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a b s t r a c t

We investigate the Brownian motion of a charged particle in a magnetic field. We study
this in the classical and quantum domains. In both domains, we observe a qualitatively
interesting transition of the mean square displacement from a monotonic to a damped
oscillatory behaviour as one increases the strength of the magnetic field. We notice that
these features of themean square displacement are robust and remain essentially the same
for an Ohmic dissipation model and a single relaxation time model for the memory kernel.
The predictions stemming from our analysis can be tested against experiments in trapped
cold ions.

© 2018 Published by Elsevier B.V.

1. Introduction

The problem of a Brownian particle suspended in a liquid subject to thermal fluctuations has been studied extensively [1–
4]. More recently there has been work in the area of a Brownian particle undergoing diffusion driven by quantum
fluctuations [5–9].

In this paper, we are interested in studying the diffusion behaviour of a charged particle in a magnetic field. There have
been two approaches towards solving this problem. Leggett et al. [8,10,11] have used the Feynman Vernon path integral
approach in which they have solved the dynamics of a charged particle in a magnetic field in the presence of an Ohmic
bath. Subsequently, Li et al. [12,13] have approached the problem via a quantum Langevin equation which corresponds to a
reduced description of the system in which the coupling with the heat bath is described by two terms: an operator valued
random force F (t) with mean zero and a mean force characterized by a memory function µ(t). In this paper we follow the
approach of Refs. [12,13] since it is naturally suited to addressing the question of our interest: the time evolution of themean
square displacement of a charged particle in a magnetic field in the presence of viscous dissipation in the high temperature
classical domain and the low temperature quantum domain.

* Corresponding author.
E-mail address: urbashi@rri.res.in (U. Satpathi).

https://doi.org/10.1016/j.physa.2018.04.085
0378-4371/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.physa.2018.04.085
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2018.04.085&domain=pdf
mailto:urbashi@rri.res.in
https://doi.org/10.1016/j.physa.2018.04.085


U. Satpathi, S. Sinha / Physica A 506 (2018) 692–701 693

In recent years there has been quite a lot of interest in this area [9,12–20]. In particular, in Ref. [20] the low temperature
thermodynamics has been discussed in the context of dissipative diamagnetism. In contrast, our focus has been to investigate
themean square displacement growth of a charged particle in amagnetic field. Herewe study in detail the interplay between
the effect of the magnetic field and damping effects due to dissipation. In particular, a particle of charge q and mass m in a
magnetic field B, moves in a circular orbit at a rate set by the cyclotron frequency ωc = qB/mc , where c is the speed of light.
The friction coefficient γ provides a rate γ −1 of dissipation.We probe various different regimes of these two competing time
scales both in the high temperature classical domain and the low temperature quantum domain and analyse the growth
of the mean square displacement in these regimes. Furthermore, we discuss experimental implications of our theoretical
results. In particular, to test our predictions experimentally one can proceed as follows [21–23]. One can consider cold atom
experiments with hybrid traps [24] for ions and neutral atoms and explore the Brownian motion of a charged particle in the
presence of a magnetic field induced by Helmholtz coils.

The paper is organized as follows. In Section 2we solve the Quantum Langevin Equation for a charged particle in a viscous
medium in the presence of a magnetic field [12,13]. In Section 3 we present an analytical expression for the mean square
displacement.We then study the high temperature classical domain and probe two regimes — a viscosity dominated regime
and a magnetic field dominated regime. We do a similar analysis in the low temperature quantum domain. We analyse the
growth of the mean square displacement using two different memory kernels — the Ohmic, memory free kernel, and the
single relaxation time kernelwhich has nontrivialmemory.We find that our results are robust and independent of the details
of the kernel. We finally end the paper with some concluding remarks in Section 4.

2. Quantum Langevin equation in the presence of a magnetic field

The quantum generalized Langevin equation of a charged particle in the presence of a magnetic field is given by [12,13]

m¨⃗r(t) = −

∫ t

−∞

µ(t − t ′)˙⃗r(t ′)dt ′ +
q
c
(˙⃗r(t) × B⃗)

+ F⃗ (t) (1)

where,m is themass of the particle,µ(t) is thememory kernel, q is the charge, c is the speed of light, B⃗ is the appliedmagnetic
field and F⃗ (t) is the random force with the following properties [6]

⟨Fα(t)⟩ = 0 (2)
1
2
⟨
{
Fα(t), Fβ (0)

}
⟩ =

δαβ

2π

∫
∞

−∞

dωRe [µ(ω)] h̄ω

coth
(

h̄ω
2kBT

)
e−iωt (3)

⟨
[
Fα(t), Fβ (0)

]
⟩ =

δαβ

π

∫
∞

−∞

dωRe [µ(ω)]

h̄ωe−iωt (4)

Here, α, β = x, y, z, and δαβ is the Kronecker delta function, such that

δαβ =

{
1 if α = β

0 if α ̸= β

µ(ω) =
∫

∞

0 dtµ(t)eiωt . Notice that µ(t) = 0 for t < 0. This follows from causality. Eqs. (3) and (4) are obtained from the
Fluctuation–Dissipation Theoremwhich relates the dissipative and fluctuating parts of the quantum Langevin equation (Eq.
(1)). The dissipative part is characterized by thememory kernelµ(t), and the fluctuating part is characterized by the random
force F⃗ (t).

We assume that the magnetic field is directed along the z−axis, i.e. B⃗ = (0, 0, B). Then we can write Eq. (1) in terms of
components as follows:

mẍ = −

∫ t

−∞

µ(t − t ′)ẋdt ′ +
q
c
ẏB + Fx(t) (5)

mÿ = −

∫ t

−∞

µ(t − t ′)ẏdt ′ −
q
c
ẋB + Fy(t) (6)

The motion along the z−axis is the same as that of a free particle. The motion in the x–y plane is affected by the magnetic
field strength. We restrict our analysis to the x–y plane and study the Brownian motion of a charged particle in a magnetic
field.
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In terms of Fourier transforms, the solutions to these equations are:

x(ω) =
1
m

iωcFy(ω) − (ω − iK (ω))Fx(ω)
ω

[
ω2 − ω2

c − K (ω)2 − 2iωK (ω)
] (7)

y(ω) =
1
m

−iωcFx(ω) − (ω − iK (ω))Fy(ω)
ω

[
ω2 − ω2

c − K (ω)2 − 2iωK (ω)
] (8)

where, ωc =
qB
mc is the cyclotron frequency, K (ω) =

µ(ω)
m .

3. Mean square displacement

The mean square displacement is given by,

⟨∆r2⟩ = ⟨[r(t) − r(0)]2⟩
= ⟨∆x2⟩ + ⟨∆y2⟩ (9)

NOTE: Themean square displacement is generally a sumof all the componentmean square displacements. In this case,we are
interested in analysing the effect of themagnetic field on the growth of themean square displacement. As the z−component
is independent of the magnetic field, we focus only on the x and y components of the mean square displacement.

The x and y components of themean square displacement are related to the corresponding position correlation functions
as [5]:

⟨∆x2⟩ = ⟨[x(t) − x(0)]2⟩
= ⟨x(t)2⟩ + ⟨x(0)2⟩ − ⟨{x(t), x(0)}⟩

Or,

⟨∆x2⟩ = 2 [Cx(0) − Cx(t)] (10)

Here, Cx(t) =
1
2 ⟨{x(t), x(0)}⟩ is the position correlation function for the x component. Similarly, the y component of themean

square displacement is related to Cy as:

⟨∆y2⟩ = 2[Cy(0) − Cy(t)] (11)

Cy(t) =
1
2 ⟨{y(t), y(0)}⟩. Using the force-force correlation (Eq. (3)), we can write the position correlation function for the x

component as follows:

Cx(t) =
h̄

2πm

∫
∞

−∞

dωRe[K (ω)]

[
(ω + Im[K (ω)])2 + ω2

c + Re[K (ω)]2
]
coth

(
h̄ω

2kBT

)
e−iωt

ω

{[
(ω + Im[K (ω)])2 + ω2

c + Re[K (ω)]2
]2

− 4ω2
c (ω + Im[K (ω)])2

} (12)

The same expression is obtained for Cy(t), i.e. ⟨∆x2⟩ = ⟨∆y2⟩. The above expressions are obtained by using the fact that the
cross correlations of the force components vanish (Eq. (3)). Using the expression for the correlation functions one can write
the expression for the mean square displacement: ⟨∆r2⟩ = ⟨∆x2⟩ + ⟨∆y2⟩ as follows:

⟨∆r2⟩ =
2h̄
πm

∫
∞

−∞

dωRe[K (ω)]

[
(ω + Im[K (ω)])2 + ω2

c + Re[K (ω)]2
]
coth

(
h̄ω

2kBT

) (
1 − e−iωt

)
ω

{[
(ω + Im[K (ω)])2 + ω2

c + Re[K (ω)]2
]2

− 4ω2
c (ω + Im[K (ω)])2

} (13)

The above expression is an exact expression for the mean square displacement, valid for any functional form of the kernel
K (ω). For examining the interplay between the magnetic field and dissipation, we consider a specific kernel. The form of the
kernel we consider for further analysis is based on the Ohmic dissipation model [8,25], K (t) = 2γ δ(t). Using this kernel, the
mean square displacement reduces to:

⟨∆r2⟩ =
2γ h̄
πm

∫
∞

−∞

dω

(
ω2

+ ω2
c + γ 2

)
ω

[(
ω2 + ω2

c + γ 2
)2

− 4ω2ω2
c

]
coth

(
h̄ω
2kBT

) (
1 − e−iωt) (14)

This integral can be solved using Cauchy’s residue theorem. The memory kernel satisfies causality which implies,

K (t) = 0, t < 0

We choose the contour in the lower half plane. The numerator of the integrand has poles in the lower half plane
corresponding to ω = −inπΩth, where n is a positive integer and Ωth =

2kBT
h̄ . The denominator has poles at ω = ±ωc ± iγ .
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Fig. 1. Plot of the mean square displacement as a function of time t in the high temperature classical domain for γ ≫ ωc . The expression used for this plot
is given in Eq. (16), where we use K (t) = 2γ δ(t). Here we use a scaled time t where the relaxation time τr = γ −1 has been used as the scaling time. The
mean square displacement has been plotted in units of h̄

mγ
.

Out of these only two lie in the lower half plane. These poles are at ω = ±ωc − iγ . The integral in Eq. (14) is (−2π i) times
the sum of the residues at the poles. The details of the calculations are given in the Appendix.

⟨∆r2⟩ =
h̄

πm
(
γ 2 + ω2

c

) {
(γ + iωc)

[
H γ−iωc

πΩth
+ H

−
γ−iωc
πΩth

]
+ (γ − iωc)

[
H

−
γ+iωc
πΩth

+ H γ+iωc
πΩth

]
+ e−π tΩth (γ + iωc)

[
Φ

(
e−π tΩth , 1,

γ + πΩth − iωc

πΩth

)
+ Φ

(
e−π tΩth , 1,

−γ + πΩth + iωc

πΩth

)]
+ e−π tΩth (γ − iωc)

[
Φ

(
e−π tΩth , 1,

γ + πΩth + iωc

πΩth

)
+ Φ

(
e−π tΩth , 1, −

γ − πΩth + iωc

πΩth

)]
+ 2γ

[
π tΩth + 2ln

(
1 − e−π tΩth

)]
+ π (iγ + ωc)

(
1 − e−t(γ+iωc )

)
coth

(
ωc − iγ

Ωth

)
+ π (−iγ + ωc)

(
1 − e−γ t+itωc

)
coth

(
ωc + iγ

Ωth

)}
(15)

We now examine the classical and quantum domains considering the high temperature and the low temperature limits
respectively.

3.1. High temperature limit

The mean square displacement in this limit is:

⟨∆r2⟩ =
4kBT
m

{
γ t

γ 2 + ω2
c

−
γ 2

− ω2
c(

γ 2 + ω2
c

)2
+

γ 2
− ω2

c(
γ 2 + ω2

c

)2 cos(ωc t)e−γ t

−
2γωc(

γ 2 + ω2
c

)2 sin(ωc t)e−γ t

}
(16)

This expression is obtained using the asymptotic forms of the Harmonic Number and the Hurwitz–Lerch Transcendent
Function. The asymptotic forms and the properties of these functions are discussed in the Appendix.

This case has been discussed in an earlier paper [17]. Herewe go beyond Ref. [17] in investigating in detail the competition
between the oscillatory effects characterized by the cyclotron frequency ωc and the dissipative effects characterized by γ .

Let us consider the case γ ≫ ωc . This is the damping dominated regime. In Fig. 1 we have shown a plot of the mean
square displacement as a function of time t in this regime.

Let us consider the case ωc ≫ γ . This is the magnetic field dominated regime. In Fig. 2 we have shown a plot of the mean
square displacement as a function of time t in this regime. Notice that in this domain, the cyclotron effect of the magnetic
field on the charged particle leads to oscillations in the mean square displacement. This is a qualitatively interesting effect.



696 U. Satpathi, S. Sinha / Physica A 506 (2018) 692–701

Fig. 2. Plot of the mean square displacement as a function of time t in the high temperature classical domain for ωc ≫ γ . The expression used for this plot
is given in Eq. (16), where we use K (t) = 2γ δ(t). Here we use a scaled time t where the relaxation time τr = γ −1 has been used as the scaling time. The
mean square displacement has been plotted in units of h̄

mγ
.

Fig. 3. Plot of the mean square displacement as a function of time t in the low temperature quantum domain for γ ≫ ωc . The expression used for this plot
is given in Eq. (17), where we use K (t) = 2γ δ(t). Here we use a scaled time t where the relaxation time τr = γ −1 has been used as the scaling time. The
mean square displacement has been plotted in units of h̄

mγ
.

To summarize, we notice a transition from amonotonic to an oscillatory behaviour of themean square displacementwith
time as the strength of the magnetic field is increased.

3.2. Low temperature limit

The mean square displacement in this limit is:

⟨∆r2⟩ =
2γ h̄

mπ
(
γ 2 + ω2

c

) {
2ln

(
(
√

γ 2 + ω2
c )t

)
+ 2γ0

+
πωc

γ
− πe−γ t

[
ωc

γ
cos(ωc t) + sin(ωc t)

]}
(17)

where, γ0 is the Euler–Mascheroni constant. Note that in this regime, (
√

γ 2 + ω2
c )

−1 < t < Ωth.
In contrast to the high temperature limit, the mean square displacement in the low temperature domain is relatively less

explored. Here we study the interplay between dissipation and magnetic field in the low temperature domain.
Let us consider the case γ ≫ ωc . This is the damping dominated regime for the low temperature domain. In Fig. 3 we

have shown a plot of the mean square displacement as a function of time t in this regime.
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Fig. 4. Plot of the mean square displacement as a function of time t in the low temperature quantum domain for ωc ≫ γ . The expression used for this plot
is given in Eq. (17), where we use K (t) = 2γ δ(t). Here we use a scaled time t where the relaxation time τr = γ −1 has been used as the scaling time. The
mean square displacement has been plotted in units of h̄

mγ
.

Fig. 5. Plot of the mean square displacement as a function of time t in the high temperature classical domain for γ ≫ ωc , where we use K (t) =
γ

τ
e−t/τ θ (t).

Here we use a scaled time t where the relaxation time τr = γ −1 has been used as the scaling time. The mean square displacement has been plotted in units
of h̄

mγ
.

Let us consider the case ωc ≫ γ . This is the magnetic field dominated regime for the low temperature domain. In Fig. 4
we have shown a plot of the mean square displacement as a function of time t in this regime.

As in the high temperature regime, in the low temperature regime also we notice a transition from a monotonic to an
oscillatory behaviour of themean square displacementwith time as the strength of themagnetic field is increased. However,
in contrast to the high temperature domain, where the monotonic growth of the mean square displacement is linear with
time, in the low temperature domain the temporal growth of the mean square displacement is logarithmic [5,18,26].

We have also computed the mean square displacement as a function of time for the single relaxation time model, where
the kernel has the form [25]

K (t) =
γ

τ
e−t/τ θ (t)

where τ is the memory time and θ (t) is the Heaviside function. This kernel has been widely used in the literature [18,27–
29] to model viscous response. One can recover the Ohmic bath kernel from this kernel in the limit τ −→ 0 [25].
Notice that, in contrast to the Ohmic dissipation kernel, which is free of memory effects, the single relaxation time kernel
involves nontrivial memory effects, characterized by a relaxation time τ . We notice that the qualitative features of the mean
square displacement are essentially the same for the single relaxation time model (see Figs. 5–8) and the Ohmic model.
To summarize, the qualitative features of the mean square displacement of a charged particle in a viscous medium in the
presence of a magnetic field are robust and independent of the details of the kernel appearing in the memory function.
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Fig. 6. Plot of the mean square displacement as a function of time t in the high temperature classical domain for ωc ≫ γ , where we use K (t) =
γ

τ
e−t/τ θ (t).

Here we use a scaled time t where the relaxation time τr = γ −1 has been used as the scaling time. The mean square displacement has been plotted in units
of h̄

mγ
.

Fig. 7. Plot of the mean square displacement as a function of time t in the low temperature quantum domain for γ ≫ ωc , where we use K (t) =
γ

τ
e−t/τ θ (t).

Here we use a scaled time t where the relaxation time τr = γ −1 has been used as the scaling time. The mean square displacement has been plotted in units
of h̄

mγ
.

4. Concluding remarks

In this paper we have studied the Brownian motion of a charged particle in a magnetic field. We use the quantum
Langevin equation for a charged particle in a magnetic field as a starting point to investigate the growth of the mean
square displacement as a function of time. We analytically derive expressions for the mean square displacement in the high
temperature classical and low temperature quantum domains using an Ohmic dissipation model for the memory kernel.
In both domains, we notice a qualitatively interesting transition of the temporal growth of the mean square displacement
from a monotonic behaviour to a damped oscillatory behaviour as one increases the strength of the magnetic field. We
also semi-analytically compute the mean square displacement for a single relaxation time model for the memory kernel
and notice that the qualitative features of the mean square displacement are robust and remain essentially the same for an
Ohmic dissipation model and a single relaxation time model for the memory kernel.

Our predictions for a transition from monotonic to oscillatory behaviour of the mean square displacement in the
classical and quantum domain can be realized in cold atom experiments with hybrid traps for ions and neutral atoms. Such
experiments have been realized in recent years where a single ion is immersed in a Bose–Einstein condensate (BEC) [21]
and cold collisions between ions and neutral atoms are observed [22]. In such experiments a uniform magnetic field can be
generated using magnetic coils in Helmholtz configuration. The dissipative medium in the high temperature limit can be
provided by using a 3D optical molasses [23] combined with a deep optical or magnetic trap. The temperatures in the low
temperature limit can be obtained with BEC in a very shallow trap. The inelastic collisions between the single ion and the
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Fig. 8. Plot of the mean square displacement as a function of time t in the low temperature quantum domain for ωc ≫ γ , where we use K (t) =
γ

τ
e−t/τ θ (t).

Here we use a scaled time t where the relaxation time τr = γ −1 has been used as the scaling time. The mean square displacement has been plotted in units
of h̄

mγ
.

surrounding ultra-cold neutral atoms provide a dissipative medium for the ion. Hence, the Brownian motion of a charged
particle in a magnetic field and the transition frommonotonic to oscillatory behaviour of the mean square displacement can
be experimentally realized both in the classical and quantum regimes.
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Appendix

⟨∆r2⟩ =
2γ h̄
πm

∫
∞

−∞

dω

(
ω2

+ ω2
c + γ 2

)
ω

[(
ω2 + ω2

c + γ 2
)2

− 4ω2ω2
c

] coth(
h̄ω
2kBT

) (
1 − e−iωt) (A.1)

=
ih̄

πm

∫
∞

−∞

dωcoth
(

h̄ω
2kBT

) (
1 − e−iωt

)
2ω

{
1

ω + ωc + iγ
−

1
ω + ωc − iγ

+
1

ω − ωc + iγ
−

1
ω − ωc − iγ

}
=

ih̄
πm

(I1 − I2 + I3 − I4) (A.2)

Here,

I1 =

∫
∞

−∞

dω
coth

(
h̄ω

2kBT

) (
1 − e−iωt

)
2ω (ω + ωc + iγ )

(A.3)

The above integral can be evaluated using Cauchy’s residue theorem. Since the kernel satisfies causality, the contour where
the integrand vanishes is chosen to be a large arc in the lower half plane. The poles are at ω = −inΩthπ, ω = −(ωc + iγ ),
where n is a positive integer and

Ωth =
2kBT
h̄

(A.4)

Therefore, the integral is (−2π i) times the residues at the poles, i.e.

I1 = (−2π i)

⎧⎪⎨⎪⎩
H

−
γ−iωc
πΩth

+ e−π tΩthΦ

(
e−π tΩth , 1, −γ+πΩth+iωc

πΩth

)
+ π tΩth + ln

(
1 − e−π tΩth

)
2π (γ − iωc)

+

(
1 − e−γ t+itωc

)
coth

(
ωc+iγ
Ωth

)
2 (ωc + iγ )

⎫⎪⎬⎪⎭ (A.5)
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Here, H is the Harmonic Number and Φ is the Hurwitz–Lerch Transcendent Function defined respectively as:

Hx =

x∑
k=1

1
k

Φ(z, s, α) =

∞∑
n=0

zn

(n + α)s

The asymptotic forms of the Harmonic Number are:

Hx =

{ln(x) + γ0, if x ≫ 1
π2

6
x, if x ≪ 1

Here, γ0 is the Euler–Mascheroni constant. The asymptotic forms of the Hurwitz–Lerch Transcendent Function are discussed
in details in Ref. [30].

In Eq. (A.2), I2 is given by,

I2 =

∫
∞

−∞

dω
coth

(
h̄ω

2kBT

) (
1 − e−iωt

)
2ω (ω + ωc − iγ )

(A.6)

In this case, the poles lying in the contour are at ω = −inΩthπ . Therefore,

I2 = (−2π i)

⎧⎪⎨⎪⎩−

H γ+iωc
πΩth

+ e−π tΩthΦ

(
e−π tΩth , 1, γ+πΩth+iωc

πΩth

)
+ ln

(
1 − e−π tΩth

)
2π (γ + iωc)

⎫⎪⎬⎪⎭ (A.7)

In Eq. (A.2), I3 is given by,

I3 =

∫
∞

−∞

dω
coth

(
h̄ω

2kBT

) (
1 − e−iωt

)
2ω (ω − ωc + iγ )

(A.8)

The poles within the contour are at ω = −inΩπ, ω = ωc − iγ . Therefore,

I3 = (−2π i)

⎧⎪⎨⎪⎩
H

−
γ+iωc
πΩth

+ e−π tΩthΦ

(
e−π tΩth , 1, − γ−πΩth+iωc

πΩth

)
+ π tΩth + ln

(
1 − e−π tΩth

)
2π (γ + iωc)

+

(
1 − e−t(γ+iωc )

)
coth

(
ωc−iγ
Ωth

)
2 (ωc − iγ )

⎫⎪⎬⎪⎭ (A.9)

In Eq. (A.2), I4 is given by,

I4 =

∫
∞

−∞

dω
coth

(
h̄ω

2kBT

) (
1 − e−iωt

)
2ω (ω − ωc − iγ )

(A.10)

The poles within the contour are at ω = −inΩthπ . Therefore,

I4 = (−2π i)

⎧⎪⎨⎪⎩−

H γ−iωc
πΩth

+ e−π tΩthΦ

(
e−π tΩth , 1, γ+πΩth−iωc

πΩth

)
+ ln

(
1 − e−π tΩth

)
2π (γ − iωc)

⎫⎪⎬⎪⎭ (A.11)
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Collecting expressions for all the integrals:

I1 − I2 + I3 − I4 =
−i(

γ 2 + ω2
c

) {
(γ + iωc)

[
H γ−iωc

πΩth
+ H

−
γ−iωc
πΩth

]
+ (γ − iωc)

[
H

−
γ+iωc
πΩth

+ H γ+iωc
πΩth

]
+ e−π tΩth (γ + iωc)

[
Φ

(
e−π tΩth , 1,

γ + πΩth − iωc

πΩth

)
+ Φ

(
e−π tΩth , 1,

−γ + πΩth + iωc

πΩth

)]
+ e−π tΩth (γ − iωc)

[
Φ

(
e−π tΩth , 1,

γ + πΩth + iωc

πΩth

)
+ Φ

(
e−π tΩth , 1, −

γ − πΩth + iωc

πΩth

)]
+ 2γ

[
π tΩth + 2ln

(
1 − e−π tΩth

)]
+ π (iγ + ωc)

(
1 − e−t(γ+iωc )

)
coth

(
ωc − iγ

Ωth

)
+ π (−iγ + ωc)

(
1 − e−γ t+itωc

)
coth

(
ωc + iγ

Ωth

)}
(A.12)

Therefore, the mean square displacement is given by,

⟨∆r2⟩ =
h̄

πm
(
γ 2 + ω2

c

) {
(γ + iωc)

[
H γ−iωc

πΩth
+ H

−
γ−iωc
πΩth

]
+ (γ − iωc)

[
H

−
γ+iωc
πΩth

+ H γ+iωc
πΩth

]
+ e−π tΩth (γ + iωc)

[
Φ

(
e−π tΩth , 1,

γ + πΩth − iωc

πΩth

)
+ Φ

(
e−π tΩth , 1,

−γ + πΩth + iωc

πΩth

)]
+ e−π tΩth (γ − iωc)

[
Φ

(
e−π tΩth , 1,

γ + πΩth + iωc

πΩth

)
+ Φ

(
e−π tΩth , 1, −

γ − πΩth + iωc

πΩth

)]
+ 2γ

[
π tΩth + 2ln

(
1 − e−π tΩth

)]
+ π (iγ + ωc)

(
1 − e−t(γ+iωc )

)
coth

(
ωc − iγ

Ωth

)
+ π (−iγ + ωc)

(
1 − e−γ t+itωc

)
coth

(
ωc + iγ

Ωth

)}
(A.13)
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