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Abstract: Higher dimensional quantum systems have a very important role to play in quantum
information, computation as well as communication. While the polarization degree of freedom
of the photon is a common choice for many studies, it is restricted to only two orthogonal states,
hence qubits for manipulation. In this paper, we theoretically model as well as experimentally
verify a novel scheme of approximating photonic qutrits by modulating the pump beam in a
spontaneous parametric down conversion process using a three-slit aperture. The emerging
bi-photon fields behave like qutrits and are found to be highly correlated in the spatial degree of
freedom and effectively represent spatially correlated qutrits with a Pearson coefficient as high as
0.9. In principle, this system provides us a scalable architecture for generating and experimenting
with higher dimensional correlated qudits.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The ability to generate and detect correlated photon pairs by means of spontaneous parametric
down conversion (SPDC) offers lots of experimental possibilities ranging from fundamental
tests of quantum theory [1] to practical applications in quantum information [2] and quantum
communication [3]. The influence of the pump beam spatial mode on the characteristics of the
resulting photon pairs has been analyzed in [4] and in terms of optimization of the collecting
of the photon pairs in single mode fibres in [5]. Recently it was analysed how the pump beam
spatial mode influences the spatial characteristics of the resulting photon pairs [3]. In Ref. [6] the
authors analyze the case where the pump beam is prepared in Bessel-Gauss mode. In turn, Pugh
et al [3] show the way to control the pump beam for the application for long distance quantum
communication with satellites.

Along these lines, there is an extensive research towards encoding of quantum information in a
single photon’s degree of freedom. Spatial degree of freedom offers a variety of possibilities
such as orbital angular momentum [7–10] or spatial qudits [11–14]. The latter framework proved
to be useful when testing fundamentals of quantum theory [15–17]. In earlier work [16], it has
been shown that a triple slit aperture placed in the path of a photon leads to the generation of
a spatial qutrit. Note that in practice the transmission of the system, which is fundamentally
very low, limits the robustness in terms of counting rates. The use of calcite beam displacer can
reduce this problem for a qubit implementation [18, 19]. However the scaling towards higher
dimensional states is challenging within this framework.

Here we study the case where the pump beam is prepared such that its spatial mode resembles
three slits, and the spatial structure is carried through to the resultant signal and idler photons.
We call this the pump beam modulation technique for generation of higher dimensional qudits.
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We investigate the correlations between the signal and idler photons in the spatial domain and
effectively verify that our spatially correlated qutrits have a correlation quantified in terms of the
Pearson coefficient to be as high as 0.9.

In this work, we show that the structure of the pump field is preserved in the process of SPDC
and we find very convincing match between theoretical predictions and experimental results
for the correlation between the signal and the idler photons. We also lay down the recipe for
the optimal choice of experimental parameters which can be exploited in future architecture to
maximize the correlations.

2. Three-slit-based qutrits

2.1. Theoretical details

Let us consider a setup depicted in Fig. 1 consisting of a Type-1 non-linear crystal. We are
using the collinear geometry for our down conversion process. The pump beam spatial mode
is prepared by transferring a Gaussian beam through a set of three slits (centred at the middle
slit) and imaging the result on the crystal using a lens in the 2f-2f configuration. The coordinate
system orientation is chosen such that the propagation is along z axis, and x and y axes are
parallel to the shorter and longer length of the slits, respectively.

We model the pump beam as three box functions weighted by a Gaussian as the pump profile in
the crystal to generate the bi-photon qutrits and their resultant correlations. This approximation
was done to enable the simulations to end in a reasonable time frame.

Fig. 1. Schematic of the experimental set-up. Horizontal pump beam is made incident
on a triple slit aperture. Lens L1 is used to transfer the image of the pump beam on the
Type-1 BBO crystal. After appropriate filtering of the blue pump beam, another lens L2 is
used to transfer the signal and idler spatial profiles to actuated detectors placed on either
side of a beam splitter. The spatial profiles of the signal and idler photons are measured
using detectors D1 and D2 and the spatial correlation is measured using an appropriate
co-incidence logic unit.

We followed [20] to solve for phase matching in the Type I SPDC process. The crystal that we
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have used is BBO with a cut angle of 29.3° for non collinear SPDC process. For type I SPDC,
we define the phase mismatch as

∆®k = ®kp(ωp, α, ne(θ)) − ®ks(ωs, α, no) − ®ki(ωi, α, no). (1)

Here, ωp, ωs and ωi refer to the frequency of the pump, signal and idler photons respectively, and
ne and no refer to extraordinary and ordinary refractive indices. The pump wave vector inside
the crystal depends on the angle α it makes with the optic axis of the crystal.
The SPDC process considered here is e → oo. For collinear degenerate SPDC, we expect
∆®k = 0. Using parameters of refractive index from BBO Sellmier equations, we have the collinear
phase matching at 28.81°.

Given a phase mismatch ∆®k, we assign the intensity weight to it as

|sinc(∆kxLx)sinc(∆kzLz)|2, (2)

where Lx is the transverse length of the crystal and Lz is the thickness of the crystal along beam
propagation direction. We have ignored the transverse length along the height i.e. y-axis for ease
of computation.

Following [20,21], we can find the Hamiltonian for the SPDC process where the pump is treated
classically and the signal and idler are treated as perturbations. For degenerate down-conversion
ωp = 2ωs = 2ωi , and the probability amplitude to get a coincidence for degenerate photons
generated from collinear SPDC will be:

A ∝
∫
V

d3r
∫

dks

∫
dki Ap(x, y, z) exp(i( ®kp − ®ks − ®ki).®r) (3)

Here, Ap(x, y, z) is the amplitude of the pump as a function of space. z is assumed to be the
direction of propagation of pump, ®kp, ®ks and ®ki are the pump, signal and idler wave vectors
respectively. The integral over dks depends on the angle that the detector subtends to the crystal.
For point detectors we have a single value of ®ks,i . However, the limits of integration for finite
sized detectors for the ®ks will be of the form ®kµs ± ®k∆s . Here ®kµs is determined by the position of
the detectors and ®k∆s is determined by the size of the detectors.

We now attempt to compute A numerically. However, integration of the complex exponential
is numerically cumbersome and does not converge. Hence we assume that ®kp does not depend
on position inside the crystal, so that we can integrate the exponential independently and replace
it with a sinc function.
We use the approximation

A(ks, ki) =
∫
V

d3r Ap(x, y, z)Πi=x,y,zsinc(∆ki(∆r)Li) (4)

Here Πi=x,y,zsinc(∆ki(r)Li) should be interpreted as the weight associated with a point classical
pump and here the phase matching is weighted by the length of the crystal. Then we consider that
the pump is composed of several such point pumps and we assume that different points in the
crystal are independent as far as wave vectors are considered. Note that phase mismatch depends
on ∆r , the difference between crystal and detector positions (and not just on the crystal position).
In the simulation code, we integrate over two coordinates (x and z). We are interested in the

transverse correlation (along x). The height of the slit is assumed to be infinity, pump wave
vector is assumed to be along z-direction only, assuming a thin crystal and each point in the
crystal is assumed to have SPDC independently with the weight sinc(∆ki(∆r)Li).

We follow the following steps to compute |A(ks, ki)|2.
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• Compute ∆k for a pair of signal and idler points and for a given point on the crystal.

• Compute the point to point correlation as the product of intensity of the pump at the given
crystal point |Ap |2 and the weight function |Πi=x,y,zsinc(∆ki(r)Li)|2

• Integrate over the signal/idler position about the mean detector position and with range
equal to the size of detector.

• Repeat the above for different idler points to get the spatial correlation between a signal
position and the entire idler profile.

• Sum the idler profile computed for different signal positions to get the signal profile. We
moved the signal detector with a step size of 3µm to attain convergence in this code. We
tested with smaller step size and found that it does not make any difference to the results,
thus 3µm was proven an optimal choice.

The above simulations were carried out for different choice of simulation parameters to
obtain an optimal set of parameters that gives us a high value of Pearson correlation coefficient
ρ [22]. In these simulations, we have assumed point detectors to enable faster simulations. In
the result of the numerical simulation we get an approximation of the probability distribution
of the coincidence detection of signal photon at position x1 and idler photon at position x2.
Based on the numerical data one can easily compute correlation coefficient as a ratio of co-
variance over a product of respective variances for signal and idler photon detector positions:
ρ =< x1x2 > /

√
< x2

1 >< x2
2 >.

We perform simulations for both Type I and Type II SPDC using the same crystal, lens and slit
parameters and found that the Pearson coefficient for Type II process is 0.985(2) whereas for
Type I, it is 0.966(2). We selected an experiment using a Type I crystal as we were concerned
that transverse walk off which could happen to one of the two orthogonal polarizations exhibited
by signal and idler photons could mask the otherwise high correlations that have been predicted
from theory.

We have chosen the three slit system to have slit width of 30µm, inter-slit distance of 100µm,
slit height of 300µm. For this, we have chosen an incident pump beam with a Gaussian RMS
width of 300µm. This is an optimal choice as we wish to strike a balance between throughput i.e.
the number of photons which make their way through the slits and uniform distribution of the
pump beam over the slits. For a wider beam width, the number of singles and coincidence counts
is expected to drop significantly whereas a smaller beam width would result in the three slits not
all being centred close to the peak of the Gaussian.

We have done the simulations for each of the slit parameters keeping other parameters constant
and ascertained that the Pearson coefficient is high for our final choice. Table 1 shows the
comparison between different slit and crystal parameters in terms of the Pearson coefficient.
Further details of these parameter optimization simulations are discussed in the Appendix.
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Table 1. Comparing the Pearson Coefficients Varying Slit Width w, Inter-Slit Distance d,
and Crystal Longitudinal Length Lz

w in µm d in µm Lz in mm Pearson coefficient

30 50 10 0.872393

30 100 10 0.965584

30 200 10 0.992088

5 100 10 0.964352

10 100 10 0.966075

30 100 10 0.965584

40 100 10 0.966569

30 100 5 0.975763

30 100 10 0.965584

30 100 100 0.88873

2.2. Higher efficiency in pump beam modulation based qutrit generation

One of the main advantages of the novel pump beam modulation technique introduced in this
paper towards generation of spatially correlated bipartite qutrits is that the system promises higher
efficiency than its counterpart systems which involve discretising the Hilbert space by placing
slits after the down conversion crystal in the paths of the signal and idler beams. As explained
below, there is a resource advantage in our technique for non collinear SPDC over and above the
possibility of higher rate of qutrit generation which happens in collinear and non-collinear SPDC.
1. In a non-collinear SPDC configuration, one would need two sets of slits (one in the idler

arm and one in the signal arm) to discretize the spatial degree of freedom of the single photon. In
our pump beam modulation scheme, we would clearly need only one set of slits (for the pump).
Thus, in the non-collinear case, the advantage of pump beam modulation is almost obvious in
terms of requirement of resources. It thus makes this technique also less cumbersome as aligning
one set of slits is much easier and less error prone than aligning two sets.
2. Our chosen set up is the collinear SPDC configuration. Figure 2 explains the difference

between the usual situation in which the pump beam is incident on the crystal, after which the
down converted photons are incident on slit systems and our pump beam modulation technique
which has the pump incident on the slit system first and then the resultant is incident on the
crystal.
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Fig. 2. The top figure represents the pump beam modulation scenario whereas the bottom
figure represents the alternative technique of discretizing the Hilbert space with slit after the
crystal. The action of the slit is represented by an operator S with a linearity α. The action
of the crystal is represented by an operator C which is non-linear and has non-linearity β. In
case of pump beam modulation, with intensity I of pump beam, the output after the crystal
(for the part which interacts with the non-linearity) is (αI)β . In the second case of slit after
the crystal, the output after the slit is α(I)β .

Let us now represent the action of the slit and the crystal with suitable operators. The action of
the slit is represented by an operator S with a linearity α. The action of the crystal is represented
by an operator C which is non-linear and has non-linearity β. The value of β is determined by
the order of non-linear susceptibility which is playing a role. In case of pump beam modulation
then, with intensity I of pump beam, the output after the crystal (for the part which interacts with
the non-linearity) is (αI)β . In the second case of slit after the crystal, the output after the slit is
α(I)β . The two operators do not commute; hence the output is also naturally not the same in
both the cases.
Using this in our experimental context, we find that for our pump beam modulation case,

the higher order terms (i.e. higher order susceptibilities) get progressively suppressed in their
contributions as compared to the second order (χ(2) leads to SPDC) term. This leads to the
production of qutrits with higher Purity as opposed to the systems in which the slit is placed after
down conversion. It will be an interesting future study to work this out mathematically in terms
of the quantification of Purity.
Putting numbers to the picture, for instance, the ratio of the fourth order to the second order

terms in the pump beam modulation case is (χ(4)αI)/χ(2) . Taking values from reference [23],
the ratio comes to 0.01× 10(−14) × I. Here α has been taken to be 0.03 (experimentally measured
attenuation after the slit plane). In the alternative case of slit after the crystal, the same ratio
comes to be (χ(4) × I)/χ(2). This works out to 0.33 × 10(−14) × I.
Thus, given our current experimental context and dimensions, already the fourth order term

is around 30 times more suppressed than the second order term in pump beam modulation.
The even higher order terms will be successively further suppressed. This makes our qutrits in
principle have more Purity than the ones created with slit after the crystal where there will be
effects coming in from higher order terms in non-linear susceptibility.
Now, where does efficiency come in to the argument? Looking back at the argument above,

taking the fourth order to second order as an example ratio, we find that our architecture has more
than 30 times less contribution from fourth order susceptibility than the second order (SPDC)
for the same pump beam intensity. Thus, in principle, we can increase our I as in pump beam
intensity thirty times even (currently at 100 mW, in principle increase it to 3W) to match up to the
ratio that the second method achieves. Increase in intensity without additional effects coming in
from higher orders will make this a much more efficient system for production of bipartite qudits.
With this increase, we will measure a lot more singles and coincidences in a given time unit

compared to now. This will lead to decrease in measurement time, thus opening up the possibility
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of testing and investigating QIP protocols without worrying about measurement times. In the
alternative architecture (slits after the crystal), this will not be possible without introducing
mixing from higher order susceptibility terms.

3. Experiment

The Type I BBO crystal is cut for non-collinear phase matching at 405 nm to 2 × 810 nm at 29.3°
which translates to collinear phase matching at 28.8°. The parameter of the slits and pump beam
are as mentioned above and the focal length of the lens performing image transfer from slit plane
to center of non linear crystal is 146mm for blue incident beam. The focal length of the lens
performing the image transfer of the signal and idler photons to the detector plane is 150mm for
IR wavelength.
The detectors D1 (D2) are mounted on motorized stages (actuated with stepper motorized

actuators ZST225B and ZST213 from Thorlabs respectively) allowing control of their position in
the plane orthogonal to the propagation of signal (idler) photon. The accuracy of the motors is
sub micron level. We measured single counts and coincidences of detection at both detectors
with a coincidence time window of 1024 ps using FPGA electronics (UQD LOGIC-16). We
scanned the characteristic range in the direction orthogonal to the slits’ longer dimension with
both the detectors. While one of the detectors (D1) scanned the signal photon spatial profile,
D2 scanned the idler photon profile. By keeping D1 fixed at different positions of the signal
profile, we scanned the detector D2 to yield correlations between the signal position and the
entire idler profile. We decided on 13 fixed detector positions for sufficient statistics. These
13 positions correspond to peaks, dips and asymmetrically chosen slope positions to give us
maximum information as per a Nyquist sampling criterion. For each D1 fixed position, D2 was
moved with a step size of 10µm. The data acquisition time was 180 sec at each point, resulting in
one complete D2 run taking close to three hours. We repeat the measurement 5 times for better
averaging. We find that 5 is an optimal choice for the number of repetitions by repeating less
than 5 times as well as more than 5 times and not finding any signifcant difference. Thus, for
each fixed signal position, we take close to 15 hours to generate the idler profile and resultant
correlations.

4. Results

The result of coincidence counting is plotted in Fig. 3(a). The experimental correlations between
signal and idler positions are appropriately captured by the measurement of coincidences. For the
measure of correlation we take the Pearson’s coefficient. The Pearson’s correlation coefficient is
one of the most common correlation measures used while comparing two probability distribution
functions. In our system, the random variables are detectors’ positions, x1 and x2 and the
probability distribution is estimated directly by our measurement. The probability of getting a
coincidence detection at positions x1 and x2 is proportional to the coincidence counts measured
and depicted in Fig. 3(a). The estimate of the Pearson’s correlation coefficient is 0.9(2). We
estimated the uncertainty of the coefficient by simulating 105 probability distributions based on
the measured statistics and assuming Poisson statistics of the counts.
Red dots in Fig. 3(b), 3(c), and 3(d) correspond to coincidences, Rc , measured as the idler

detector is moved while the signal detector is kept fixed at first peak (slit A), second peak (slit B)
and third peak (slit C) respectively. Error bars for both position and number uncertainty have
been included. The blue lines represent the theoretically simulated correlation profiles.

There are three ways in which one can generate the commensurate theory graphs with respect
to the modelling of the pump profile at the crystal. Two methods, discussed in the Appendix ,
involve using a detailed image transfer formalism or using three box functions weighted by a
Gaussian. In order to capture the correlations due to the actual pump beam profile that has been
transferred to the crystal, we measured the pump beam profile that is transferred to the position of
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the centre of the crystal using a lens in 2f-2f configuration and used this profile itself to generate
the signal and idler profiles as well as calculating the spatial correlations between the two profiles.
Slight difference in magnification between the experimental and theoretically simulated profiles
has been accounted for in the simulations. An example of a pump beam profile at the crystal
position is given in the supplementary material. The use of the experimentally measured pump
profile to generate the correlation has the advantage that any non-idealness that may exist in the
experiment in terms of alignment or otherwise would then be captured in the theory and the
comparison would not suffer from comparing experimental data with ideal theory conditions.
While Fig. 3(a) shows Rc for all measured detector positions, in Fig. 3(b), 3(c), and 3(d),

we have chosen to highlight the correlations at the peak positions in a 2-D format to enable
representation of the error bars in terms of position and number uncertainty and also indicate the
extent of overlap between theoretical predictions and experimental results. Figure 3(e) shows the
comparison between the single photon counts Rs measured as a function of detector position
for the signal photon and the theoretically generated profile. Experimental and theoretically
generated Rc and Rs have been appropriately normalized by their respective maxima.
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(a) Coincidence map
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(b) D1 at the slit A, D2 moving
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(c) D1 at the slit B, D2 moving
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(d) D1 at the slit C, D2 moving
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Fig. 3. (a) Coincidence counts, RC measured as a function of position of detectors D1 and
D2. A comparison between experimental (Red circle) and theoretically predicted coincidence
counts (Blue rectangle) when detector D1 is fixed at peaks of slit (b) A, (c) B, (d) C and the
detector D2 is scanning. (e) Single counts, RS measured at detector D1. Each data point has
a measurement time of 3 minutes.

Actual measurements indicate that the slit widths are not exactly 30µm and 100µm respectively
as taken in simulations. Slit C is the widest at about 36µm, slit B the thinnest at around 29µm
while slit A is in between at around 33µm. This is reflected in the singles profile where one
can see that slit C has maximum counts while B has minimum. The data has been normalized
with the maximum (here C) counts. As the coincidence counts are in principle proportional to
the singles, when fixed detector is at position of slit C, we do measure maximum coincidences
there. However, in measurement of coincidences, a couple more factors also come in. While
the RS is generated with a single detector (D1) motion controlled by one actuator, RC involves
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both the detectors controlled by two different actuators. Slight non-angular misalignment in
the lens positioning and/or difference in behaviour between the two actuators as well as slightly
offset detector positioning affects the RC data and this is reflected in figures (b) and (c) where
slightly less coincidences are measured when fixed detector is at A than at B in spite of B being
thinner than A by 4µm. Point to be noted is that theoretical simulations assume all slits to have
equal widths and the slit B being centred on a perfectly Gaussian incident laser beam. Thus, in
theory, slit B always has maximum RS as well as RC . Thus difference in slit dimensions as well
as small lens and detector misalignment cause some difference between the normalized theory
and experimental graphs. However, the spatial correlation exhibited by our scheme is emphatic
and as high as 0.9 of a possible maximum of 1.0 and is almost independent of the small inherent
and unavoidable experimental non-idealness.

4.1. Are the correlations quantum?

The main novelty of our work is in the establishment of a new technique i.e. pump beam
modulation towards generation of spatially correlated qudits. We have also used a well-known
statistical measure i.e. the Pearson Correlation Coefficient to quantify the spatial correlations
between the signal and idler photons. However, the very high degree of correlation obtained
indeed does not justify nor suggest in turn that these correlations are quantum. So, are these
correlations quantum? We now go on to see through measurements that we have done using just
the pump beam light as a source (instead of the SPDC photons) that our correlations could be
quantum in nature.
We have performed a different configuration of the experiment in which we have kept the

arrangement the same as before, but instead of measuring singles counts corresponding to signal
and idler photons from SPDC, we performed the experiment using photons from the “classical"
pump itself. This was achieved by inserting an adequate spectral filter which blocked the SPDC
photons and also attenuated the pump photons to avoid saturation of the single-photon detectors.
We performed a coincidence measurement with one detector located at the peak of the Gaussian
corresponding to a single slit, and moved the other detector along the detector plane and measured
coincidences. The magnification factor is slightly different in this experiment from the one
performed using SPDC photons due to lens alignment.
As seen in Fig. 4, the classical pump light distributes itself according to the slit image and

shows no bias towards only being measured at the particular detector position. The estimate
of the Pearson’s correlation coefficient is 0.017(3) which indicates absence of photon-photon
correlations. In other words, there is no difference in the nature of the curves for just the
intensity measurement and the two-photon co-incidence measurements. However, in the case
of the SPDC photons, we observed additional correlations being captured in the two-photon
correlation measurement - a behaviour that was entirely absent in the above-mentioned pump
light experiment.

The possible quantum nature of the measured correlations could be indicated by the observation
of new features in second order coherence measurements. This is similar to the argument made
in [4] where the authors used the argument of new correlations being captured in coincidence as
opposed to singles counts to claim quantumness. Here, we would like to point out that although
such an argument has been made in previous works to claim quantumness, to the best of our
knowledge, most of such works have not demonstrated in parallel the absence of new features
in second order correlation measurements in classical light as well. In this study, we have not
only shown new features being captured on using heralded photons and second order correlation,
we have also done an experiment with the corresponding pump laser beam and shown that such
features are missing entirely.
Thus, we can conclude that our system suggests the non-classical nature of two-photon

correlations in our architecture and a very interesting future direction of work would be to study
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this aspect further in terms of known quantum correlations like entanglement.

(a) Coincidence map for experiment with pump photons
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(c) D1 at the slit B, D2 moving
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(d) D1 at the slit C, D2 moving
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Fig. 4. Second order correlation experiment using the classical pump laser light. (a)
Coincidence counts, RC measured as a function of position of detectors D1 and D2. The
plot clearly indicates that the classical light shows no photon-photon correlation. Red circles
represent coincidence counts when detector D1 is fixed at peaks of slit (b) A, (c) B, (d) C
and the detector D2 is scanned. (e) Single counts, RS measured at detector D1. The blue
lines are guides to the eye. Each data point has a measurement time of 30 seconds, and the
coincidence time window has been kept at the same value as for the SPDC experiments.
Note that the coincidence measurements strictly overlap with the singles-count measurement,
indicating again the lack of photon-photon correlation in classical light.

5. Discussion

We show a novel approach of generating photon pairs in SPDC which have intrinsic spatial corre-
lation. We realize a configuration which approximates the behaviour of two three-dimensional
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quantum systems and if one can demonstrate the entangled nature of the correlated photons,
this approach can be used for implementation of quantum information protocols which require
higher dimensional quantum systems. While it has previously been shown how to encode a qutrit
using a system of three slits similarly in the Ref. [16], our approach provides direct access to two
correlated qutrits by modulating the laser profile of the SPDC setup which has been proven to be
a more efficient system than the former.
Thus, we establish a novel and simple approach to generate higher dimensional bipartite

quantum systems providing a possible route towards quantum communication and information
processing and fundamental entanglement studies, using higher dimensional entangled photon
states.

6. Appendices

6.1. Image transfer formalism

There are certain assumptions which go into the image transfer formulation. All calculations
are done in two dimensions which are the beam propagation direction "z" and the transverse
"x" direction. We are assuming that the slit height can be approximated to be infinitely long
compared to the slit width. Scalar field paraxial approximations for a thin lens are used. The
center of the crystal is assumed to be perfectly at twice the focal length from the lens.
The system of lenses and mirrors transfers the image of the slits to the crystal. The center of

the crystal is at 2f from the thin lens. Its transfer function is given by:

H(xi, zi; xo, zo) =
∫ R

−R

e
1
2
ik x2

o
zo e

1
2 ik

(
1
zo
+ 1

zi
− 1

f

)
x2
l e−ik

(
xo
zo
+

xi
zi

)
xl

λ2zozi
dxl . (5)

Here (x0, z0) are the coordinates of the object whose image is to be transferred to a location
(xi, zi) and λ is the wavelength of the incident beam. Thus, in order to transfer the scalar field
U(x0; z0) to U(xi; zi), we would use the following transformation equation and the scalar field
after the lens would then be given as:

U(xi; zi) =
∫ ∞

−∞
dx0U(x0; z0)H(xi, zi; x0, z0) (6)

It yields the image transferred at crystal position. The integration in Eq. (5) is done analytically
whereas the final integration in Eq. (6) is evaluated by numerical means using Mathematica 11.
Thus instead of using uniform top hat functions as representations of the slit profiles, we have
used the lens transfer formulation to transfer the image of the slits to the center of the crystal
when the slits are illuminated by a Gaussian.

6.2. Simulations to determine the optimal set of parameters for high resultant spatial
correlations

First, we varied the slit width keeping other parameters constant. For slit widths ranging from
5µm to 40µm, the Pearson coefficient remained around 0.96, see Fig. 5 red curve, which indicates
that for these conditions, choosing a slit width in the above range should be sufficient. We decided
to choose 30µm. Next, we varied the inter-slit distance from 50µm to 200µm. The Pearson
coefficient is found to increase with increasing distance between the slits kept at a constant slit
width as can be seen in Fig. 5 blue curve. The conclusion is that when the slits are more separated,
the overlap between them goes down, as a result of which the point to point correlation increases.
However, a 200µm interslit distance would entail a much bigger incident pump beam which
could again lead to less throughput so we decided to choose the 100µm interslit distance as a
compromise between throughput and correlation coefficient.
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Fig. 5. Variation of Pearson coefficient ρ with increasing slit width and increasing inter-slit
distance respectively. Simulations have been done by varying one parameter while keeping
the other parameters constant. When slit width w is varied, inter-slit distance is kept fixed at
100µm whereas when inter-slit distance is varied, slit width w is kept constant at 30µm. The
crystal length LZ has been kept fixed at 10mm for both these simulations.

Before choosing the crystal length, we also simulated for different crystal lengths keeping
slit and beam parameters constant. If we consider the intensity weight function associated with
phase matching, we have along the longitudinal axis sinc(∆kz × Lz/2). As Lz increases the
momentum uncertainty of the photon pairs inside the crystal also increases. As a result the
correlation between the two down-converted photons decreases. This was substantiated by the
simulations which showed a steady decrease in Pearson coefficient as crystal length was increased
from 5mm to 100mm as shown in Figure Fig. 6. On the other hand the thinner crystals give lower
pair production rate. Thus, we selected a crystal length which is not too short but also yields an
expected high correlation coefficient i.e. 10mm. The transverse length of the crystal needs to be
larger than the extent of the transverse pump profile and was chosen to be 5mm.
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Fig. 6. Variation of ρ with Lz . As crystal length increases, the Pearson coefficient is seen to
decrease.

6.3. Comparison between experimental and theoretical triple slit image transfer

Figure 7 shows an example of the image transferred to the centre of the crystal comparing
experimentally obtained images with theoretically simulated ones with a triple slit modulated
pump profile. Figure on left shows the image as a function of position in the crystal along beam
propagation direction.

Fig. 7. Figure on left shows the theoretically simulated pump profile. When the lens is used
for image transfer experimentally, a magnification is introduced in the system, which has
also been incorporated in theory. While the y-axis denotes the crystal length along beam
propagation direction, the x-axis denotes the image along the transverse crystal direction.
The figure on the right is the experimentally measured image of the modulated pump at the
position corresponding to center of the crystal using a lens.
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