ith,
(i + 1)th slot. The YB then reduces to .

RR,=RR ifli—jl>1

R, \RiRis1=RR;,\R;
which the reader will recognize as being precisely the
relations defining the braid group!

There are many more connections... Manin's
approach seems to lead directly to the Jones polynomial,
. .. there are applications in conformal field theory. . ..
This plethora of ideas, all seemingly connected in some
way, promises to lead us to deeper insight into our
understanding of this world.

It is a pleasure to thank Chandrashekhar Devchand
for teaching me about Homfly and for many stimulat-
ing discussions; and Rajaram Nityananda for his
advice, help and encouragement.
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