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Thesis Synopsis

The dark age of the universe ends with the formation of the first generation of galaxies.

Ultraviolet radiation from these galaxies starts ionizing surrounding regions and eventually

the ionized bubbles grow up in size and merge together until the hydrogen becomes fully

ionized. This epoch marks a major phase transition of the universe and is known as ’Epoch

of Reionization’ (z = 6 ∼ 11). EoR signal being extremely weak (30 mK), detection through

direct imaging is extremely difficult with present radio telescopes. The only way of detection

is through statistical analysis which requires a stable instrument and large amount of data to

reduce thermal noise, measure and subtract the foreground effects. The Murchison Widefield

Array (MWA) is a low frequency radio telescope operating between 80 ∼ 300 MHZ located

in Western Australia. One of the key science project of this array is to detect fluctuations in

the brightness temperature of the diffuse redshifted 21 cm line of neutral hydrogen from the

epoch of reionization (EoR). In this thesis work we explore various modes of observations

with MWA theoretically to maximize the signal to noise ratio.

We have successfully developed a unique methodology to extract power spectra from

radio interferometric tracking data. It has been suggested that the foregrounds can be

isolated from the HI signal, yielding clean regions dominated by the HI signal. In this work,

we propose a method to extract HI power spectra based on delay spectrum approach. This

method is based on modeling the HI signal taking into account the impact of the ‘w term’ and

the change in intensity pattern during a tracking run. The information of the decorrelation

of the HI signal due to ‘w term’ variation is used as weights to cross-correlate the measured

visibilities. Our method is applicable to radio interferometers with redundant baselines

(e.g. PAPER) and non-redundant baselines (e.g MWA). We demonstrate our method by
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analysing 3 hours of MWA tracking data on the EoR1 field. We present both 2-dimensional

and 1-dimensional (k) power spectra from the analysis and compare them with noise and

point source simulation. The foreground free region (EoR window) is comparable to the

expected thermal noise.

Detection of the EoR in the redshifted 21 cm line is a challenging task. Here, we for-

mulate the detection of the EoR signal using the drift scan strategy. In drift scan mode

the pointing center is fixed at zenith and we observe a time dependent patch of sky.This

method potentially has better instrumental stability compared to the case where a single

patch of sky is tracked. In this work, we describe a methodology based on drift scans

which exploits the correlation between visibilities measured at different times to estimate

the EoR signal. In particular, our aim is to infer the efficacy of such a method for a wide

field-of-view instrument such as MWA. We demonstrate that the correlation time between

measured visibilities could extend up to 1 hr for an interferometer array such as the MWA,

which has a wide primary beam. We estimate the EoR power based on a cross-correlation

of visibilities over time and show that the drift scan strategy is capable of detecting the EoR

signal with a signal to noise that is comparable/ better compared to the tracking case.We

also estimate the visibility correlation for a set of bright point sources and argue that the

statistical inhomogeneity of bright point sources might allow their separation from the EoR

signal.
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Chapter 1

Introduction

Over the past few decades the study of Cosmology has advanced to a great extent. As

a whole Cosmology is a particular wing of physics and astrophysics, that study the large

scale properties of the universe. In particular this endeavour is a combination of theoretical

predictions and astronomical observations to study the origin, evolution and ultimate destiny

of the universe. Our understanding of the modern Cosmology has progressed with a series

of major breakthroughs in observational Cosmology in the past three decades.

The near-blackbody nature of the Cosmic Microwave Background (CMB) radiation by

COBE-FIRAS put the Big Bang model on firm footing (Mather et al. (1990); Fixsen et

al. (1996)). The subsequent detection of CMB temperature anisotropy (Smoot (1992)) by

COBE-DMR and polarization anisotropy by WMAP (Spergel et al. (2007)) and Planck

(Lamarre et al. (2003)) satellites furnished proof of initial fluctuations in the early Uni-

verse which resulted in the formation of complex structures in present day Universe. This

paradigm has got further support and validation by the study of Galaxy clustering carried

out by many galaxy surveys (e.g. APM survey, Dalton et al. (1997) and SDSS survey, York

et al. (2000)). The discovery of accelerating Universe using Type Ia supernovae (Perlmutter

et al. (1999); Riess et al. (1998)) provided yet another another milestone in observational

cosmology.

The CMBR polarization anisotropy measurements suggest that Universe has made a

transition from being full neutral to ionized state at z ' 10. The most sought after ex-

ploration in modern Cosmology and yet to be discovered is the detection of redshifted HI
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from the ‘Epoch of Reionization’ when the transition from neutral to ionized Universe was

taking place. This has been a major science goal for many low frequency radio interferom-

eters worldwide from last decade as this is expected to provide answers of many unsolved

mysteries on the evolution of Universe.

1.1 The Epoch of Reionization

In Big Bang cosmology, the Epoch of Reionization (EoR) refers to a major phase change

from dark age to present day universe. Approximately until 380 thousand years after the

Big Bang, the universe was made up of tightly coupled plasma consisting of ionized gas.

After the Big Bang the universe expanded at a rapid rate and cooled to a point when the

atomic hydrogen formation rate (by recombination of electrons and protons) was higher than

the reionization rate. This marks the first major phase change of the universe: Epoch of

Recombination which occurred at redshift z ∼ 1000. Also at this stage the universe was not

dense enough to hold the photons coupled to the matter. The decoupled photons at that

stage is called the relic thermal radiation: Cosmic Microwave Background.

After decoupling of photons from matter universe entered into an age of darkness as

there were no conventional light sources (e.g. stars, galaxies, etc) other than gradually

diminishing CMB. Electrons and protons combined to form neutral Hydrogen which was

the most abundant material and the universe became transparent throughout most of the

spectrum. The second phase change of the universe began when first sources of light were

born roughly at redshift z ∼ 30. These were results of tiny fluctuation seeded in the matter

density field during inflationary period. The formation of first objects were primarily due to

gravitational instability, although other processes like gas physics, cooling, heating, radiation

processes and feedback effects started affecting the formation of first galaxies (Peebles (1993);

Mo et al. (2010)). These were primarily galaxies made of zero metallicity Population III stars,

second generation Population II stars and black hole driven sources (Bromm et al. (2002);

Bromm & Larson (2004)). The photons emitted from these sources started ionizing the

surrounding neutral hydrogen in the intergalactic medium. The rate of ionization increased

as more number of sources were born in the universe. As a result ionized bubbles started to
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Figure 1.1: A schematic of the evolution of the Universe with time (credit: Robertson et al.

(2010))

grow in size surrounding each of these sources, and with time they merged with each other

making the universe ionized again except few dense neutral hydrogen clouds (Barkana &

Loeb (2001); Bromm & Larson (2004); Ciardi & Ferrara (2005); Sethi (2005); Choudhury &

Ferrara (2006); Furlanetto et al. (2006); Morales & Wyithe (2010)). Present observational

constraints suggest the redshift range 6 . z . 12 to be the reionization epoch. A schematic

of evolution of the Universe with time is shown in Fig. 1.1.

The most crucial observational evidence of the occurrence of EoR comes from the quasar

spectra at high redshifts and optical depth measurements from CMB temperature and po-

larization anisotropy maps. In next two sections we discuss them in detail.

1.2 Quasars and Gunn-Peterson trough

Quasars are one of the most brightest astronomical objects. Powered by accretion of material

into supermassive black holes in the nuclei of distant galaxies, these objects release an

enormous amount of energy (typical luminosity ∼ 1040 watt). Most of the quasars were

formed at an early stage of the universe, hence some of them can be detected during the

reionization epoch. Thus the quasar spectra can be studied as an useful tool to study the

Intergalactic medium (IGM) during EoR.

For a neutral hydrogen atom, the Lyman alpha line corresponds to an electron transition

between the ground state (n = 1) and first excited state (n = 2). Now consider a bright

quasar along the line of sight and if there are a number of neutral hydrogen clouds between

the quasar and observer, the clouds can absorb photons of wavelength corresponding to the

21



CHAPTER 1. INTRODUCTION

Lyman alpha line (122nm). As the absorbing clouds have smaller redshifts compared to the

quasar, the signatures of these absorptions would be reflected in shorter wavelength side of

the quasar’s Lyman alpha emission line (Fig. 1.2). This feature is also called ‘Lyman alpha

forest’.

If the IGM is full of neutral hydrogen, the spectra from a quasar will have a special

feature called Gunn-Peterson trough (Gunn & Peterson (1965)). The trough (presence of

continuous absorption lines) is a result of the suppression of the electromagnetic emission

in the quasar spectra at wavelengths shorter than the quasar’s Lyman alpha emission line.

Although predicted by Gunn and Peterson in 1965, it was first discovered in 2001 (Becker

et al. (2001)) with the discovery of a quasar at z = 6.28 using the Sloan Digital Sky Survey

(SDSS) data. Further discoveries of other quasars (Fan et al. (2006)) at z > 6 also depicts

this feature (Fig. 1.3). The Gunn Peterson optical depth can be calculated as:

τGP = 6.6× 103h−1

(
Ωbh

2

0.019

)
nHI

n̄H
(1 + z)3/2 (1.1)

where nHI
n̄H

is the neutral hydrogen fraction, Ωb is the baryon density in units of the crit-

ical density in standard cosmology. A small amount of neutral HI result in large optical

depth τGP. This provides the possibility to probe both spatial and temporal variation of

reionization at high z.

The presence of this trough for quasars at z > 6 and the absence of it (although Lyman

alpha forest can be present) for quasars at z < 6 implies that the universe was somewhat

more neutral in these redshifts (z > 6). The corresponding increase in optical depth provides

strong evidence of reionization and implies that the universe was approaching the end of

neutral era at z ∼ 6.

1.3 CMB Temperature and Polarization anisotropy

As mentioned above CMB provides an useful tool to probe EoR. The anisotropy of the

microwave background present at different angular scales can be used to study the reion-

ization. In presence of free electrons, photons experience scattering which is also known as

the Thompson scattering. However as the Universe expands, the density of free electrons

reduces and the rate of scattering would decrease. During the period of reionization and
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(a)

(b)

Figure 1.2: (a) Schematic of ‘Lyman alpha forest’ (credit:

http://www.astro.ucla.edu/ wright/Lyman-alpha-forest.html); (b) Spectra of a quasar

at z = 6.28 (Becker et al. (2001)).
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Figure 1.3: Spectra of high redshift SDSS quasars (Fan et al. (2006)). The Gunn Peterson

trough is prominent in quasars at z > 6.
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after its occurrence, free electrons would be produced in the process. Assuming the Universe

did not expand significantly to sufficiently lower the free electron density, the photons would

undergo Thompson scattering during this epoch. The signature of this scattering would be

imprinted on the CMB anisotropy map as secondary anisotropies (anisotropy introduced

after recombination). As a result of scattering, the anisotropies at smaller scales are oblit-

erated. By observing the CMB anisotropies and comparing with the case if the reonization

had not taken place, information on electron density during reionization can be obtained.

With this significant knowledge on the reionization epoch can be achieved. More detailed

review on this topic can be found in Peebles & Yu (1970); Bond & Efstathiou (1984); Hu &

White (1997).

In absence of reionization, the properties of CMB would be very much different in terms

of optical depth. Although Thompson scattering of the CMB photons with the free elec-

trons contaminates the primary anisotropies, the resulting change in optical depth deliver

important information on reionization. Similarly the CMB polarization signal would be

negligible at large angular scales if the universe had remained neutral. The presence of free

electrons during reionization and resulting scattering with CMB enhances the polarization

signal significantly (Zaldarriaga & Seljak (1997); Haiman & Knox (1999)). There exists

a subtle difference between the Gunn-Peterson and CMB anisotropy probes; the former is

sensitive to the end phase of reionization whereas the latter is to the initial phase when the

free electrons start to appear.

To estimate the effect of reionization on CMB photons, a function has been defined in

literature called visibility function (Zaroubi (2013)):

g(η) = −dτ
dη
e−τ(η) (1.2)

where τ is optical depth and η is the conformal time. This function is a measure of probability

density that a CMB photon has been Thompson scattered due to free electrons originated

from reionization along the line of sight between η and η + dη. Fig. 1.4 shows the variation

of visibility function with redshift for both presence and absence of reionization. In presence

of reionization, excess free electron density increase the value of visibility function compared

to the case of absence of reionization.
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Figure 1.4: Variation of visibility function for presence and absence of reionization. Reion-

ization produces free electrons which cause Thompson scattering of CMB photons which

in turn increase the value of visibility function at reionization epoch. This plot has been

simulated assuming the reionization epoch to be z ≈ 17.
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As discussed before, reionization enhances the polarization signal to a great extent.

The polarization of CMB originates due to the initial fluctuation in early universe through

gravitational instability. This polarization signal should drop at large angular scales in

absence of reionization. However excess power is seen from WMAP observations (Page et

al. (2007)) of polarization power and cross power spectra at low l in Fig. 1.5, which provides

strong evidence of reionization.

1.4 21cm Cosmology

The neutral hydrogen being the most abundant and ubiquitous material, the famous 21 cm

line (rest frame frequency 1420 MHz) becomes the obvious tracer to study the various

properties of the gas. This line arises due to the hyperfine splitting of the hydrogen ground

state due to the magnetic interaction between quantized electron & proton spins. The excited

(triplet) state correspond to the parallel spins, whereas spins are anti-parallel in the ground

(singlet) state. The probability of this transition is extremely low, the value of Einstein A

coefficient being A10 = 2.85× 10−15s−1 which corresponds to a lifetime of the triplet state

as 1.1× 107 years for spontaneous emission. Despite such a low transition probability, this

line is the most important tracer due to vast amount of neutral hydrogen during reionization

epoch (Barkana & Loeb (2001); Sethi (2005); Choudhury & Ferrara (2006); Furlanetto et

al. (2006); Morales & Wyithe (2010); Zaroubi (2013)). Due to expansion of the universe,

the wavelength of this line gets elongated by a factor (1 + z) in observer’s frame.

The intensity of the 21 cm line depend on the radiative transfer through a medium along

the line of sight. The radiative transfer equation for the specific intensity Iν (Rybicki &

Lightman (1986)) is expressed as:

dIν
dτν

= −Iν +Bν(τ) (1.3)

where τ is the optical depth for absorption by gas along the line of sight, and Bν is the

Planck function.

In radio astronomy, the specific intensity Iν can be approximated as the brightness

temperature Tb(ν) owing to the Rayleigh-Jeans formula: Iν = 2kBTb(ν)ν2/c2, where c is the
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Figure 1.5: WMAP results (Page et al. (2007)) of temperature and E-mode polarization

power and cross power spectra; TT (black), TE (red ), and EE ( green) for the best model

case. Dashed line for TE shows anticorrelation regions. The presence of surplus power at

low l in TE and EE power spectra provides proof of reionization.
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speed of light and kB is the universal Boltzmann constant. Substituting this in Eq. (1.3),

the radiative transfer equation takes a simpler form:

dTb
dτν

= −Tb + TCMB (1.4)

Here TCMB is the background CMB temperature, which is equivalent to the background

brightness temperature in the context of 21 cm Cosmology. Solution of the Eq. (1.4) denote

the observed temperature at frequency ν:

Tb(ν) = Tspin(1− e−τν ) + TCMB(ν)e−τν (1.5)

Here Tspin is the excitation temperature of the 21 cm line defined by:

n1

n0
=
g1

g0
exp(− T∗

Tspin
) (1.6)

where n1 and n0 are the number densities of the hyperfine excited and ground state respec-

tively; (g1/g0) = 3, which is the statistical degeneracy ratio of the two energy states and

T∗ = 0.068K.

In Eq. (1.5) the first term on the RHS gives the emission probability of 21 cm photons

from the intermediate clouds, whereas the second term describes the transmission probability

of the background CMB radiation. Hence, the spin temperature Tspin & the optical depth τν

are the two most important quantities which decide the brightness temperature in Eq. (1.5).

The optical depth, which is associated with the hydrogen cloud along the line of sight, can

be written as:

τν =

∫
ds

[
1− exp

(
− E10

kBTspin

)]
σνn0 (1.7)

Here ds is a line element along the cloud; n0 = NHI/4 with NHI being the hydrogen density;

σν = σ0φν represents the 21cm line absorption cross-section with φν being the line profile

which is normalized such that,
∫
φ(ν)dν = 1. φν is a resultant effect of many physical

processes: natural, thermal, turbulent & velocity broadening. In our scale of interest, ve-

locity broadening due to the Hubble expansion plays the dominant role. Substituting all

the relevant terms using cosmological variables, the solution of Eq. (1.7) takes the following

form:

τν ≈ 0.0092(1 + δ)(1 + z)3/2 XHI

Tspin

[
H(z)/(1 + z)

dv‖/dr‖

]
(1.8)
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In above expression, (1+δ) represents the fractional overdensity of baryons; dv‖/dr‖ consists

of both Hubble expansion & peculiar velocity (Kaiser (1987)), and denote the gradient of

proper velocity along the line of sight; z denote the redshift and H(z) as the corresponding

Hubble parameter.

The other quantity of interest is the spin temperature Tspin which is primarily determined

by three physical processes: (i) absorption or emission of 21 cm photons with respect to the

CMB; (ii) collisions with other hydrogen atoms, electrons and protons; (iii) Lyα resonant

scattering which can cause a spin flip transition via an intermediate level (also known as

the Wouthuysen - Field effect). Together with all these effects, the spin temperature can be

expressed as (Wouthuysen (1952); Field (1958, 1959)):

T−1
spin =

T−1
CMB + xcT

−1
K + xαT

−1
c

1 + xc + xα
(1.9)

where xc and xα are the coupling coefficients for collisions and Lyα scattering respectively;

TK is the gas kinetic temperature (Furlanetto et al. (2006)).

It is important to note from Eq. (1.5) that if Tspin = TCMB, the observed brightness

temperature is simply the CMB temperature TCMB. Hence any useful information of the

Intergalactic medium (IGM) can be obtained through the observed brightness temperature

only if Tspin 6= TCMB. Thus, the quantity of interest is the differential brightness temperature

δTb = Tb − TCMB, which is rich in information concerning the IGM. This quantity can be

written as (Field (1958, 1959); Madau et al. (1997); Ciardi & Madau (2003)):

δTb = 28mK(1 + δ)xHI

(
1− TCMB

Tspin

)(
Ωbh

2

0.0223

)√(
1 + z

10

)(
0.24

Ωm

)[
H(z)/(1 + z)

dv‖/dr‖

]
(1.10)

where H is the Hubble constant in units of 100 kms−1Mpc−1; δ denotes the density contrast;

xHI represents the neutral hydrogen fraction; and Ωm, Ωb are the mass, baryon densities in

units of the critical density in standard cosmology.

The above equation describes a complex interplay of various astrophysical phenome-

nas and cosmological effects. Depending on the epochs, the contributions of the physical

processes vary and affect differently on the brightness temperature. For instance, at high

redshift when the universe is mostly neutral, xHI ≡ 1, δTb follows the density fluctuation, and
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hence a perfect probe of Cosmology. However, at lower redshifts when astrophysical sources

dominate and the universe is significantly ionized, δTb depends on the distinct distributions

of neutral and ionized regions (Thomas et al. (2009)).

1.4.1 Global 21cm signature

As discussed above, the differential brightness temperature is dependent on a number of

parameters, and its detectability varies on the epochs being studied. This variation is

imprinted on the global 21cm signature (Fig. 1.6), which is defined to be the mean signal

averaged over the entire sky as a function of frequency.

Figure 1.6: Evolution of global 21cm signal (Pritchard & Loeb (2010); Liu et al. (2013))

Next the various phases of the universe and their possible impact on the global signal

is elaborated. After decoupling of CMB, the gas maintains a thermal equilibrium with the

residual free electrons through Compton scattering, resulting in TK = TCMB. Furthermore,

high density of gas causes collisional coupling and effectively sets Tspin = TCMB. This results

in δTb = 0 and no effective detectable 21cm signal. At redshift z ≤ 200, the gas temperature

drops down adiabatically as TK ∝ (1 + z)2. The collisional coupling further results in

Tspin < TCMB which makes the δTb to be nonzero for the first time, and an early absorption

signal. With further expansion, the collisional coupling gets ineffective with decreasing gas

density, and radiative coupling causes Tspin = TCMB for z ≤ 40. This results in no detectable

HI signal till first astrophysical sources are born in the universe. At a later stage, the first

sources starts to form due to gravitational instability, which emit both Lyα and X-ray

photons. Initially, the heating is significantly less and the spin temperature is coupled to

the cold gas temperature: Tspin ≡ TK < TCMB, which causes an absorption signal. With
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more sources coming up and increasing star formation, the Lyα coupling becomes saturated.

Gradually, the heating due to X-ray becomes significantly large, thus the gas temperature

makes a transition from being TK < TCMB to TK > TCMB. This results the observed signal

being seen in emission from absorption (Pritchard & Loeb (2010); Sethi (2005); Santos et al.

(2008); Zaroubi (2013)). Once the universe is fully ionized, no 21 cm signal is seen except

few isolated hydrogen clouds (damped Lyα systems).

Many ground based experiments are underway to detect this mean signal, which includes

Cosmological Reionization Experiment (CoRE, Chippendale et al. (2005)), the Experiment

to Detect the Global Epoch of Reionization Signal (EDGES, Bowman et al. (2008)), the

SCI-HI experiment (Tabitha et al. (2014)), the Large Aperture Experiment to Detect the

Dark Ages (LEDA, Greenhill & Bernardi (2012)), SARAS (Patra et al. (2015)). Although

the single dish measurements can reach the required sensitivity; the ionospheric interference

from our atmosphere, and the strong synchrotron emission from our galaxy makes these

attempts extremely difficult.

1.4.2 21cm fluctuations and Power spectrum

The global 21cm signal contains many detailed information on the mean evolution of the

universe. One must also note that each component in Eq. (1.10) also can fluctuate. The

resulting fluctuation in the 21 cm signal from its mean can be denoted as δHI. Like the

global signal, this fluctuation also contain various information on the IGM. In linear order,

this fluctuation can be expanded as:

δHI(x) = βbδb + βxδx + βαδα + βT δT − δ∂v (1.11)

Each quantity in the above equation corresponds to the fractional variation of a particular

physical quantity: δb refers to fluctuation in baryonic density, δα for the Lyα coupling

coefficient xα, δx for the neutral fraction, δT for TK , and δ∂v for the line of sight peculiar

velocity gradient. β factors denote the expansion coefficients of the corresponding quantity

(Furlanetto et al. (2006); Zaldarriaga et al. (2004)). The quantity of interest is the Fourier

transform, δHI(k). The power spectrum PHI can be defined as:

〈δ∗HI(k)δHI(k
′)〉 = (2π)3δ3(k− k′)PHI(k) (1.12)
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where δ3(x) is the Dirac delta function and the angular brackets denote an ensemble aver-

age. Statistical homogeneity and isotropy of the Universe suggest that the fluctuation in

21 cm signal should be spherically symmetric in the Fourier domain. This implies that the

constructed power spectrum PHI(k) from this fluctuation should only depend on the magni-

tude of the wave vector |k| (Pritchard & Loeb (2010)). Although redshift space distortions

(Shaw & Lewis (2008); Mao et al. (2012)) due to peculiar velocities along line of sight break

this spherical symmetry and only cylindrical symmetry is retained. Foregrounds in general

do not follow any such symmetry, and this particular feature provide an important tool to

separate foregrounds from HI signal in Fourier space (Morales & Hewitt (2004)). On large

scales, the Fourier transform of fractional perturbation in the radial peculiar velocity gra-

dient is proportional to that of the density field δ∂v = −µ2βδ. In general the fluctuation in

Fourier space can be written as (Barkana & Loeb (2005); Furlanetto (2016)):

δHI = µ2βδ + δiso (1.13)

where δiso consists of all statistically isotropic terms in Eq. (1.11), µ = k̂ · x̂ i.e. the cosine

value of the angle between the wave vector k̂ and line of sight x̂, β is the bias parameter

which corrects for a possible bias between the tracers and the growth rate of dark matter

perturbations. The power spectrum can be calculated by taking autocorrelation of above

equation and setting β = 1:

PHI(k) = µ4Pδδ + 2µ2Pδisoδ + Pδisoδiso (1.14)

where ‘second order’ terms are neglected. We can infer from above equation that by measur-

ing power for 3 or more values of µ, one can determine Pδδ, Pδisoδ and Pδisoδiso . So, in principle

the contribution from density fluctuation Pδδ can be isolated (Furlanetto et al. (2006)). The

other two components contain various different power spectrum including density, neutral

fraction and spin temperature, along with their cross power spectrum.

The study of this statistical fluctuation in 21 cm signal or its variant, the power spectrum,

has been a major aim of many radio interferometers operating in frequency range 80 <

ν < 300 MHz. For example, Low Frequency Array (LOFAR, Van Haarlem et al. (2013)),

21 Centimeter Array (21CMA, Zheng et al. (2016)), Giant Meterwave Radio Telescope
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(GMRT, Paciga et al. (2013)), Donald C. Backer Precision Array for Probing the Epoch of

Reionization (PAPER, Parsons et al. (2014)), Murchison Widefield Array (MWA, Tingay et

al. (2013); Lonsdale et al. (2009); Bowman et al. (2009)). In addition to these ongoing efforts,

larger futuristic experiments are planned which include Hydrogen Epoch of Reionization

Array (HERA, DeBoer et al. (2016)) and Square Kilometer Array (SKA1).

1.5 Challenges in EoR study

There are mainly two types of experiments to study the reionization epoch. One tries to

detect the global signal through single dish measurements, the other type has the power

spectrum detection approach as discussed in previous section. In this thesis work we focus

on the latter one. Even though the detection of redshifted HI line from the EoR remains

the most direct approach to study this epoch, one of the most challenging parts is to extract

the Cosmological signal from the observed data and decipher it correctly. There are also

following issues which constraint the detectability of 21 cm signal from this epoch.

• Unlike CMBR anisotropies, the theoretical modeling of the HI signal from the EoR is

considerably harder principally owing to uncertainty in the nature of ionizing sources

and the details of their formation and evolution.

• The signal is expected to be weak with brightness temperature TB ' 10 mK. Many

hundred hours of observation is needed to detect such a signal with current interferom-

eters, with the attendant complication of maintaining instrumental stability for such

long periods.

• The frequency range required (80MHz ≤ ν ≤ 300MHz) to probe the relevant redshifts

are widely used by many communication instruments (FM radio band, satellite and

aircraft communication channels). This causes enormous radio frequency interference

(RFI) which is many order of magnitude higher than the 21 cm signal. To escape from

RFI, the observatories are often placed isolated from the contaminating sources.

1https://www.skatelescope.org/
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Figure 1.7: Foregrounds at 120 MHz (credit: Zaroubi (2013))

• The ionosphere poses a big challenge in all EoR endeavours. In the required frequency

band, the ionosphere is refractive and gets opaque at lower frequency. The refraction

phenomenon causes apparent movement of sources in the sky as ionospheric patches

move across the telescope beam. The ionosphere being more active during daytime

and large brightness of the Sun in this frequency band, observations are restricted only

during the night.

• The foreground are expected to be many orders of magnitude larger than the signal.

The most outstanding is the synchrotron emission from our galaxy which constitute

approximately 75% of the total foregrounds. Radio galaxies, galaxy clusters, resolved

supernovae remnants and free-free emission, together aggregate the remaining 25%

of the foreground contribution. Fig. 1.7 shows these various foreground contribution

compared to the expected EoR signal at 120 MHz (Zaroubi (2013)).
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1.6 The Murchison Widefield Array

The Murchison Widefield Array (MWA, Tingay et al. (2013); Lonsdale et al. (2009); Bowman

et al. (2009)), one of the precursor of the Square Kilometer Array (SKA), is a low frequency

radio interferometer array located in Western Australia, a site with lower levels of radio

frequency interference. It consists of 128 antenna tiles with each tile comprising of 16 crossed

dipole antennas over a metal ground screen in 4 x 4 grid (with spacing of 1.1 m). The total

collecting area of MWA is 2752 m2 at 150 MHz. The majority of the tiles (112) are put within

1.5 km of core region, which makes it a high quality imaging array with resolution of few

arcminutes. MWA bandwidth is 30.72 MHz, divided into 24 coarse channels of width 1.28

MHz each. This low frequency array operates in the frequency range 80 ∼ 300 MHz. The

total bandwidth is divided into 768 fine channels. With the use of an analog beamformer

appropriate phase delays are introduced in each individual dipole antenna to track the

pointing center of the beam across the sky. This array has a unique 1/r2 type distribution

of tiles with a dense core of antennas of short spacings (Bowman et al. (2009)). The short

spacing antennas are useful for EoR power spectrum estimation, while the antennas with

large separations are appropriate for calibration and imaging purpose. The wide field of

view of the array is also useful to achieve sensitivity of EoR. These features make MWA an

excellent EoR instrument. Other than EoR, other science goals of MWA include Galactic

science, Time domain astrophysics and Space weather.

Fig. 1.8 shows individual tiles consisting of 16 dipoles. The locations of all 128 tiles are

shown in Fig. 1.9.

1.7 Motivations and plan of the thesis

The probe of the Epoch of Reionization (EoR) remains one of the challenging aims of

modern cosmology. In the past decade, many interesting details have emerged about this

epoch from a host of cosmological observables. Gunn-Peterson (GP) tests on spectra of

quasi-stellar objects (QSOs) ((Fan et al. (2000)) in the redshift range 5.7 < z < 6.3 suggest

that the universe was making a transition to full reionization during this period. On the

other hand, Cosmic microwave background radiation (CMBR) temperature and polarization

36



CHAPTER 1. INTRODUCTION

Figure 1.8: MWA tile with analog beamformer (credit: Tingay et al. (2013))

anisotropy measurements (Komatsu et al. (2010), Planck 2015 results. XIII. (2015)) suggest

that the universe might have been fully ionized in a redshift range 8 < z < 10 (Planck 2016

results. XLVII. (2016)).

Major experimental efforts are currently being undertaken to study the EoR in redshifted

21-cm line emission from the epoch. In particular, many radio interferometers in frequency

range 80 < ν < 300 MHz are currently operational that specifically aim to detect the EoR,

for example LOFAR, 21CMA, GMRT, PAPER, MWA. In near future the Square Kilometer

Array (SKA) is expected to have promising potential to reach the required sensitivity to

detect EoR. With all these experiments going on, it’s extremely important to work on the

various algorithms and methods to extract various information from the observed data.

In this thesis work we have worked on methodologies to extract the EoR from observed

data. We have developed an independent pipeline to calculate the power spectra in delay

space from radio interferometric tracking data. This pipeline is applicable to imaging arrays

like MWA and LOFAR. We also discuss the prospects of an alternate ‘Drift scan’ strategy

which may be a viable and potentially superior approach to detect EoR.

In Chapter 2, we discuss the EoR measurement science where we explain the connections

between the radio interferometric observation and EoR parameters.

In Chapter 3, we describe the pipeline which estimate the delay power spectra from
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Figure 1.9: MWA tile locations (credit: Tingay et al. (2013))
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tracking observation. We present analysis of 3 hours of real MWA tracking data and estimate

both 2-dimensional (k‖, k⊥) and 1-dimensional (k) power spectra.

Chapter 4 explains the prospects of the alternate ‘Drift scan’ strategy towards EoR

detection by comparing various observing modes.

In Chapter 5, we conclude the thesis work and discuss few future projects that can be

carried out as extension of this work.

Throughout this thesis, we have used the Planck+WP best fit values of cosmological

parameters: Ωm0 = 0.3183, ΩΛ0 = 0.6817 , Ωb0 h
2 = 0.02203, h = 0.6704, σ8 = 0.8347, and

ns = 0.9619 Planck 2015 results. XIII. (2015); Planck 2013 results. XVI. (2013).
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Chapter 2

EoR measurement Science

In this chapter we discuss the connection between radio interferometric observations and EoR

observables. The basic aim of a radio interferometer is to calculate the spatial correlation of

the electric fields from a distant source in the sky. The simplest radio interferometer consists

of two antennas A1 and A2 separated by a distance B. The schematic of such system is shown

in Fig. 2.1. The system points towards a direction at sky, denoted by unit vector s. The

signal from the each radio antennas pass through an amplifier, and then they are correlated

and averaged. The output of the correlator is called ‘visibility’, and can be written as

Vν(τg) = 〈E1(ν, t)E∗2(ν, t+ τg)〉 (2.1)

where E1 and E2 represents the input waveforms to the correlator, and angular brackets

denote time averaging. τg is called the ‘geometric delay’ (as shown in Fig. 2.1) and is given

by:

τg =
B · s
c

= ul + vm+ w
√

1− l2 −m2 (2.2)

where c is the speed of light. The baseline vector is related to the physical separation between

the two antennas such as: B
λ = (u, v, w); u points in the local east direction while v points

north, w is along the direction of interest (Fig. 2.2); for a given baseline B, w = B · s0
ν
c

where s0 is the phase center. The measured ‘visibility’ for a sky pattern Iν(l,m) can be

shown to be (Thompson et al. (1986)):

Vν(u, v, w) =

∫
Aν(l,m)Iν(l,m)e−i2π[(ul+vm+w(

√
1−l2−m2−1)] dldm√

1− l2 −m2
(2.3)
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Figure 2.1: A schematic of two element interferometer. (credit: Wilson et al. (2009))

where (u, v, w) denotes the baseline vector joining a pair of antennas, measured in units

of wavelength, projected onto a plane perpendicular to the direction of observation and (l

,m) refers to the position on the sky. Aν(l,m) and Iν(l,m) are the primary beam pattern

and observed sky intensity at frequency ν respectively. The measured visibility receives

contributions from the redshifted HI line, the foregrounds and thermal noise. We discuss

them in detail in next sections.

2.1 HI signal

In the case of high-redshift HI emission, the specific intensity from any direction ~θ at the

redshifted frequency ν = 1420/(1 + z) MHz, can be decomposed into two parts:

Iν(~θ) = Īν + ∆Iν(~θ) (2.4)

where Īν and ∆Iν(~θ) are the isotropic and fluctuating components of the specific intensity;

~θ(l,m) denote the position on the sky.

This allows us to express the visibility arising from HI emission as:

Vν(u) =

∫
A(~θ)∆Iν(~θ)e−i2πu·

~θd2θ (2.5)
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Figure 2.2: Schematic diagram describing the u, v, w coordinates. (Thompson et al. (1986))
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where u(u, v) denotes the baseline vector. Here only the fluctuating component appears since

the isotropic component does not contribute to the visibility1. We show in next chapter that

inclusion of w-term causes an effective shrinking of primary beam for HI signal, which further

results in decorrelation in the desired signal. In real interferometer baseline distribution, w

component of baseline vector is never zero. Thus for practical consideration we need to

calculate the decorrelation factor of the HI signal due to non-zero w contribution compared

to w = 0 case. Therefore we begin with the case where w = 0 and drop the w-term in

writing the relation between the visibility and specific intensity in Eq. (2.5). We compute

the contribution of non-zero w in next chapter.

The fluctuating component of HI emission can be expressed in terms of δHI(k), the

Fourier transform of the fluctuation of HI signal δHI(x) in Eq. (1.11): (Bharadwaj & Sethi

(2001); Morales & Hewitt (2004)):

∆Iν(~θ) = Īν

∫
d3k

(2π)3
δHI(k)eirν(k‖+k⊥·~θ) (2.6)

Here k‖ and k⊥ refer to the components of comoving wave vector k along line of sight and

in the plane of the sky respectively and rν is the comoving distance. With these definitions

we can expand the phase term k.r, as shown in Eq. (2.6). The 3D Fourier transform can

be understood as performing 1D Fourier transform along the line of sight followed by a 2D

fourier transform on the sky plane, or d3k = dk‖d
2k⊥. Eq. (2.5) can thus be expressed as:

Vν(u) = Īν

∫
d3k

(2π)3
δHI(k)eirνk‖

∫
d2θA(~θ) exp

[
−2πi

(
u− k⊥rν

2π

)
. ~θ

]
(2.7)

The second integral over the primary beam A(~θ) can be denoted as:

a

(
u− k⊥rν

2π

)
≡
∫
d2θA(~θ) exp

[
−2πi

(
u− k⊥rν

2π

)
. ~θ

]
(2.8)

Thus, finally Eq. (2.7) takes the form:

Vν(u) = Īν

∫
d3k

(2π)3
δHI(k)eirνk‖a

(
u− k⊥rν

2π

)
(2.9)

Eq. (2.9) carries the signature of HI fluctuations to the measured visibility. As discussed

in Eq. (1.12), the power spectrum PHI(k) can be constructed from the fluctuation of HI
1However some methods have been discussed in recent literatures to extract monopole signal from inter-

ferometric measurements (Presley et al. (2015); Singh et al. (2015))
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signal in Fourier space δHI(k). This implies that the HI power spectrum can be estimated

from the correlation of the observed visibilities. Having defined the visibility for HI signal

in Eq. (2.9), the visibility correlation function can be expressed as:

〈Vν(u)V ∗ν+∆ν(u′)〉 = Īν
2
∫

d3k

(2π)3
PHI(k)eik‖∆rνa

(
u− k⊥rν

2π

)
a

(
u′ − k⊥rν+∆ν

2π

)
(2.10)

Here assuming that the frequency coverage is far smaller than the central frequency: ∆ν <<

ν, one can write: |rν+∆ν − rν | ≡ ∆rν = r′ν |ν ′ − ν|; here r′ν ≡ |drν/dν|. We note that the

volume element in k-space: d3k = dk‖dk⊥1dk⊥2; k⊥1 and k⊥2 are mutually perpendicular

axes on the sky plane, while k‖ is along the line of sight.

The isotropic part of the emission can be calculated as (Bharadwaj & Sethi (2001)):

Īν =
A21hP cn̄HI(z)

4πH(z)
(2.11)

Here A21 is the Einstein coefficient of the 21 cm HI transition, n̄HI(z) denotes the mean

comoving number density of HI atoms in the excited state at a redshift z; hP , c are the

Planck constant and speed of light respectively. H(z) is the Hubble parameter defined as:

H(z) = H0

[
Ωm0(1 + z)3 + ΩΛ0

]1/2 (2.12)

2.1.1 Delay power spectrum

A special variant among the visibility based power spectrum estimators is ‘delay spectrum’

(Pober et al. (2013); Parsons et al. (2012b, 2014)), which directly Fourier transforms each

calibrated visibility along its frequency channels. In this section we describe the construction

of HI power spectrum using visibility correlations in delay space. In delay space, spectrally

smooth foregrounds lend themselves to ready interpretation. It can be shown that visibilities

computed in delay space allow isolation of such foregrounds from the regions dominated by

the HI signal and noise (e.g. see Datta et al. (2010); Vedantham et al. (2012); Parsons

et al. (2012b); Liu et al. (2014); Dillon et al. (2014); Thyagarajan et al. (2013, 2015a)).

However, the properties of HI signal can only be inferred after visibilities are correlated.

The Fourier conjugate variable (τ) of the channel axis for each baseline effectively captures

signal delay between the antenna pairs. However in the context spatial HI power spectrum,

the quantity sought after is η which is the Fourier conjugate variable of spatial frequency,
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a measure of cosmological distance along line of sight. The mathematical correspondence

between these two can be found in Parsons et al. (2012b); Liu et al. (2014). The ‘delay

spectrum’ constructed from ‘delay space’ approach is closely related to cosmological spatial

HI power spectrum with added advantage of dealing with ‘visibilities’ which are primary

data measurements by radio interferometers.

If ν is the frequency of observation, the visibility in delay space can be computed as:

Vτ (u) =

∫
exp(i2πτν)Vν(uν)dν (2.13)

Here τ , the conjugate variable of ν, defines the relevant variable in delay space; uν = (uν , vν)

is the baseline vector in units of wavelength. Hereafter, the frequency dependence of baseline

vector is kept intact. The autocorrelation of Vτ (u) can be written as:

〈Vτ (u)V ∗τ (u′)〉 =

∫ ∫
dνdν ′Īν Īν′

∫
d3k

(2π)3
PHI(k) exp

(
i2πτ(ν ′ − ν) + i(k‖(rν′ − rν)

)
×

∫
d2θ exp

(
i2π~θ.

(
uν −

k⊥rν
2π

))
Aν(~θ)

×
∫
d2θ′ exp

(
−i2π~θ′.

(
u′ν′ −

k⊥rν′

2π

))
Aν′(~θ

′) (2.14)

To make further progress, frequency dependent quantities are Taylor expanded. For base-

lines, this is a straightforward re-expression of the baseline vector as the vector is linear in

frequency: u′ν′ = u′ν + ∆νdu′ν/dν where ∆ν = ν ′ − ν. It should be noted that du′ν/dν is

the physical baseline length measured in units of time.

After the Taylor expansion of relevant quantities, rν and uν , we obtain:

〈Vτ (u)V ∗τ (u′)〉 =

∫ ∫
dνdν ′Īν Īν′

∫
d3k

(2π)3
PHI(k)

∫
d2θ exp

(
i2π~θ.

(
uν −

k⊥rν
2π

))
Aν(~θ)

×
∫
d2θ′ exp

(
−i2π~θ′.

(
u′ν −

k⊥rν
2π

))
Aν′(~θ

′)

× exp
[
i∆ν

(
2πτ + k‖drν/dν + du′ν/dν.~θ

′ + drν/dνk⊥.~θ
′/(2π)

)]
(2.15)

Here ∆ν = ν ′−ν; all the quantities in Eq. (2.15) have been written as explicit functions of ν

and ∆ν. This allows us to simplify the integral further by making the coordinate transform

y = (ν + ν ′)/2 and x = (ν ′ − ν)/2; the Jacobian of this transformation is unity. We can

make further simplification by using y ' ν. This is justified for our case as we assume the
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bandwidth to be ' 10 MHz around a central frequency of ' 150 MHz. All the frequency

dependent variables change by less than 10% for this case. This reduces Eq. (2.15) to:

〈Vτ (u)V ∗τ (u′)〉 =

∫ ∫
dνdxĪν

2
∫

d3k

(2π)3
PHI(k)

∫
d2θ exp

(
i2π~θ.

(
uν −

k⊥rν
2π

))
Aν(~θ)

×
∫
d2θ′ exp

(
−i2π~θ′.

(
u′ν −

k⊥rν
2π

))
Aν(~θ′)

× exp
[
i2x
(

2πτ + k‖drν/dν + du′ν/dν.~θ
′ + drν/dνk⊥.~θ

′/(2π)
)]

(2.16)

Given the HI power spectrum PHI(k) this integral could be computed numerically. How-

ever, it is possible to determine the correlation scales in both the transverse and line of sight

directions by carefully examining Eq. (2.16). The integral over angles shows that the domi-

nant contribution comes from wavenumbers such that k⊥ ' 2πuν/rν . This relation allows

us to simplify the integrals over θ, θ′ and x. In particular, different terms in the exponent

containing τ can be estimated. Using duν/dν = uν/ν, the last two terms in the exponents

are on the order of k⊥.~θ
′rν/(2πν) (the term containing drν/dν is slightly smaller because

ν/rνdrν/dν ' 0.3). For MWA primary beam, θ0 ' 0.3, and for MWA baseline distribution,

the term k‖drν/ν generally dominates over these terms, especially in the regions dominated

by EoR. For all our calculations we use parameters specific to MWA, in particular, the

primary beam of MWA. However, the formulation presented here is general enough to be

applicable to other arrays.

By dropping the last two terms, which are subdominant, in the exponent containing τ ,

we can separate the integrals over x and angles, this gives us:

〈Vτ (u)V ∗τ (u′)〉 =

∫
dνĪν

2
∫

d3k

(2π)3
PHI(k)

∫
d2θ exp

(
i2π~θ.

(
uν −

k⊥rν
2π

))
Aν(~θ)

×
∫
d2θ′ exp

(
−i2π~θ′.

(
u′ν −

k⊥rν
2π

))
Aν(~θ′)

∫
dx exp

[
i2x
(
2πτ + k‖drν/dν

)]
(2.17)

The integral over x can readily be carried out now. The dominant contribution to the integral

comes from τ ' k‖/(2π)drν/dν, which establishes the correlation scale in the direction along

the line of sight. The variation of frequency dependence of integrals over θ and θ′ is expected

to be small for the bandwidth of MWA and therefore these integrals can be computed at

some frequency that lies within the bandwidth. We assume these values to be fixed at the

central frequency ν = 154 MHz and use them to compute the relations in Eq (2.18). If the
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Figure 2.3: Power spectra of the expected Cosmological HI signal. The power is plotted as

log10P where P is in units mK2(Mpc/h)3.

frequency dependence of the primary beam and the background intensity are neglected, the

integral over ν in trivial. As noted above, this is a good approximation for MWA. The power

spectrum of the HI signal, based on Eq. (2.17), is shown in Figure 2.3. In this calculation,

we use the HI power spectrum PHI(k) given by the simulation of Furlanetto et al. (2006).

Eqs. (2.17) and (2.10) can be used to infer many important properties of the HI signal:

1. There exists a near one-to-one relation between u, τ and the Fourier components of

the HI power spectrum (Parsons et al. (2012a,b); Paul & Sethi et al. (2014); Morales

& Hewitt (2004)):

uν =
k⊥1rν

2π
, vν =

k⊥2rν
2π

, τ =
k‖c(1 + z)2

2πH0ν21E(z)
(2.18)

where ν21 is the rest frame frequency of the 21 cm line, rν is the transverse comoving

distance, E(z) =
√

ΩM (1 + z)3 + Ωk(1 + z)2 + ΩΛ and z is the redshift corresponding

to the observed frequency ν. The relation between k‖ and τ follows from the relation:

2πτ = k‖drν/dν (Eq. (2.17)). As noted above, all the frequency dependent quantities

in Eq. (2.18) are computed as a fixed frequency ν0 = 154 MHz.
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2. The correlations in the sky plane and along the line of sight are nearly separable.

This allows us to compute weights in the plane of the sky owing to w-term and the

distortion of intensity pattern in a tracking run (the next two subsections) without

the additional complication owing to frequency dependence of these quantities.

3. Eqs. (2.17) and (2.18) allow us to simplify the relation between visibility correlation

and the HI power spectrum. Eq. (2.17) can be solved in the limit defined by Eq. (2.18)

to give (e.g. Thyagarajan et al. (2015a); Pen et al. (2009); Morales (2005); McQuinn

et al. (2006)):

〈Vτ (u)V ∗τ (u)〉 =
Īν

2
∆νθ2

0

r2
νdrν/dν

PHI(k) (2.19)

Here the MWA primary beam solid angle θ2
0 = λ2/Aeff . For MWA Aeff = 21.5 m2

at 150 MHz (Tingay et al. (2013)). ∆ν = 10.2 MHz is the total band width we use

in this work. The mean specific intensity Īν = 2kBTB/λ
2. This allows us to express

the HI signal as the square of the product of mean brightness temperature and the

HI power spectrum T 2
BPHI(k) in the units (mK)2(Mpc/h)3. It should be emphasized

that Eq. (2.19) provides the suitable normalization only when u′ = u, w = 0, as has

been assumed throughout this section, and the impact of sky intensity distortion while

tracking a region is not considered. All these effects act to lower the RHS of Eq. (2.19),

the measured visibility correlation, for a fixed signal T 2
BPHI(k).

2.2 Foreground effects

The primary contribution to foregrounds come from spectrally smooth point and diffuse

sources. They differ from the HI signal in both spatial and spectral behaviour. However, it

is the latter difference that allows us to potentially isolate foregrounds from the HI signal

in the power spectrum estimation.

To understand the impact of foregrounds in the data, we model them as a set of point

sources. We note that if both the point and the diffuse sources have smooth spectra across

the instrumental bandwidth, their impact on the power spectra are similar and therefore

point sources allow us to capture adequately our ability to isolate foregrounds from the
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signal. In this section, for analytic work, we assume w = 0. We note without further proof

that this assumption doesn’t alter our main inferences.

For a set of point sources, the intensity distribution is given by:

Iν(~θ) =
∑
i

Fiνδ
2
D(~θ − ~θi) (2.20)

Here Fiν and ~θi are the source fluxes and positions, respectively. This allows us to compute

the visibility for a given baseline uν and frequency ν.

One major concern here is the contamination of foreground power to the clean regions.

This occurs because of the rectangular bandpass window, whose sidelobes in Fourier space

cause leakage of power. This leakage can be minimized by choosing an appropriate window

function. For our purpose we choose a Blackman-Nuttall(BN) window (Fig. 2.4). So now

the visibility expression will be:

Vν(uν) =

[∑
i

Fiν exp(i2πuν .~θi)Aν(~θi)

]
WBN(ν) (2.21)

Here Aν is the primary beam, WBN (ν) refers to the Blackman-Nuttall window (Nuttall

(1981)). As discussed earlier, we also define a visibility in the conjugate space by taking

the Fourier transform with respect to ν (Eq. (2.13)): Vτ (u). Our aim is to compute the

correlation of this visibility:

〈Vτ (u)V ∗τ ′(u
′)〉 =

∑
i

∑
j

∫
dν

∫
dν ′FiνFjν′WBN(ν)WBN(ν ′)

× exp
(
i2π

[
uν .~θi − u′ν′ .

~θj + (τν − τ ′ν ′)
])
Aν(~θi)Aν′(~θj) (2.22)

Both the source flux Fν and primary beam Aν(~θ) are functions of frequency, so it is difficult

to analytically compute this expression. However, assuming smooth and small variation of

both of these quantities across the bandwidth, we can make meaningful analytic estimates;

we verify this assumption from detailed simulations and the analysis of the data (in next

chapter). The main frequency variation in this case comes from the phase of the integral (the

terms in the exponent) and in particular from the change in the baseline length as frequency

changes. We note here that multiple correlations are available to us for this analysis for

different pairs of {τ, τ ′} and {u,u′}. Here we assume τ = τ ′.
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(a) Blackman-Nuttall window

(b) Fourier transform of the window function

Figure 2.4: Blackman-Nuttall window (Nuttall (1981))
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2.2.1 Delay space—foreground wedge

Here we expand the same baseline in frequency space: u′ν′ = uν + duν/dν(ν ′ − ν). In this

case, uν = ν/ν0uν0 , where ν0 is some fixed frequency. Making the simplifying assumption

that both point source fluxes and the primary beam are independent of frequency, Eq. (2.22)

can be analytically integrated. We further make coordinate transformation: x = (ν ′ − ν)/2

and y = (ν ′ + ν)/2 and assuming ν ′ = ν in all the quantities except those in the exponent

containing their difference, which allows us to use y ' ν:

〈Vτ (u)V ∗τ ′(u
′)〉 '

∑
i

∑
j

∫
dx

∫
dyFiνFjνW

2
BN(ν)

× exp
(
i2π

[
uν .~θi − uν .~θj + 2(duν/dν.~θi − τ)x

])
Aν(~θi)Aν(~θj) (2.23)

Integrals over x and y are now separated which gives us:

〈Vτ (u)V ∗τ ′(u
′)〉 ∝

∫
dx exp

[
−i2π(duν/dν.~θi − τ)x

]
(2.24)

As noted above, duν/dν = uν0/ν0, or it is independent of frequency. The integral in the

equation is insignificant only when τ ' du/dν.θi. This linear relation between τ and the

baseline u gives a region bounded by a ‘wedge’ in the τ–du/dν.θi space for a spatial distri-

bution of point sources (e.g. see Datta et al. (2010); Vedantham et al. (2012); Parsons et al.

(2012b); Liu et al. (2014); Dillon et al. (2014); Thyagarajan et al. (2013, 2015a)).

Another possible way to understand the nature of spectrally smooth foregrounds is to

first compute the correlation in the frequency space. Using Eq. (2.21), this gives us:

〈Vν(uν)V ∗ν′(u
′
ν′)〉 =

∑
i

∑
j

FiνFjν′WBN(ν)WBN(ν ′) exp
(
i2π

[
uν .~θi − u′ν′ .

~θj

])
Aν(~θi)Aν′(~θj)

(2.25)

Using u′ν′ = uν + ∆νuν0/ν0 and substituting into Eq. (2.25), and performing a single

Fourier transform with respect to ∆ν, we recover the main expected feature of the foreground

‘wedge’ described above. Computationally, if the variation of other quantities with frequency,

primary beam and source fluxes, is neglected, this method is completely equivalent to the

one based on Eq. (2.23).

Even though we used a set of point sources, the main inferences of the analysis also

follow for diffuse sources. In particular, the frequency space integrals used to prove our case

are exactly the same.
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Figure 2.5: Foreground power spectrum shown in (k‖, k⊥) plane. The unit of power is Jy2.

The contribution of foreground is isolated in the ‘wedge’ shaped region. The blue region

(‘EoR window’) is expected to be free of foreground contamination and can be used for EoR

power spectrum estimation.

For our simulations, we assume a set of point sources isotropically distributed with fluxes

above 1 Jy at 150 MHz. We construct this flux distribution from radio source count at 1.4

GHz, which is given by (Hopkins et al. (2003)):

log

[
dn/ds

S−2.5

]
=

6∑
i=0

ai

[
log

(
S

mJy

)]i
(2.26)

for flux range 0.05 mJy ≤ S ≤ 1000 mJy. The constants are a0 = 0.859, a1 = 0.508, a2 =

0.376, a3 = −0.049, a4 = −0.121, a5 = 0.057, a6 = −0.008. We simulate sources over the

entire hemisphere (nearly 15000 sources) to suitably take into account the contribution from

MWA primary beam sidelobes. We extrapolate the distribution to the frequencies of interest

to us by assuming a spectral index α = −0.7.

Fig. (2.5) shows the foreground power spectrum for the point source distribution dis-

cussed before. The ‘wedge’ shaped feature is clearly visible in the power spectrum. The

space beyond the wedge is called ‘EoR window’ which is expected to be free of foregrounds

and measurement of HI powers spectrum can be performed.
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2.3 Thermal Noise and Sensitivity of HI power spectrum

At low frequency, thermal noise plays a prominent role in observed visibility. At our fre-

quency of interest (ν ∼ 154 MHz), the sky itself is a dominant source of noise. At higher

frequencies receiver noise starts to play a major role. Therefore total noise contribution is es-

timated from the system temperature: Tsys = Tsky +Treceiver. The thermal noise component

in observed visibility can be shown to be:

VTN(u, v) =
Tsys

K
√
Bt

(2.27)

where K is the antenna gain, B is the bandwidth and t is the integration time. Eq. (2.27)

provides a relatively general estimate of interferometer sensitivity. In case of EoR exper-

iments, interferometers probe different physical scales with a rate which depends on the

antenna distribution, hence the sensitivity becomes a function of angular and frequency

scales (Furlanetto et al. (2006)). McQuinn et al. (2006); Furlanetto & Lidz (2007) provide

a detailed estimate of the sample variance and thermal errors on the HI power spectrum:

δPHI(ki) = PHI(ki) +
T 2

sys

Bt

D2∆D

n(k⊥)
.

(
λ2

Ae

)2

(2.28)

where Ae is the area of a single antenna of the array, Ae/λ2 correspond to the angular

resolution in Fourier space. ki is the wavenumber or mode being probed with integration

time t. ki can be decomposed into two components: those on the sky plane (k⊥) which is

affected by the angular resolution of the interferometer, and those along line of sight k‖ which

depend on the frequency resolution. The factor n(k⊥) consolidates the number of baselines

observing the mode ki, normalized to the total number of baselines of the interferometer

array. D denotes the comoving distance corresponding to the frequency of observation, ∆D

represents the line of sight comoving depth corresponding to the bandwidth of observation.

Some important inferences can be drawn from Eq. (2.28). The error on PHI(k) decreases

with increasing integration duration t and collecting area Ae. The total collecting area can

be increased by increasing number of elements in the array keeping individual Ae constant.

This will increase n(k⊥) although this strategy comes with cost of enhanced computing

power. Another way to increase collecting area is by making each antenna larger keeping

the total number fixed, which is not desirable since it reduces the total field of view. Also
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by increasing bandwidth the sensitivity can be improved as enhanced bandwidth adds new

modes along the line of sight.

2.4 Conclusions

In this chapter we have established the relation between the visibility measurements of

interferometric arrays and EoR observables. Eq. (2.10) infers that the visibility correlation

function is one manifestation of the HI power spectrum PHI(k). In ‘delay spectrum’ approach

there exists one to one relationship between observable parameters (uν , τ) and the Fourier

space components of PHI(k). The modes accessible by the interferometer can be estimated

from Eq. (2.18). The lower limit of k⊥ is given by the smallest baseline, whereas the

maximum k⊥ is estimated by the longest baseline. The lower and upper limit on k‖ axis

correspond to the total bandwidth and frequency resolution respectively. We also discussed

the foreground contributions in ‘delay space’ approach. The foreground power can be isolated

in a ‘wedge’ shaped region. The region beyond the ‘wedge’ (also called ‘EoR window’) can

be used for PHI(k) estimation. In next chapter we discuss the ‘delay spectrum’ approach

in more detail with application to the real MWA tracking observation. We also discuss

the impact of w-terms and ‘distortions due to long tracking run’ on the power spectrum

estimator.
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Chapter 3

Delay Spectrum wth Imaging Arrays

Different approaches have been discussed in literature to detect the HI signal in the presence

of dominant foregrounds. They are all based on the expectation that foregrounds are smooth

in frequency space as they arise from continuum emission, e.g. Synchrotron radiation, in

both our Galaxy and extra-galactic sources. On the other hand the HI signal is expected

to decorrelate strongly in the frequency space. It is conceivable that all these sources,

both point and diffuse, can be subtracted from the images, leaving behind the HI signal and

Gaussian noise, and LOFAR partly relies upon this technique (Chapman et al. (2012, 2013)).

Another possible method is based on the isolation of foregrounds from the HI signal using

power spectrum of the observed signal in conjugate space to the observed frequency (Morales

& Hewitt (2004); Thyagarajan et al. (2013); Bowman et al. (2009); Parsons et al. (2012b)).

Variants of this ‘delay space’ method are particularly relevant for interferometers such as

MWA that have low angular resolution and have been used extensively for the analysis of

PAPER data. PAPER relies upon redundant baseline to calibrate the interferometer but

uses only East-West and near East-West baselines for power spectrum estimation (Parsons

et al. (2012b), Parsons et al. (2014), Ali et al. (2015)).

Many research groups are currently developing pipelines to extract statistical information

from radio interferometric data, with an aim to detect the HI signal from EoR. Jacobs et

al. (2016) provide a comparison of the existing MWA EoR pipelines (Hazelton et al. (2016),

Dillon et al. (2015), Trott et al. (2016)). These can be divided broadly in two categories:

image based and visibility based pipelines. For foreground subtraction and imaging these
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pipelines use both the following imaging algorithms: Real Time System (RTS; Mitchell et

al. (2008), Ord et al. (2010)) and Fast Holographic Deconvolution (FHD, Sullivan et al.

(2012)).

The image based pipelines (Jacobs et al. (2016), Hazelton et al. (2016)) use source catalog

created through the deconvolution of the data which is subtracted to obtain a residual image

cube. The Fourier transform of this image cube with some further processing yields the

power spectra. On the other hand, the visibility based pipelines (Trott et al. (2016)) use

the data in visibility domain for power spectra estimation, after the initial processing in the

image domain for obtaining the foreground model. The detailed comparison of the outputs

from all the methods described above is provided in Jacobs et al. (2016). Thyagarajan et

al. (2015a) describe the impact of wide field of view in power spectra estimation.

In this chapter we propose a new method based on the ‘delay space’ approach, which

is employed to isolate foregrounds, to extract the power spectrum of the HI signal in the

presence of noise and foregrounds. Our method is based on modelling the HI signal taking

into account the impact of the w-term and the change in intensity pattern during a tracking

run. The information of the decorrelation of the HI signal is used as weights to cross-

correlate the measured visibilities. The proposed method (‘Delay Spectrum with Imaging

Arrays (DSIA)’) is a general method applicable for tracking with radio interferometers with

wide primary beams and arbitrary array configuration (e.g. MWA, LOFAR) and can also

be applied to interferometers with redundant baselines. We apply the proposed method to

analyse 3 hours of MWA data on the EoR1 field and compare our results with noise and

foreground simulations.

3.1 HI signal and w-term

From Eq. (2.16), we can gauge the impact of the w-term. This equation shows that the

integral over τ and ν are either separable or trivial. The main effect of the w-term is to

alter the integrals over angles which we study here.

For a given baseline B: wν = B · s0ν/c, where s0 is the phase center as any time. As a

region is tracked, the w-term changes owing to the drift of the phase center. For a tracking
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run, u2
ν + w2

ν is left invariant at any frequency; this result simply follows from the fact the

the baseline length is fixed.

After the inclusion of the w-term, the measured visibility for a given intensity distribution

is given as:

Vν(uν , wν) =

∫
Aν(~θ)∆Iν(~θ)

× exp−i2π
[
uν l + vνm− wν/2(l2 +m2)

]
dldm (3.1)

Here we have replaced ~θ with its components (l,m) and also made the approximation:
√

1− l2 −m2−

1 ' −(l2 +m2)/2. Substituting Eq. (2.6) into Eq. (3.1) gives us,

Vν(uν , wν) = Īν

∫
d3k

(2π)3
δHI(~k)eirνk‖

∫
Aν(l,m)

× exp

[
−2πi

{(
uν −

k⊥1rν
2π

)
l +

(
vν −

k⊥2rν
2π

)
m

−wν
2

(l2 +m2)

}]
dldm (3.2)

Each MWA tile being approximately a square aperture, the primary beam Aν(l,m) can be

written as:

Aν(l,m) =
sin(πLxl)

πLxl

sin(πLym)

πLym
(3.3)

Here Lx and Ly are dimensionless. They correspond to the ratio of the length of the tile along

x- and y-axis to the wavelength. For central wavelength of the observation Lx = Ly ' 2.

Eqs (3.1) and (3.3) show that integrals over l and m are separable and identical. These

integrals cannot be done analytically but under certain approximations meaningful analytic

expressions can be found. Let us define:

Qν(k⊥1;uν , wν) =

∫
dl exp

[
−2πi

{(
uν −

k⊥1rν
2π

)
l − wν

2
l2
}]

sin(πLxl)

πLxl
(3.4)

Qν(k⊥1;uν , wν) is a function of k⊥1 and is parametrized by uν and wν . First we consider,

w = 0. In this case, it can be shown that if the limits of the integral are allowed to go from

minus infinity to plus infinity, we obtain,

Qν(k⊥1;uν , 0) =
1

Lx
if |(uν − rνk⊥1/(2π))|/Lx < 1/2

= 0 otherwise (3.5)
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We notice that the approximation used is good because the function has a compact support

provided by the primary beam. As Lx ' 1/θ0 where θ0 is the extent of the primary beam,

this result means that, for a given uν , the wavenumbers that contribute to the integral are

the ones that are bounded by the extent of the primary beam. This result is already implied

by Eq. (2.16).

Eq. (3.4) cannot be analytically approximated so readily for non-zero w. We use the

stationary phase approximation to analytically evaluate the integral. For this assumption

to hold, the phase of the exponent should be much larger than the slow variation of the

primary beam. This would be the case if wl2 is large. In this approximation, we obtain:

Qν(k⊥1;uν , wν) =

√
2i

w

sin(πLx(uν − k⊥1rν/(2π))/wν)

πLx(u− k⊥1rν/(2π))/wν

× exp
[
−i(uν − k⊥1rν/(2π))2/(4πwν)

]
(3.6)

The main impact of the inclusion of the w-term can be discerned from this expression. In

the limit of large w, the impact of the w-term is to shrink the MWA beam and the primary

beam tends to 1/
√
w (Cornwell et al. (2008)). 1 However, this also means that the spread

of k⊥1 for which the integral is non-zero also increases, as seen in the terms involving the

sin function. If the decrease of primary beam results in a loss of signal-to-noise, an increase

in the correlation length |u − u′| gains signal-to-noise. We can write visibility correlation

for pairs of u, w and u′ν , w
′
ν as:

〈Vν(uν , wν)V ∗ν (u′ν , w
′
ν)〉 =

∫
d3k

2π3
PH1(k)Q(k⊥1;uν , wν)

×Q(k⊥2; vν , wν)Q(k⊥1;u′ν , w
′
ν)Q(k⊥2;u′ν , w

′
ν) (3.7)

Eq. (3.7) can be computed numerically. In Figure 3.1, we show how the HI correlation

function is affected in the presence of w-term. These expressions are also valid for diffuse

foregrounds which have a different 2-dimensional power spectrum and frequency dependence.

For optically thin diffuse foregrounds, the angular and frequency dependence is separable.

As Eq. (3.7) can be used to compute the impact of w-term at any frequency, it can readily

be generalized to study diffuse foregrounds.

1The impact of w-term can be more readily computed if the beam is Gaussian (e.g. Appendix B of Paul

& Sethi et al. (2014)) In this case, the primary beam approaches (1/θ20 + πwν)
−1/2 for non-zero w.
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Figure 3.1: The HI signal is plotted as a function |u − u′| for different values of w. The

impact of w-term is to decrease the overall signal owing to shrinking of the primary beam

and increase the correlation length |u− u′|.

3.1.1 Time dependent coordinate system and w-term

In a tracking interferometric observation, a phase center is tracked and snapshots are taken at

regular intervals with short duration. Each of these snapshots can be imaged and the images

added if the successive fields of view can be assumed to be coplanar. This approximation

breaks down for wide field-of-view instruments such as MWA. One manifestation of the wide

field-of-view is the w-term whose impact was studied in the previous sub-section. In this

section we generalize the discussion of the last sub-section to take into account the time

dependence of the non-coplanarity of the tracked region (Perley (1999)).

As the region is tracked, the relation between the image and astronomical coordinates

changes which distorts the intensity pattern with respect to the phase center being tracked.

It is best illustrated with a set of point sources. These sources appear to move with respect

to the phase center (e.g. Fig. 19-9 in Perley (1999)). The distortion of the intensity pattern

corresponds to non-uniform stretching and it increases for sources further away from the

phase center. Thus this effect can not be corrected by a standard shift of coordinate. The
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non-uniform stretching makes the situation complex, and the standard grid approach is

difficult to implement in this case. For a set of point sources, the correction for this effect

could be applied iteratively in the image plane (Chapter 19, Perley (1999)).

For a small field-of-view, this effect can be neglected and a unique coordinate system

(e.g. time independent direction cosines {l,m}) can be used to relate the image coordinates

with the sky intensity pattern for a long tracking run. However, it is not possible to define

such a coordinate system when either the field of view is large or the tracking period is long.

Our aim here is not to correct for this effect but rather to estimate its impact on the

correlation of visibilities at two different times during a tracking run: suppose we measure

visibilities within a small cell in the u–v plane (the size of the cell will be discussed in a later

section) centered around a baseline {u, v} at t = 0. At a later time t = t′ another baseline

might enter this cell. From the discussion in the previous subsection and Chapter 2, (e.g.

Figure 3.1) the two visibilities are expected to correlate strongly with each other (even if the

values of w differ significantly for these two sets this statement is generally true). However,

visibilities measured at two different times do not correspond to the same intensity pattern.

Our aim here is to estimate the level of de-correlation caused by the distortion of intensity

pattern during a tracking run. We construct a time-dependent coordinate system which

allows us to analyse this distortion of intensity pattern. We assess the impact of this effect

when a region is tracked using the MWA primary beam. In particular, we consider this

effect on the visibilities produced by the EoR HI signal.

We start by recalling the definition of direction cosines for a point on the sky whose

coordinates, declination and hour angle {δ, h}, are: written as (Christiansen & Hogbom

(1969)):

l = sin(h) cos(δ) (3.8)

m = cos(δ) cos(h) sin(φ)− sin(δ) cos(φ) (3.9)

n = cos(δ) cos(h) cos(φ) + sin(δ) sin(φ) (3.10)

It can be shown that n =
√

1− l2 −m2. The phase center is always defined as l = 0, m = 0,

n = 1; for the coordinates defined above it is: h = 0 and δ = φ.

As a phase center is tracked owing to the rotation of the Earth, δ remains fixed but the
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hour angle changes. For a wide field of view, this can result in distortion of the intensity pat-

tern of the sky. To take into account this effect, we can define a time-dependent coordinate

system:

l(δh) = sin(h+ δh) cos(δ)− sin(h0 + δh) cos(δ0) (3.11)

Here h0 and δ0 define the phase center for δh = 0; δh defines the flow of time. m can

be similarly defined and n can be computed from l and m. This definition gives a time

dependent coordinate system where the coordinates are always defined with respect to the

phase center. It is easy to verify that for small field of view and for small tracking times,

which corresponds to cases when higher order terms in h, δh and δ can be dropped, l is

independent of time which means that the distance of a point from the phase center is left

invariant under tracking. In such cases, the intensity pattern on the sky corresponds to the

unique intensity pattern defined by sky coordinates δ and h and remains unchanged as the

phase center is tracked.

However, when this approximation breaks down, l becomes a function of time and it

is impossible to define a unique relation between direction cosines and sky coordinates.

This means that any quantities defined with respect sky coordinate (e.g. intensity pattern)

become time dependent. The visibility for the HI signal is given by:

Vν(uν , wν , δh) = Īν

∫
d3k

(2π)3
δHI(~k)eirνk‖

∫
Aν(l,m)

× exp

[
−2πi

{(
uν −

k⊥1rν
2π

)
l +

(
vν −

k⊥2rν
2π

)
m

−wν
2

(l2 +m2)

}]
sin δdδdh (3.12)

The direction cosines l and m are now functions of time. The angular integral is carried out

over δ and h. Unlike the earlier case (fixed grid) this is not a product of two one-dimensional

integrals. The correlation of the visibilities Vν(uν , wν , δh) can be computed using the same

methods as outlined in the previous sections.

In Figure 3.2 we show the results when the effect of the time dependent coordinate

system (‘moving grid’) is included. The initial phase center (δh = 0) is chosen to be h = 0

and δ = φ. The results are shown for two different values of δh and a range of w values. We

only show the auto-correlation function for a given value of δh. But the results shown in
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Figure 3.2 can be used to assess the cross-correlation of visibilities measured at two different

times. For our case the value of this cross-correlation lies between the auto-correlations of

visibilities measured at the same time. The moving grid doesn’t introduce another scale in

the problem and the results in this case are not very different from the case for a fixed grid.

In both cases the dominant correlations occur for u− u′ < 1.5.

Figures 3.1 and 3.2 are based on MWA primary beam. However, it is possible to glean

generic information applicable for other primary beams from them. First, the decorrelation

length |u−u′| scales as the inverse of the primary beam (e.g. Paul & Sethi et al. (2014)). So

for a smaller beam, the decorrelation seen in the Figures as a function of |u− u′| would be

shallower. The impact of the w-term for a different primary beam can be partially gauged

from Eq. (3.6), which is valid for large values of w. In this limit, the primary beam tends

to 1/
√
w, irrespective of the primary beam of the telescope. It is difficult to analytically

estimate the impact of the w-term when this limit does not hold. But it can be shown that

the impact of w-term diminishes for a smaller primary beam, e.g. a Gaussian beam for

which the primary beam tends to (1/θ2
0 + πwν)−1/2 for non-zero w (e.g. Paul & Sethi et al.

(2014)). As noted above, the distortion of intensity pattern during a tracking run is a wide

field effect. For a smaller primary beam, the level of decorrelation seen in Figure 3.2 would

be smaller but it is difficult to analytically estimate it.

3.1.2 Weights for cross-correlation

Eq. (3.12) can be used to compute the counterpart of Eq. (2.16) which takes into account

the impact of non-zero w-term and the distortion of intensity pattern. We compute this

expression for the visibility correlation in delay space numerically. In this formulation, the

measured visibility is a function of five parameters: τ,u, w, t. Here, as noted above, u and w

are the values of these variables at a fixed frequency which we choose to be ν0 = 154 MHz.

We define the weight on a given cross-correlation as:

W(u, w, t; u′, w′, t′) =
〈Vτ (u, w, t)V ∗τ (u′, w′, t′)〉
〈Vτ (u, 0, t)V ∗τ (u′, 0, t′)〉

(3.13)

The weights are defined with respect to the HI cross-correlation computed in Eq. (2.16) for

u = u′, w = w′ = 0, t = t′ and τ = τ ′. We only consider the case τ ′ = τ for the computation

of weights.
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Figure 3.2: The HI signal is plotted as a function |u− u′| for different values of w and δh.

The initial phase center is chosen to be h = 0 and δ = φ.

Using Eq. (3.13) allows one to recover the HI power spectrum for a fixed wave number

k from visibility cross-correlations.

3.2 Analysis of MWA data

To minimize the effect of Galactic synchrotron emission, the MWA EoR community has

chosen three fields on the sky away from the Galactic plane. These fields have been named

as EoR0, EoR1 and EoR2 and are shown in Figure 3.3. In this chapter we present 3 hours

of tracking analysis of the EoR1 field centered at RA = 4h, Dec = −27◦. In this and the

next section, we discuss in detail our method of MWA data analysis and power spectrum

estimation from the data.

We summarize below the major ingredients of the method and then describe each of the

step in detail in subsequent sections:

1. For initial processing of the data we use CASA (Common Astronomical Software Ap-

plications). CASA (McMullin et al. (2007)) is used to calibrate raw visibility measure-

ments. This is followed by the creation of a model sky image from clean components.
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Figure 3.3: EoR fields are shown on the Galactic map at 408 MHz (Haslam et al (1982)).

Three fields, away from the galactic plane, have been identified for the MWA reionization

study. These are EoR0, EoR1 & EoR2 respectively as shown in circles. In this work we

focus on the EoR1 field centered at RA = 4h, Dec = −27◦.
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This model is then substracted in the visibility domain to obtain residual visibilities.

We use both the calibrated and residual visibilities for computing the power spectrum.

2. Each visibility is then Fourier transformed in frequency space (Eq. (3.14)). This pro-

cess is needed for isolation of foregrounds in the k⊥–k‖ plane. We note the our method

utilizes both the substraction of foregrounds and their isolation. But it does not em-

ploy an external point source catalog.

3. The procedure outlined above yields complex visibilities as a function of five variables:

Vτ (u, v, w, t). For computing the power spectrum we cross-correlate these visibilities

for t′ 6= t to remove the noise bias. To weigh each cross-correlation we assume that

there exist regions in k⊥–k‖ plane which are dominated by only noise and the HI signal;

we attempt to justify this assumption using simulations. This allows us to compute

a weight for each cross-correlation based on the expected HI signal. For computing

these weights we take into account the impact of w-term and the distortion of intensity

pattern in a tracking scan. The relevant method is elaborated in detail in sections 3.1,

3.1.1, and 3.1.2 and summarized in section 3.3.

4. In section 3.3.1, we describe the power spectrum estimator, taking into account weights

given by the expected HI signal, in 3-, 2- and 1-dimension. We also discuss our method

to compute the errors on the estimated power spectrum.

3.2.1 CASA processing

MWA data were collected at 2-minute intervals with a time resolution of 0.5 seconds and

frequency resolution of 40 kHz. The central frequency of these observations is 154.24 MHz.

For preprocessing we have used the Cotter pipeline (Offringa et al. (2015)) to average to 10

seconds of integration; we have not performed any averaging over the frequency channels.

Cotter also uses the in-built AOFlagger to flag and remove radio frequency interference. The

edge channels of each coarse band are flagged with Cotter due to aliasing effects. After this

preprocessing the Cotter pipeline delivers the data in the CASA readable ‘Measurement set

(ms)’ format for further processing.

Once the ‘ms’ files are produced for each 2-minute data set, we process each of these
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2-minute data in CASA to produce an image. The Hydra A source is used to calculate the

bandpass solutions which are applied to the uncalibrated data. We next construct a sky

model from these data so that we could subtract it to obtain the residual visibility. After

the bandpass calibration the first round of ‘clean’ is applied on each 2-minute data set. The

multi-scale multi-frequency synthesis algorithm (Rau & Cornwell (2011)) has been used for

imaging. We have created images of size 3072 x 3072 pixels with 1 arc-minute cell size using

the Cotton-Schwab CLEAN (Schwab (1984)) with uniform weighting scheme. After the first

round of clean we have performed self calibration (both phase and amplitude+phase) and

apply the clean loop until the RMS value of the residual image converges. The threshold

limits for the clean steps were chosen to be 5 sigma. TheW-projection algorithm (Cornwell et

al. (2008)) was also used to correct for the errors arising due to non-coplanarity of baselines.

Once we obtain the best model of the sky for each 2 minute observation, the model visibilities

are then subtracted from the calibrated data using the UVSUB algorithm in CASA to obtain

the residual data. This process is followed for both XX & YY polarizations separately.

A flow chart of the data pipeline is shown in Figure 3.4. In Fig. 3.5 and 3.6 we present

a sample image of 2 minute deconvolution.

As noted above we process the data for only 2 minutes to ensure the primary beam

doesn’t substantially change during the run. For a 2-minute scan we obtain an RMS of

nearly 40 mJy/beam.

The residual visibility Vν(uν , vν , wν , t) is a function of five variables. We compute the

discrete Fourier transform of the residual visibilities in the frequency space weighted by the

Blackman-Nuttall (Nuttall (1981)) window WBN to suppress leakage into the EoR window

(Thyagarajan et al. (2013, 2016)):

Vτ (u, v, w, t) =
∑

∆ exp(i2πντ)Vν(uν , vν , wν , t)WBN (3.14)

Notice that in Eq. (3.14) the frequency dependence of the baseline vector bν = {uν , vν , wν}

is integrated over. Therefore, the labels {u, v, w} on the LHS of Eq. (3.14) need further

explanation. As noted above (the discussion following Eq. (2.13)) they can be chosen to

denote a given baseline vector at a fixed frequency, ν0. We choose this frequency to be

the central frequency of the band ν0 = 154 MHz. Parsons et al. (2012a,b) provide detail

implications of the frequency dependence of the baseline vector. Here ∆ = 40 kHz and
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Raw data
(0.5 sec time + 40 kHz 
frequency resolution)

CASA readable 'ms' file
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+
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Figure 3.4: A schematic of the power spectra pipeline is shown.
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Figure 3.5: The image of EoR1 field at 154.24 MHz.
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(a)

(b)

Figure 3.6: The top and bottom panels display two regions from the image in Fig. (3.5).

The bottom panel zooms the region containing the Fornax A.
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256 channels are used for our study, which correspond to total bandwidth 10.24 MHz in the

frequency range 149.09 MHz to 159.34 MHz.

3.3 Power spectrum

The visibilities (Eq. 3.14) are cross-correlated with weights determined from the HI signal

(section 3.1.2) to estimate the power spectrum. For each pair of parameters, e.g. {u, u′},

the weights are generally different. It is computationally prohibitive to deal with weights

for all cross-correlations. We make several simplifying assumptions to make the problem

tractable based on the properties of the HI signal. In sections 2.1, 3.1, and 3.1.1 we discuss

in detail the HI signal and how it is affected by the inclusion of the w-term and the additional

complication arising from distortion of the field of view as a region is tracked for MWA.

We summarize the main results of these sections as applied to the data:

1. In section 2.1 the HI signal and its correlations are discussed in detail. Eq. (2.17)

shows that correlations in sky plane are nearly independent of correlations along the

line of sight. This allows us to compute weights for correlations in the plane of the sky

independent of the third axis. Eq. (2.17) allows us to derive a relation between the

measured correlation and the inferred HI power spectrum (Eq. 2.19). Eq. (2.19) defines

the scale of cross-correlation weights. The weight function W(u, v, w, t;u′, v′, w′, t′) is

unity when u = u′, w = w′ = 0 and t ' t′. Eq. (2.19) refers to this case.

2. In section 3.1, the impact of w-term on the HI signal is computed. Eq. (3.6) and

Figure 3.1 capture the effect of non-zero w on HI correlations. The w-term diminishes

the signal by shrinking the effective primary beam and increase the correlation length

scale |u−u′|. We use the analytic expression based on Eq. (3.6) for computing weights

for w > 30.

3. In section 3.1.1, we attempt to assess the impact of time-dependent distortion of

intensity pattern in a tracking run for MWA. Figure 3.2 shows the combined effect of

moving grid and w-term. The distortion of intensity pattern generally acts to enhance

decorrelation but is found to be not significant and doesn’t alter the main features of
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the signal. For our computation, we only update the weights after every 10 minutes

to account for this effect.

3.3.1 Power spectrum estimator

As shown above each correlation receives a different weight depending on the values of

{u, v, w, t} of the baselines being correlated. As noted above, we define the weights W such

that they approach unity when u = u′, v = v′, w = w′ = 0 and t ' t′ such that the effect of

the moving grid is not important (t 6= t′ for all correlations to remove noise bias).

The HI power spectrum is a function of k =
√

k2
⊥ + k2

‖; Eq. (2.18) gives the relation

between the Fourier components of the HI signal and {u, τ}. All cross correlations for which

the wave vector lies in some range k and k + dk can be used to construct the unbiased HI

signal: 1/N
∑
Vτ (u, v, w, t)Vτ ′(u

′, v′, w′, t′)/W; here N is the number of all pairs for which

k lies in the range specified above. However, this estimator, though unbiased for the HI

signal, could be dominated by small values of weights W, which doesn’t make it the lowest

noise (or optimal) estimator.

As the observed signal is dominated by noise, we consider an optimal estimator for our

study:

P̂τ (u, v) =
1∑

u′,v′,w,w′,t,t′W2(u, v, w, t, u′, v′, w′, t′)

×
∑

u′,v′,w,w′,t,t′

{
Vτ (u, v, w, t)Vτ (u′, v′, w′, t′)

×W(u, v, w, t, u′, v′, w′, t′)

}
(3.15)

To avoid noise bias, t 6= t′ for all cross-correlation. For a given {u, v, τ}, Eq. (3.15) allows

us to compute the power spectrum by optimally weighing over all the cross correlations.

However, as Figures 3.1 and 3.2 show the correlations fall substantially for u−u′ ≥ 1.5 (see

also Paul & Sethi et al. (2014) and references therein). This motivates us to pixelize the

u-plane and consider only those visibility pairs for which the correlations are significant. We

consider cells of different sizes and present results here for ∆u = ∆v = 0.5. The number of

visibility measurements in a cell vary depending on the (u,v) values. The shortest baselines

have higher population as expected for MWA. For 3 hours of analysis and u, v < 50, the
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number of visibilities in a cell lie in the range ∼ 1000–3500 where each visibility has a

time resolution of ∆t = 10 sec. All the cross-correlation within a cell are computed using

Eq. (3.15).

For averaging over different cells, each cell is assigned an average weight corresponding

to the RMS of the power spectrum for a cell, σp. These weights are then used for optimally

averaging the power spectrum (Eq. (3.15)) over other cells (For details see section 3.3.2).

Note that this procedure allows us to separate large correlations of the HI signal, the ones

for which W is close to unity, from the ones which are expected to be incoherent because

W is small.

The schematic of the two processes—the computation of power spectrum in 3- and 2-

dimensions—is displayed in figure (3.7): the top panel delineates the process of computing

cross-correlations within each cell and the bottom panel depicts how azimuthal average for

a fixed baseline length
√
u2 + v2 is computed. For MWA data, k‖ � k⊥, which means the

value of k is dominated by the value of k‖. This suggests the following method for computing

the 1-dimensional power spectrum, which we adopt: all the cells for a given τ are optimally

averaged using the method described above. This procedure yields a complex number. In

the Figures that display 2- and 1-d power spectra we plot the absolute value of the estimated

power spectrum.

The error on power spectrum in 1-dimension is computed by first estimating the RMS

for each cell, σp. σp are then used as weights for optimal averaging over all the cells for a

fixed τ . The resultant RMS after averaging over the cells approaches σfin ' (1/
∑
σ2
p)
−1/2

if the power spectrum across cells is uncorrelated. This holds for noise but, as noted above,

is an approximation for the HI signal. We expect this assumption to be valid in our case as

the observed signal is dominated by noise (for detailed explanation see section 3.3.2).

3.3.2 Power spectrum estimation

As discussed in Section 3.3.1, the power spectrum from the data is computed in two stages.

First the power spectrum and its RMS is computed for a single pixel in which the HI signal

is expected to be near coherent and then an average is obtained across pixels assuming the

HI signal to be incoherent for different pixels (Figure 3.7).
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(a)

(b)

Figure 3.7: (a)This shows the population of visibilities within different uv bins for each τ .

The small dots denote visibilities due to individual baselines. These are cross-correlated with

each other within a given uv bin. (b) The black dots within a bin are the power value at

each bin. An optimal azimuthal average, based on weights of each pixel, is done to collapse

the uv axes into a single axis of baseline length.
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As noted in the text, the HI signal can be recovered from a visibility cross-correlation by

inverse weighing with W. We denote such a cross correlation: Ŝ ≡ V V/W; Ŝ is generally

a complex number. For optimal averaging to get the lowest noise estimator, one needs to

sum over these cross-correlations by inverse weighing with the square of the RMS of each

cross-correlation σi. For pure noise, σi ∝ 1/W and one can obtain Eq. (3.15). Notice that

this estimator is invariant under an overall scaling of σi. The error on power spectrum for

each pixel σp is: σ2
p = 〈Ŝ2〉 − 〈Ŝ〉2, where the average is obtained optimally from the data

for all the cross-correlations. It can be shown that if each cross-correlation is assumed to

be uncorrelated, as would be the case for pure noise, σp ' (1/
∑
σ2
i )
−1/2. Notice that if the

RMS for all the cross-correlations is the same, as would be the case if all measurements are

equally weighted, then this expression reduces to σp = σi/
√
Nc, where Nc is the number of

all the cross-correlations within a pixel.

This procedure yields an estimate of the power spectrum (Eq. (3.15)) and its error σp

for each pixel.

For averaging over pixels, we repeat the procedure described above by taking the esti-

mated power spectrum for a pixel as the signal and σp as the weights. This allows us to

estimate 2- and 1-dimensional power spectrum and its RMS. For pure noise, the final error

on the power spectrum is expected to approach: σfin = σp/
√
N , where N is the number of

pixels used for obtaining the average.

We briefly discuss some shortfalls of such a procedure. First, we do not construct the

covariance matrix of the power spectrum estimator. We only estimate its diagonal terms,

σ2
p and σ2

fin. This means that we are not able to assess the extent of cross-correlation be-

tween two neighbouring bins in Figure 3.10. Such cross-correlation might contain important

information about systematic errors, foreground leakage, and HI signal and noise cross cor-

relation.

Second, we do not include the HI signal in our estimation procedure. This is justified

for the present work as the observed signal is clearly dominated by noise and foreground

residuals (Figure 3.10). We briefly assess the impact of the HI signal for computing the error

on the power spectrum.

We assume the following estimator for computing the power spectrum for a pixel and
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consider the contribution of only the HI signal:

Ŝ =
1

Nc

∑
ij

ViVj
Wij

(3.16)

As noted above, this estimator allows us to recover the HI signal. The subscripts ij corre-

spond to a pair for visibilities and the sum is carried over all the cross-correlations. After

further computation, we obtain the error on the signal:

∆Ŝ2 =
Ŝ2

N2
c

∑
kl

∑
ij

[
WikWjl +WilWjk

WijWkl

]
(3.17)

If all the weights are unity this reduces to the usual cosmic variance expression: ∆Ŝ =
√

2Ŝ.

Even though this term is negligible for our purposes, this would need to be included for

longer integration times.

3.4 Results

In Figures 3.8 and 3.9, the power spectra computed from 3 hours of data are shown in the

k⊥–k‖ plane. The power spectra for both XX and YY polarization are shown for calibrated

and residual visibilities. We first discuss discernible features in the power spectra:

1. In Fourier space the foreground contributions occupy a wedge shaped region (also

called ‘foreground wedge’) owing to the smooth spectral characteristics of foreground

sources (Datta et al. (2010); Vedantham et al. (2012); Parsons et al. (2012b); Liu

et al. (2014); Dillon et al. (2014); Thyagarajan et al. (2013, 2015a)). The region

beyond the foreground wedge is expected to be free from the foreground contamination

and dominated by thermal noise and expected HI signal. This foreground isolation

approach is particularly useful for the MWA as it has low angular resolution. The

strongest HI signals lie in the shortest baselines (low k⊥ values) and it decreases

rapidly with increasing k⊥ values.

Figures 3.8 and 3.9 display the dirty (calibrated with no foreground subtraction) and

the residual (clean components subtracted) power spectra, respectively. They bear

out the assumption that foregrounds have smooth spectral characteristics as they

are seen to form the ‘foreground wedge’, this separation is in good agreement with
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the expectation from foreground simulations (Figure 3.11). The first few k‖ modes

exhibit maximum foreground contributions, the k‖ = 0 mode being the strongest. The

amplitude at this mode is roughly 1014–1015 mk2 (Mpc/h)3 which is in good agreement

with the results of other MWA EoR pipelines (Jacobs et al. (2016)). A clear decrement

in power in the ‘foreground wedge’ is visible in residual power spectra as compared to

the dirty one.

2. As described in the previous section, MWA has missing channels on either side of

coarse bands of width 1.28 MHz. This leads to a periodicity of missing data across the

frequency axis in visibility, the effect of which is reflected in the Fourier-transformed

power spectra as the horizontal bright lines at fixed k‖.

Figure 3.10 shows the 1-dimensional power spectra; the 1-dimensional power spectrum

is obtained from regions that exclude the foreground wedge and bright coarse bands in

Figures 3.8 and 3.9. For computing the 1-d power spectrum, the foreground wedge and the

bright coarse horizontal bands of the 2-d power spectrum (Figure ??) are rejected. More

specifically, the channels corresponding to k‖ ≤ 0.14hMpc−1 and k⊥ > 0.1hMpc−1 are not

considered. For each coarse band, the central brightest channel along with two channels on

either side are excluded. The remaining contiguous regions are used in estimation of the

1-d power spectrum. For instance, for a given k‖ that meets the criterion outlined above,

all the cells that correspond to k⊥ < 0.1hMpc−1 are used for the computation of 1-d power

spectrum. The error on the binned power spectra are computed using a scheme outlined in

Appendix 3.3.2.

The 2-d power spectra obtained from data (Figure ??) can be compared with Figure 3.11

that shows the expected power spectrum based on simulations of foregrounds and noise. In

particular, this comparison allows us to assess the structure of coarse channels and the

foreground wedge. It also indicates the range of scales of the 2-d power spectrum. However,

Figure 3.11 is based on a single realization of noise and a model of foregrounds based on

random distribution of point sources, and therefore a more detailed comparison between the

data and simulations is not possible. We shall return to this detailed comparison in future

work.
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(a) dirty XX

(b) residual XX

Figure 3.8: Two-dimensional power spectra for 3 hrs of data on the EoR1 field for XX

polarization. The power is plotted as log10P where P is in units mK2(Mpc/h)3.
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(a) residual XX

(b) residual YY

Figure 3.9: Two-dimensional power spectra for 3 hrs of data on the EoR1 field for YY

polarization. The power is plotted as log10P where P is in units mK2(Mpc/h)3.
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(a) XX

(b) YY

Figure 3.10: One dimensional power spectra (∆2 = k3P (k)/(2π2) in units (mK)2) for the

XX (Left panel) and YY (Right panel) polarization are shown along with the errors for each

band. The dot-dashed (red) curves show the expected HI signal (Furlanetto et al. (2006)).
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3.5 Thermal noise

Thermal noise is independent of the baseline and depends on three parameters: system

temperature, integration time and the channel width. The RMS of thermal noise associated

with a visibility measurement for channel width ∆ν and integration time ∆t is:

σ(ν) =
Tsys

K
√

∆ν∆t
(3.18)

Here Tsys and K denote the system temperature and antenna gain respectively. For MWA,

K = Aeff/(2kB) with Aeff = 21.5 m2 for MWA at ν = 150 MHz (Tingay et al. (2013)). In our

analysis we choose ∆ν = 40 kHz, ∆t = 10 seconds are very small compared to the frequency

and time coherence of the signal (Paul & Sethi et al. (2014)). The system temperature has

two components: sky temperature (dominant source of noise at low frequency) and receiver

temperature. We consider Tsys = 250K for a single polarization which is consistent with

the reported system temperature at 154.24 MHz for the MWA pointing we consider in this

work.

It is fair to assume that the thermal noise for a radio interferometer follows a gaussian

statistics with zero mean. In our simulation (Fig. 3.11), we follow the same pipeline used for

analysing the real data to estimate the thermal noise power. We use the baseline distribution

from the observation with umax = vmax = 250. For every (u,v) point the noise is drawn from

a gaussian distribution with zero mean and the RMS given by Eq. (3.18).

3.6 Conclusions

In this chapter, we propose a new method to extract the HI power spectrum from MWA

visibility data in delay space. The proposed method is applicable when a region is tracked

using imaging radio interferometers.

One of the crucial factors in power spectrum estimation is how the w-term is dealt within

the pipeline. Our findings are that the w-term causes an effective shrinking of primary

beam which in turn causes de-correlation of HI signal. We carefully model the HI signal by

taking the w-term into account, the weights calculated are then applied to cross-correlate

the measured visibilities. Moreover, the cross-correlation approach is particularly useful to
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Figure 3.11: The results of the simulation of noise and foregrounds are shown. The power

spectrum pipeline developed to analyse the data is also applied to simulated foregrounds

and noise for a three hour observational run for a single polarization.

minimize various systematics in the system. We also model and account for the impact of

changing intensity pattern in a tracking run. We find this effect to be sub-dominant to the

w-term correction.

We analyse three hours of MWA data from the EoR1 field, one of the field identified

by the MWA community for EoR science. We present the the results for 3 hours of anal-

ysis of EoR1 field. CASA has been used for calibration and to create foreground model

using the clean components. Both the dirty (calibrated with no foreground subtraction) &

residual (foreground model subtracted) power spectrum in delay space are presented. Our

results (Figures 3.8, 3.9 and 3.10) are in good agreement with the thermal noise/foreground

simulations and the results of other MWA EoR pipelines (Jacobs et al. (2016)).

In the future we plan to use this pipeline for longer data duration. Our results strongly

suggest that we have managed to supress the impact of most systematics for the three-hour

run. If more data is used for the same field and similar tracking parameters we expect

further reduction of noise. We also hope to apply the method proposed here for longer runs
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on a single tracking run. The decorrection caused by of w-term and the changing intensity

pattern would be more dominant in this case. This will allow us to test the efficacy of our

method for more extreme cases and might indicate the best possible way of detecting the

HI signal from EoR.
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Drift Scan method

The statistical detection of the EoR signal requires a stable instrument and a large amount of

data to reduce the thermal noise, in addition to measuring and subtracting the foregrounds.

The traditional tracking mode of observation may not be useful for this purpose as it leads to

a time dependent primary beam as the pointing center is moved. In the drift scan technique

the pointing centre is fixed at a particular point on the sky and the observation is carried

out for a variable sky pattern. The main advantage of this technique is the stability of the

system.

In this chapter we describe a methodology based on drift scans that exploits the correla-

tion between visibilities measured at different times to estimate the EoR signal. In particular,

our aim is to infer the efficacy of such a method for a wide field-of-view instrument such as

MWA.

In the next section we delineate the basic formalism. In section 4.2, we apply the method

to the system parameters of MWA. In section 4.3, we compute the noise on the estimator of

the EoR proposed in this chapter and compare the drift scan results with the expected noise

in the tracking case. In Section 4.4, we discuss briefly how our method might potentially

allow foregrounds represented by bright point sources to be separated from the EoR signal.
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4.1 Visibility Correlation in Drift scan

We begin with the visibility due to HI signal measured by a baseline u(u, v), as given by

Eq. (2.9):

Vν(u) = Īν

∫
d3k

(2π)3
δHI(k)eirνk‖a

(
u− k⊥rν

2π

)
(4.1)

If the first visibility measurement is obtained at t = 0, then, using Eq. (4.1), the visibility

measured at a later time t, for a drift scan, can be written as:

Vν(u, t) = Īν

∫
d3k

(2π)3
δHI(k)

∫
d2θA(~θ) exp

[
irν

(
k‖ + k⊥.(~θ −∆~θ(t))

)]
exp(−2πiu.~θ)

= Īν

∫
d3k

(2π)3
δHI(k)eirνk‖

∫
d2θA(~θ) exp

[
−2πi

(
u− k⊥rν

2π

)
. ~θ

]
exp[−irνk⊥.∆~θ(t)]

(4.2)

Here ∆~θ(t) is the angular shift of the intensity pattern in the time period t. Eq. (4.2) follows

from Eqs (2.5)–(2.7) for a changing intensity pattern. In a drift scan, the phase center and

the primary beam remain fixed and the only change in the visibility occurs owing to the

changing intensity pattern of the sky with respect to the phase center.

Our aim is to calculate the correlation between the visibilities measured at two different

times (separated by t), by two baselines u and u′, and at frequencies ν and ν ′. We note

that the frequency coverage is far smaller than the central frequency: |ν ′ − ν| << ν. This

allows us to write: |r′ν − rν | ≡ ∆rν = r′ν |ν ′ − ν|; here r′ν ≡ |drν/dν|.

Using Eqs. (4.1) and (4.2), we can write the visibility correlation function as:

〈Vν(u)V ∗ν′(u
′, t)〉 = Īν

2
∫

d3k

(2π)3
PHI(k)eik‖∆rνa

(
u− k⊥rν

2π

)∫
d2θA(~θ)

× exp

[
−2πi

(
u′ − k⊥rν

2π

)
. ~θ

]
exp[−irνk⊥.∆~θ]

(4.3)

In the usual case of tracking a fixed region, the ensemble average 〈. . .〉 (LHS of Eq. (1.12)) to

compute the power spectrum is done by averaging over all modes k for a given |k|. The drift

scan strategy enables another possible method to compute the power spectrum for modes

in the plane of the sky k⊥: averaging over time for a given fixed time difference, ∆t, for
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visibility measurements. We discuss this issue in detail in section (4.3). For a statistically

homogeneous signal, e.g. the EoR, these two methods yield the same estimate of the power

spectrum. However, when the assumption of statistical homogeneity breaks down, e.g.

for sparsely distributed point sources, the two methods result in different outcomes. We

explicitly make use of this difference in our discussion of point sources in a section 4.4.

4.2 Drift scan visibility correlation: MWA

We assume the MWA primary beam to compute the visibility correlations (Eq. (4.3)); MWA

primary beam can be expressed as:

A(l,m) =
sin(πLxl)

πLxl

sin(πLym)

πLym
(4.4)

Here Lx and Ly are sides of an aperture of an MWA tile in units of wavelength with

Lx ≈ Ly ≈ 2 and (l,m) are coordinates defined on the sky.

We note that for a dipole array such as MWA, Eq. (4.4) is valid for only a phase center

at the zenith. If the phase center is changed (e.g. for tracking a region), the projected area

of the tile decreases which results in an dilation of primary beam depending on the angular

position of the phase center. We neglect this change in the chapter and throughout present

results for the primary beam given by Eq. (4.4). This assumption alters the signal, the

computation of the signal-to-noise and also the impact of the w-term, but doesn’t change

our main results. We discuss the implications of this assumption in section 4.6.

The knowledge of HI power spectrum (Eq. (1.12)) and the primary beam (Eq. (4.4))

allows us to compute the evolution of visibility correlations. A detailed formulation of the

sky coordinate system for analysing drift scans from any arbitrary location of an observatory

is discussed in section 4.5. We first discuss the fiducial case of a zenith drift scan for an

observatory located at the the latitude φ. The visibility correlation function for this case is
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derived in section 4.5 and is given by equation (4.22):

〈Vν(u)V ∗ν′(u
′, t)〉 = Īν

2
∫

d3k

(2π)3
PHI(k)eik‖∆rν exp (−irν′k⊥1 cosφdH)

a

[(
u− rνk⊥1

2π

)
,

(
v − rνk⊥2

2π

)]
a
[(
u′ − rν

2π
(k⊥1 + k⊥2 sinφdH)

)
,
(
v′ − rν

2π
(k⊥2 − k⊥1 sinφdH)

)]
(4.5)

Here dH is the change in hour angle corresponding to time difference t; u and v are the

components of the baseline vector: u= uû+ vv̂.

Many generic results follow from Eq. (4.5) and they are common to both tracking and

drift scan cases, so we first consider dH = 0: (a) the contribution in each visibility correlation

from different modes is significant when k⊥ = 2πu/rν ± 1/(θ0rν), where θ0 is the angular

extent of the primary beam. In other words, unless the two baselines being correlated

satisfy this condition the visibilities get decorrelated. For MWA primary beam, this implies

u−u′ & 0.5, (b) If the two visibilities being correlated are separated by a non-zero frequency

difference |ν ′−ν|, the signal strength is reduced. We later show that the frequency difference

for which the signal drops to half its value: |ν ′−ν| ' 0.5 MHz. We note here that we assume

each visibility measurement to have zero channel width ∆ν = 0. This is justified because the

channel width of MWA ∆ν ' 40kHz which is much smaller than the decorrelation width,

or ∆ν � |ν ′ − ν| (Figure 4.8).

The principle aim here is to analyse the visibility decorrelation in time domain for a

drifting sky. We show the behaviour of visibility correlation function as a function of time

difference for zenith drift assuming the observatory location to be at three different lati-

tudes: 0◦ (equator), ±30◦, ±90◦ (pole). The central frequency is chosen to be at ν = 129

MHz corresponding to redshift z = 10 and |ν ′ − ν| = 0.0 MHz. (figure 4.8). The results

are shown for a single baseline vector u=(50, 50) in Figures 4.1–4.3. The envelope of the

visibility correlation function shown in the Figures is obtained by multiplying Eq. (4.22) by

exp(−i2πu cosφdH) and taking the real part of the resulting expression. This procedure is

akin to correcting for the ‘shift in the phase center’.

It is clear that at the equator the visibilities measured by the same pair of antennas

are correlated for the longest period of time. With increasing latitude of the observer the
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Figure 4.1: Visibility Correlation function as a function of time for zenith drift from equator

(latitude=0). Blue and red curves correspond to the real and imaginary part of the visi-

bility correlation function respectively. Black curve denotes the envelope of the Visibility

correlation function. In the figure (and all the subsequent figures that display the visibility

correlation) the visibility correlation corresponds to the HI signal from EoR computed using

the power spectrum of Furlanetto et al. (2006). The central frequency is assumed to be

ν = 129 MHz.
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Figure 4.2: Visibility Correlation function as a function of time for zenith drift from a

location with latitude ±30◦

Figure 4.3: Visibility Correlation function as a function of time for zenith drift from the

pole (latitude=±90◦)
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correlation time scale decreases and it is minimum for an observer at the pole (latitude 90

degree). During a drift scan, the baselines and primary beam remains fixed and the sources

move in and out of the primary beam. As we show in section 4.5, the motion of sources

during a scan is a combination of translation and rotation depending on the observer location

and the field being observed. At the equator, the drift corresponds to pure translation along

east-west axis. From any other location there also exists a rotational component in the zenith

drift. The decorrelation time scale is shorter when the rotational component is present. This

behaviour can be understood from Eq. (4.5). Unless φ = 0, a baseline u gets contribution

from from not just k⊥1 but also k⊥2, the mode perpendicular to u in the tracking case.

A similar inference holds for v. This results in decorrelation time scale much shorter than

the transit time of the primary beam: ∆h ' 1/(sin(φ)Uθ0), θ0 is the approximate angular

extent of the primary beam. For pure translation, the decorrelation time scale depends only

on the transit time of the primary beam.

Of the three fiducial cases we have studied (Figures 4.1-4.3), Figure 4.2 is directly relevant

for the location of MWA. It is worthwhile to ask whether we could exploit the long time

correlation of the equatorial scan using MWA by scanning an equatorial region. In section

4.5, we show that if the phase center is shifted to the equatorial position (along the local

meridian) then with respect to the new phase center the drift is pure translation and the

decorrelation due to the rotation can be avoided for this phase center. For a detailed

discussion see the section 4.5 and Figures (4.13, 4.14).

For an observatory at latitude φ the visibility correlation function with respect to the

new phase center can be written as (Eq. (4.25)):

〈Vν(u)V ∗ν′(u, t)〉 = Īν
2
∫

d3k

(2π)3
PHI(k)eik‖∆rν exp (−irν′k⊥1 cos(θ + φ)dH)

a

[(
u− rνk⊥1

2π

)
,

(
v − rνk⊥2

2π

)]
a
[(
u− rν

2π
(k⊥1 + k⊥2 sin(θ + φ)dH)

)
,(

v − rν
2π

(k⊥2 − k⊥1 sin(θ + φ)dH)
)]

(4.6)

Here θ is the angular distance of the new phase center from zenith for an observatory at
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Figure 4.4: Envelope of Visibility Correlation function as a function of time in drift scan

mode for four different baselines. The phase center is at zenith for an observer at the equator.

latitude φ. To shift the phase center to the equator the rotation angle is θ = −φ. For this

phase center, the time dependence of the visibility correlation follows the behaviour seen

in Figure 1 or formally Eq. (4.22) with φ = 0 yields the same result as Eq. (4.25) with

φ = −θ. In other words, the two cases—an observatory located at the equator performing

a zenith drift scan and an observatory located at some other latitude scanning a region at

the equator–are equivalent.

In Figure (4.4), the time evolution of the visibility correlation function is shown for four

different baselines for the equatorial scan.

For observing frequency ν = 129 MHz and ν ′ = ν the visibility correlation is ' 10−4Jy2

for baselines |u| ≤ 200. The signal strength decreases with increasing baseline length.

Figure (4.4) also shows that the decorrelation time scale depends only the size of the primary

beam for an equatorial scan.
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4.2.1 Correcting for Rotation

In figures (4.2) and (4.3) one sees that the rotation of sources in the sky plane during the

drift scan reduces the time scale of decorrelation of visibility correlation function for a given

baseline.

In a drift scan, the phase center remains fixed and therefore there is no change in the

values of {u, v, w}. In other words, the set of baselines during the scan remains the same.

In the foregoing (Eq. (4.5) and the discussion following it) we have shown that the

visibilities become uncorrelated when u − u′ & 0.5 for the MWA primary beam. In the

drift scan case, this condition holds if both the visibilities are obtained at the same time.

However, Eq. (4.5) can be used to show that this conclusion doesn’t hold for visibilities

computed at different times. In particular, we show that V (u, t) and V (u′, t′) can become

correlated for u 6= u′ and t 6= t′, if the two baselines are related by a special relation. We

derive this relation and illustrate this re-correlation with an example.

Two baselines u = (u, v) and u′ = (u′, v′) can be related as:

u′ = u+ av + ε

v′ = v − au+ ε

Here a and ε correspond to rotation and translation respectively. These parameters can be

solved to give:

a =
∆u−∆v

u+ v

ε =
u∆u+ v∆v

u+ v

Here ∆u = u− u′.

It can be shown that for two baselines with ε ≥ 0.5 the signal gets uncorrelated and

cannot be re-correlated at any other time. This also means that two baselines with different

lengths (u2 + v2)1/2 remain uncorrelated during the drift scan. However, many baselines in

an experiment such as MWA have nearly the same lengths and are related to each other by

a near pure rotation denoted by the parameter a. We can show that such baselines correlate

with each other during the drift scan if a = sin(φ)dH. In other words, if a visibility is

measured at a time t = 0 for a baseline u, then this measurement will correlate with another
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Figure 4.5: Visibility correlation function as a function of time for visibilities with different

baselines. The drift scan correspond to a zenith scan for a latitude of 30◦

measurement for a baseline u′ at a time corresponding to dH if the two baselines are related

by a near pure rotation with the corresponding rotation parameter a = sin(φ)dH. We note

that this correlation can occur just once during a long scan and the time scale over which

the baselines remain correlated corresponds to the decorrelation time for a given |u|.

We illustrate this re-correlation for a baseline u = (35, 10). The other baseline u′ =

(34.8, 10.7) corresponds to parameters a = −0.02, ε = 0. The visibility correlation function

is shown as a function of time in Figure 4.5.

In Figure 4.6 we show the time scale over which the visibility correlation falls to half its

value for ∆t = 0 (e.g. Figure 4.2); this time scale is seen to fall as roughly the inverse of the

baseline length, in agreement with the discussion in the previous sub-section.

The re-correlation of baselines allows us to partially recover the loss of signal due to

decorrelation. However, the set of baselines is fixed for a drift scan strategy and therefore

the range of baselines that correlate at different times must be present in the initial set.

For the MWA, we estimate that for a zenith scan at the latitude of the telescope there are

nearly 120 such pairs which satisfy ε ≤ 0.5 and a ≤ 0.3 for |u| ' 20–70. (as noted below,
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Figure 4.6: The Figure displays the time difference ∆t at which the visibility correlation

falls to half its value, as a function of baseline, for an overhead scan at the location of MWA

(φ = −26.7).

the total number of baselines in a zenith snapshot observation for MWA is 2735 in the range

|u| ' 20–230.) These baselines will retain at least half the signal and would correlate within

a correlation time scale of less than two hours.

4.3 Error on visibility correlation

The error on visibility correlation is:

σ2(u) = 〈Vν(u)Vν(u)Vν′(u
′, t)Vν′(u

′, t)〉 − 〈Vν(u)Vν′(u
′, t)〉2 (4.7)

Here U ≡ |u| and the averages are taken over many different variables: the noise is uncorre-

lated for different frequencies, baselines, and times. However, the signal could be correlated

in all the three domains. We average over all the pairs in the three domains and finally over

all the pairs for baselines in the range U and U + ∆U to compute an estimate for a wider

bin ∆U . The measured visibilities and their correlations receive contributions from detector

noise, the HI signal, and the foregrounds. When only visibilities at two times (or frequen-

cies/baselines) are correlated, as we assume here, the 〈V V 〉 doesn’t receive any contribution

from detector noise and therefore constitutes an unbiased estimator of the signal. In this
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case, only the first term in the equation above contributes to the error estimate; denoting

the sky noise as Nν , we get:

σ2(U) =
1

Ntot
〈Nν(u)N∗ν (u)〉2 (4.8)

Here Ntot are all the baseline pairs in the range U and U + ∆U in the three-dimensional

cube and the time domain.

The average noise autocorrelation for each independent correlation of visibilities is:

〈Nν(u)N∗ν (u)〉 =

[
Tsys

K
√

∆ν∆t

]2

(4.9)

where Tsys is the system temperature, ∆ν is the channel width, K is the antenna gain and

∆t is the integration time. Here ∆t and ∆ν could be arbitrarily small; in particular we

require the bandwidth and integration time to be much smaller than the frequency and time

coherence of the signal (Figure 4.1–4.3 and 4.6). Ntot is determined from the correlation

times scale in time and frequency domains and its computation is discussed below. We

cross-correlate all visibility pairs for a given time difference and frequency difference for the

equatorial scan case where we assume u = u′; we also include the impact of re-correlating

baselines (section 4.2.1) in the overhead scan case (Figure 4.2).

For a given total observing time T and integration time ∆t, there exists n = T/∆t

visibility measurements. Among these, the number of possible independent correlations

between visibilities i∆t time apart (where i=1,2,....,n) is (n − i) as explained in figure 4.7.

Thus, average noise correlation for a given baseline vector u with visibilities separated by

times i∆t is:

σi(u) = 〈Nν(u)N∗ν (u(i∆t))〉 =
1

(n− i)

[
Tsys

K
√

∆ν∆t

]2

, (4.10)

for any frequency channel.

Figure 4.4 shows that the signal
√
〈Vν(u)V ∗ν′(u

′, t)〉 decorrelates with increasing time

difference between the visibilities. This means that not all pairs contribute equally to the

signal-to-noise of the measurement. To obtain an estimator that gives suitable weight to all

the pairs we define:

wi(u) =
〈Vν(u)V ∗ν (u(t = 0))〉
〈Vν(u)V ∗ν (u(t = i∆t))〉

(4.11)
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Figure 4.7: Illustration showing the number of possible correlations for total observing time

T and integration time ∆t with T/∆t = 4, or four visibility measurements. The number of

correlations between visibilities with time difference ∆t is four, for time difference 2∆t the

number is three and so on.

This allows us to write the following optimal estimator for computing the noise on the

visibility measurement:
1

(σ2
U )2

=
n∑
i=1

1

(σ2
iwi)

2
(4.12)

We neglect the effect of partial coherence of baselines at the initial time; this assumption

slightly underestimates the sensitivity and is further discussed in the next subsection. We

do not include sampling variance in our error estimates.

The foregoing discussion is valid for visibility measurements for a given frequency. The

HI signal is correlated across frequency space (Figure 4.8). The figure shows the behaviour of

the HI signal as a function of |ν ′− ν| for different baselines. The bottom panel of the figure

displays the frequency difference at which the signal falls to half of the of the maximum

(|ν ′ − ν| = 0) for different times. We treat the correlation across the frequency space using

the same method described above for the time correlation.

In Figure 4.9, we show the expected noise on the visibility correlation for many different

cases. For all the cases, we assume the following parameters for the MWA: observing fre-

quency ν = 129 MHz, system temperature Tsys = 440 K, and the effective area of each tile
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(a)

(b)

Figure 4.8: The top figure shows the decorrelation of visibility correlation of the HI signal

as a function of frequency separation (see the caption of Figure 4.1 and the discussion in

section 4.2 for details). The bottom figure denotes the bandwidth for a given u at which

the signal drops to half of its maximum at different times
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Aeff = 16m2.

Case-I: We consider a continuous equatorial drift scan of a duration of 2 and 4 hours.

One way to repeat the scan for the same phase center is to shift the phase center to the

same position after the end of the scan; this results in the change of UV coverage. We

consider the simpler case when the UV coverage and the phase center remain the same for

subsequent scans. This corresponds to the same region of sky being observed on different

days. In Figure 4.9 we show the results for 900 hours of integration in this mode.

As the signal strength is greater for shorter baselines (figure 4.4), we consider only

baselines in the range u = 20–230. We take bins of size u ' 10 and show the noise

correlation for this range of baselines in Figure 4.9. MWA has 2735 baselines in this range

for a snap-shot observation. Using the information, the RMS noise for this mode is σ '

16 (mJy)2 and σ ' 21 (mJy)2 for 2 and 4 hours scan, respectively. We note that since the

visibility correlation function drops significantly after roughly 1 hour (Figure 4.1), the noise

is expected to increase for longer drift scans.

Case-II: Here we consider an overhead drift scan at the location of MWA. The corre-

lation time scale is shorter for such scans as compared to the equatorial scan (Figure 4.2).

In Figure 4.6 we show the time scale over which the correlation falls by half as a function of

the baseline length.

As noted above many baselines get re-correlated as the time progresses (Figure 4.5).

Over 5–10% of all the baselines in the range |u| = 20–100 get re-correlated with ε ≤ 0.5 in

less than two hours. We include these baselines in the noise computation. As compared to

Case I, the noise is higher in this case as the correlation time is shorter.

Case-III: For comparison with the drift scan cases, we also compute the error in the

visibility correlation for the tracking case. We consider two cases: 2 and 6 hours continuous

tracking of a region across the zenith (±1h and ±3h) at the location of MWA (φ = −26.7).

The results are shown Figure 9. We discuss the results in detail in the next subsection.
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Figure 4.9: Error on visibility correlation as a function of baseline length: blue (triangle)

and red (square) points refer to 2 and 4 hours equatorial drift scans, respectively. Black

(inverted triangle) points refer to 2 hours zenith drift scan at the location of MWA. The

green (circle) and pink (rotated triangle) points show the expected error for 2 and 6 hour

tracking runs (for ±3 and ±1 hour continuous overhead tracking at MWA location). In all

the cases the total integration is 900 hours. The EoR signal is designated by the dashed

brown line.
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4.3.1 Drift vs tracking mode

In any interferometric experiment to determine the EoR signal, the RMS noise on the

visibility correlation is bounded by:

σmin =

(
1

Nb

)1/2( TsysK√
∆νT

)2

(4.13)

σmax =

(
∆t

NbT

)1/2( TsysK√
∆ν∆t

)2

. (4.14)

Here T is the total time of integration and ∆t is the integration time for a single visibility

measurement. For the sake of the discussion, ∆ν, the channel width is assumed to be fixed.

Nb = n(n − 1)/2 is the total number of baselines for any measurement with n antenna

elements. σmin gives the RMS noise if all the visibilities are coherently added and σmax

corresponds to the case when the visibility correlations are incoherently added. For the 128-

tile MWA, the RMS lies between these two extremes for both the tracking mode and drift

scans. As noted above, we neglect partially coherent baselines for computing the sensitivity

for drift scans; this assumption is consistent with Eq (4.13).

The process of decoherence occurs differently for the tracking and the drift scan mode.

For drift scans, it is decorrelation of the EoR signal at different times, as described in detail

in the previous sections. In the tracking case, the process of tracking a given region rotates

the visibility vector u; the correlation between visibility measurements at different values

of u decreases; from Eq. (4.3), we can show that the decorrelation scale ∆u ' θ−1
0 ' 0.5

has very weak dependence on the value of u. For our computation we take the pixel size:

{∆u,∆v} = {0.5, 0.5}. The frequency decorrelation for the tracking case is taken from

figure 4.8.

The results for two and six hour tracking runs (zenith at the location of MWA) are

shown for 900 hours of integration in figure 4.9. We note here that we do not present the

results for equatorial tracking run, as the sensitivity in this case shows only a marginal

improvement over the zenith tracking runs shown in Figure 4.9. As the figure shows, the

drift scan generally gives lower noise on the visibility correlation for up to 4 hours of drift

scans.

This result can be understood as follows. As an extreme case, one could drift for a very

short duration each day, such that there is no decorrelation and continue similar observations
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on the same field such that all the visibility measurements are coherently added. In this

case, the RMS for the drift case would approach σmin which is not possible to achieve in

the tracking case because the process of tracking would always decorrelate the signal. The

relevant question is: what is the time scale for drift scans such that this advantage of lower

noise is not lost. We show that even for four-hour drift scans this advantage holds. In

the drift scan case, the decorrelation time scale is ' 1hour. In the tracking cases, different

baseline decorrelate in the process of tracking a region of the sky but some baselines revisit

the same pixel in this process. For instance, for a six hour tracking run shown in Figure 4.9,

the average integration time of a pixel in the range: |u| = 20–30 is roughly 15 minutes with

the total number of uncorrelated pixels ' 4700.

It should be underlined that, apart from other assumptions delineated in the previous

sub-section, the lower noise in the drift scan is also based on the assumption that the system

temperature doesn’t change over the scan. Also an additional disadvantage in the drift scan

case is that there are smaller number of visibility measurements available at any given time

for imaging as compared to the tracking case where the UV coverage is better.

4.4 Statistical homogeneity of EoR signal and foreground ex-

traction

Unlike the tracking case, the drift scans explicitly exploit the statistical homogeneity of the

EoR signal: cross correlation of the signal at different times only depends on the time dif-

ference. More precisely, the power spectrum of the EoR signal for any phase center is drawn

from a random density field with the same average power spectrum. This assumption may

or may not hold for foregrounds. For instance, if faint point sources are distributed homoge-

neously across the sky with the same flux distribution, they will also closely correspond to

a statistically homogeneous field in two dimensions. However, most other foregrounds, e.g.

bright point sources or galactic foregrounds, will explicitly break the statistical homogeneity

of the sky and therefore would be potentially distinguishable from the EoR signal.

We illustrate this concept with point source distribution on the sky. For a point source
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distribution with fluxes {Fi}, the visibility can be written as:

V (u) =
∑
j

exp(2πiu.θj(t))FjA(θj(t)) (4.15)

Here θi(t) correspond to the time varying position of point sources on the sky with respect

to the fixed phase center. A(θi(t)) gives the primary beam in the same coordinate system.

The visibility correlation separated by time ∆t is:

〈V (u, t)V ∗(u, t+ ∆t)〉 = 〈
∑
k

∑
j

exp(2πiu.(θj − θk))FjFkA(θj(t))A(θk(t+ ∆t))〉 (4.16)

Here the averaging process 〈· · · 〉 is over all the pairs for a given ∆t during the drift scan.

This averaging procedure leads to substantially different results for the EoR signal and the

foregrounds: the EoR signal is statistically homogeneous and therefore any cross-correlation

depends only on ∆t. For each ∆t the EoR signal gives a realization of the density field

with a given fixed power spectrum (Eq. (4.3)). However, the foregrounds might not share

this property and might show explicit dependence not just the time difference but the time

period of the scan. This gives at least two different methods of extracting foregrounds: (a)

correlation pairs of a given ∆t can be used to fit the time variation expected of foregrounds.

While the EoR signal will show fluctuations about a given mean, the foregrounds will show

more secular time variation which can potentially be subtracted, (b) direct comparison of

the averaged correlation function should also reveal the difference between the two cases.

We demonstrate the procedure with method (b) here.

For MWA primary beam, we consider three different source counts: 10, 30 and 50 sources.

At the beginning of the drift scan the sources are randomly distributed within ±15◦ from

the center of the primary beam with hour angle between -3 to +3 hours. The fluxes are

drawn from uniform distribution with values between 0 and 1 Jy. The visibility correlation

function for all these cases for u=(50,50) are shown in figure 4.10.

As predicted in the foregoing, figure 4.10 shows that the visibility correlation function

for point sources is substantially different as compared to the HI signal owing to statistical

inhomogeneity of the point source distribution. This can be used to subtract the contribution

of bright point sources from the measured visibility itself.
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Figure 4.10: Envelope of the Visibility correlation function (normalized arbitrarily) as a

function of time difference for three different cases described in the text.

4.5 Coordinate system for drift scans

The position vector in the sky ~θ can be expressed in terms of two direction cosines l and m.

These direction cosines are defined with respect to a local coordinate system when phase

center is at zenith as explained in figure 4.11 (e.g. Christiansen & Hogbom (1969)):

l = cos δ sinH

m = cos δ cosH sinφ− sin δ cosφ

n = cos δ cosH cosφ+ sin δ sinφ (4.17)

Here δ and H are the declination and hour angle of any source; and φ is the latitude of the

place of observation.

Using this coordinate system the second integral in visibility expression Eq. (4.2) takes

the form:∫
dldmA(l,m) exp

[
−2πi

{(
u− k⊥1rν

2π

)
l +

(
v − k⊥2rν

2π

)
m

}]
exp [−irν (k⊥1∆l + k⊥2∆m)]

(4.18)
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Figure 4.11: l,m,n coordinates defined for a phase center at zenith

105



CHAPTER 4. DRIFT SCAN METHOD

Here ∆l and ∆m are the change in l and m with time or hour angle as in sky drift only

hour angle changes with time for a fixed declination. k⊥1 and k⊥2 are the two components

of k⊥ along l and m on the sky plane. Using Eq. (4.17) and the condition l2 +m2 + n2 = 1

we can expand in the first order to compute the changes in relevant quantities:

∆l = (m sinφ+ n cosφ)dH; ∆m = −(l sinφ)dH. (4.19)

Here dH is the change in hour angle in time interval t. We can further simplify the expression

by using n ' 1. The two approximation used above are: 1/2(l2 + m2) � 1 and dh � 1.

Both these approximations are valid for the MWA primary beam (Eq. (4.4)) and for a few

hours of correlation time. Thus the second integral (Eq. 4.17) becomes:

exp (−irνk⊥1 cosφdH)

∫
dldmA(l,m) exp

[
−2πi

{(
u− rν

2π
(k⊥1 + k⊥2 sinφdH)

)
l

+
(
v − rν

2π
(k⊥2 − k⊥1 sinφdH)

)
m
}]

It can be expressed in terms of the Fourier transform of the primary beam:

exp (−irνk⊥1 cosφdH) a
[(
u− rν

2π
(k⊥1 + k⊥2 sinφdH)

)
,
(
v − rν

2π
(k⊥2 − k⊥1 sinφdH)

)]
(4.20)

With this the visibility measured at a later time t becomes:

Vν(u, t) = Īν

∫
d3k

(2π)3
δHI(k)eirνk‖ exp (−irνk⊥1 cosφdH)

a
[(
u− rν

2π
(k⊥1 + k⊥2 sinφdH)

)
,
(
v − rν

2π
(k⊥2 − k⊥1 sinφdH)

)]
(4.21)

Correlating this with the visibility measured at t=0 (equation 4.1) gives:

〈Vν(u)V ∗ν′(u
′, t)〉 = Īν

2
∫

d3k

(2π)3
PHI(k)eik‖∆rν exp (−irν′k⊥1 cosφdH)

a

[(
u− rνk⊥1

2π

)
,

(
v − rνk⊥2

2π

)]
a
[(
u′ − rν

2π
(k⊥1 + k⊥2 sinφdH)

)
,
(
v′ − rν

2π
(k⊥2 − k⊥1 sinφdH)

)]
(4.22)

Eq. (4.22) and the discussion in this section allows us to interpret Figure 4.1–4.3. If φ = 0,

or the observatory is located at the equator, then the trajectory of sources around the phase
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Figure 4.12: Illustration of new lmn coordinate system

center in a drift scan is pure translation; for any non-zero φ the motion is a combination

of rotation and translation (Eq. (4.19). For pure translation, one obtains Figure 4.1, or

the decorrelation time scale is determined solely by the extent of the primary beam. The

decorrelation time scale is shorter for any non-zero φ (Figure 4.2, 4.3, and 4.6) and depends

on the baseline, as already noted in section 4.2.

MWA is not located at the equator but we show below that, even for an observatory not

located at the equator, if the phase center is shifted to an equatorial position one can remove

the rotation of sources in the coordinate system constructed for the new phase center. For

simplicity we construct a coordinate system around the local meridian but our conclusions

remain valid for any phase center along the equator.

For a phase center that lies on the local meridian with angular separation θ from the

zenith at the observatory (Figure 4.12), the new set of coordinate system is obtained by a

single rotation θ of the m and n axes about l as shown in the figure 4.12. Thus the new
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coordinates can be expressed as:
l′

m′

n′

 =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ



l

m

n

 (4.23)

Substituting l,m,n values from equation (4.17) we get:

l′ = cos δ sinH

m′ = cos δ cosH sin(θ + φ)− sin δ cos(θ + φ)

n′ = cos δ cosH cos(θ + φ) + sin δ sin(θ + φ) (4.24)

We illustrate the difference between the two coordinate systems with a set of point sources

with given initial positions (hour angle and declination) and compute source trajectories in

both lmn and l’m’n’ coordinates. The unprimed coordinates are for a zenith scan at the

location of the observatory. The primed coordinates are for a phase center which is at

equatorial position at the meridian. In this case, for on observer situated at latitude φ, the

angle of rotation θ = −φ. For instance for an observer at latitude φ = 30◦N, rotation angle

is θ = −30◦.

Ten sources are chosen randomly within declination ±10◦ of the center of the primary

beam and all with initial hour angle -2h. The sources are allowed to drift past the primary

beam for a total drift duration of 4 hours. The trajectories are shown figures 4.13 and 4.14.

A contour plot of the primary beam is also included in each figure.

Using the new primed coordinate system instead of the previous one with phase center

at zenith at the observatory, one obtains the expression for the visibility correlation function

as:

〈Vν(u)V ∗ν′(u
′, t)〉 = Īν

2
∫

d3k

(2π)3
PHI(k)eik‖∆rν exp (−irν′k⊥1 cos(θ + φ)dH)

a

[(
u− rνk⊥1

2π

)
,

(
v − rνk⊥2

2π

)]
a
[(
u′ − rν

2π
(k⊥1 + k⊥2 sin(θ + φ)dH)

)
,(

v′ − rν
2π

(k⊥2 − k⊥1 sin(θ + φ)dH)
)]

(4.25)

Eqs (4.25) and (4.22) are the main results of this work.
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Figure 4.13: source trajectories in lmn coordinate system (phase center at zenith) for an

observer at latitude −30◦

Figure 4.14: source trajectories in l’m’n’ coordinate system (phase center shifted to equator)

for the same observer as in Figure 4.13
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4.6 w-term and other assumptions

We have neglected the w-term in our formalism. In this section, we attempt to assess the

possible impact of this term. The inclusion of w-term changes the visibility expression to:

Vν(u) =

∫
A(~θ)Iν(~θ)e−i2π(ul+vm+w(1−n))dΩ (4.26)

Here n = (1 − l2 − m2)1/2. The solid angle dΩ = dldm/(1 − n). For MWA primary

beam we can use the flat sky approximation 1/2(l2 + m2) � 1 (Figure 4.13 and 4.14).

As noted above this approximation might break down when regions close to horizon are

tracked. However, it remains a good approximation for zenith drift scan. We also make the

simplifying assumption that the primary beam is a Gaussian: A(l,m) = exp(−(l2+m2)/θ2
0);

this allows us to make analytic estimates.

From Eq. (4.25), including the w term, the visibility at any time t can be written as (we

assume θ = 0, or a zenith scan):

Vν(u, v, w; t) = Īν

∫
d3k

(2π)3
δHI(k)eirνk‖ exp (−irνk⊥1 cosφdH)

×
∫
dldmA(l,m) exp

[
−2πi

{(
u− rν

2π
(k⊥1 + k⊥2 sinφdH)

)
l

+
(
v − rν

2π
(k⊥2 − k⊥1 sinφdH)

)
m− 1

2
w(l2 +m2)

}]
For a Gaussian primary beam, the integral over angles can be computed analytically by

extending the integration limits from −∞ to ∞ which is permissible as the primary beam

has a narrow support. This gives us:

Vν(u, v, w; t) = Īν

∫
d3k

(2π)3
δHI(k)eirνk‖ exp (−irνk⊥1 cosφdH)

×
(
π

q

)
exp

(
−a2

1/(4q)
)

exp
(
−a2

2/(4q)
)

(4.27)

Here, for an zenith scan, a1 = [u− rν
2π (k⊥1+k⊥2 sinφdH)] and a2 = [v− rν

2π (k⊥2−k⊥1 sinφdH]

and q = ( 1
θ20
− iwπ). Eq. (4.27) shows that the main impact of the w-term is to make the

primary beam term complex. The w-term results in the information being distributed

differently between the real and imaginary part of the visibility. If we consider just the real

part of the visibility, the primary beam appears to shrink by a factor: 1/(1+π2w2θ4
0), which

110



CHAPTER 4. DRIFT SCAN METHOD

is indicative of the well-known result that the presence of w-term decreases the angular area

that can be imaged.

The visibility correlation is computed to be:

〈Vν(u, v, w)V ∗ν′(u
′, v′, w′; t)〉 = Īν

2
∫

d3k

(2π)3
PHI(k)eik‖∆rν exp (−irν′k⊥1 cos(φ)dH)

×
(
π

p

)(
π

p′

)
exp

(
−a

2
1

4p

)
exp

(
−a

2
2

4p

)
× exp

(
− a

2
3

4p′

)
exp

(
− a

2
4

4p′

)
(4.28)

Here a3 = [u′ − rν
2πk⊥1], a4 = [v′ − rν

2πk⊥2], p = (1/θ2
0 + θ2

0w
2π2), p′ = (1/θ2

0 + θ2
0w
′2π2).

For w,w′ = 0, Eq. (4.28) reduces to Eq. (4.5) for a Gaussian beam. One of the important

conclusions of Eq. (4.28) is that the inclusion of w-term doesn’t alter the nature of coherence

of visibilities over time. The main impact of the w-term is to effectively shrink the size of

primary beam from θ2
0 to 1/p. It can be shown that the visibility correlation scales as the

primary beam (e.g. Eqs (11)–(13) of Bharadwaj & Sethi (2001)), and therefore, for non-zero

w, the correlation of raw visibilities results in a decrease in the signal. We note that for near

coplanar array such as MWA, this effect is negligible for zenith drift scans.

An important application of Eq. (4.28) occurs in computing the sensitivity of the detec-

tion of the HI signal in the tracking mode (dH = 0 for the tracking case). As described

in section 4.3.1, we assume all the visibilities in a narrow range of baselines to be coher-

ent. However, these visibilities are computed at different times while tracking a region and

therefore correspond to different values of w. Eq. (4.28) allows us to compute the loss of

this correlation.

The impact of w-term can be tackled using well-known algorithms based on facet imaging

or w-projection (for details see e.g. Cornwell et al. (2008)). In other words, if raw visibilities

are correlated then we expect a small loss of signal. However, if the raw visibilities are first

treated by facet imaging then the impact of w-term can be reduced for either drift scans

and tracking. We hope to return to this issue in future work.

Throughout this work we assume the primary beam to be given by Eq. (4.4). As noted

above, this assumption is only valid for a phase center fixed to the zenith at the location of

MWA. If the phase center is moved to a point on the sky that makes an angle δ with the

zenith then the projected area in that direction scales as cos δ and the primary beam scales
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as 1/cosδ. As noted above the HI signal scales as the primary beam. The antenna gain

K (Eq. (4.9)) scales as the effective area of the telescope or as the inverse of the primary

beam. As the error on the HI visibility correlation scales as the square of the antenna gain

(Eq. (4.9)), the signal-to-noise for the detection of the HI signal degrades as ∝ cos δ. For

instance, an equatorial drift scan would result in a loss of a factor of roughly 1.2 in signal-

to-noise as compared to the zenith scan. This loss of sensitivity is severer for the tracking

case if regions far away from the zenith are tracked. We note that our conclusions based on

the cases considered in this chapter are not altered by this loss.

4.7 Conclusions

The main goal of this work is to investigate the potential of the drift scan technique in esti-

mating the EoR signal. Drift scans introduce a new dimension to the issue: the correlation

between visibilities in time domain. Here we present a formalism which uses this correlation

to determine the EoR signal.

The important results are as follows:

• The visibilities measured at different times by the same pair of antennas in a drift scan

are correlated for up to 1 hour for equatorial scans (Figure 4.1). The decorrelation

time scale depends on the choice of phase center. It is maximum for an equatorial

zenith drift or for equatorial phase center. For such scans, the decorrelation time scale

is independent of the baseline length. For other scans the decorrelation times scale is

shorter and depends on the baseline vector (Figure 4.2–4.3). However, a fraction of

these baselines correlate with other baselines at a different time (Figure 4.5).

• We compute the expected error on the visibility correlation for drift scans and compare

with the expected noise in the tracking case (Figure 4.9). Our results show that the

noise is comparable in the two cases and the drift scan might lead to a superior signal-

to-noise for equatorial scans.

• The drift scan technique also opens another avenue for the extraction and subtraction

of foregrounds: the EoR signal is statistically homogeneous while the foregrounds
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might not share this property. We investigate the potential of this possibility using a

set of bright point sources (figure 4.10).

Our results suggest that drift scans might provide a viable, and potentially superior,

method for extracting the EoR signal. In this chapter, we present mainly analytic results

to make our case. In the future, we hope to return to this issue with numerical simulations

and direct application of our method to the MWA data.
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Chapter 5

Summary and Conclusions

The detection of the redshifted HI from the Epoch of Reionization is an outstanding aim of

modern observational Cosmology. Although low frequency radio interferometers provide a

window to measure HI power spectrum, the apparent straightforward methods are restricted

due to various issues. First, the predicted signal is extremely weak (∼ 10 mK) in the presence

of strong foregrounds (Synchrotron emission from our galaxy, extragalactic radio sources)

which are 3 to 4 orders of magnitude higher than the expected signal. Second, to reduce

the thermal noise and reach the required sensitivity, data of very long duration is needed

to be carefully analysed. This requires a stable instrument with preferably constant system

parameters.

Statistical detection of the HI signal has been a major science goal for present day

and upcoming radio interferometers like MWA, LOFAR, PAPER, HERA, GMRT, SKA.

With all these worldwide efforts going on, it is extremely important to work on various

methodologies to extract the HI power spectrum from observational data and study possible

ways to minimize the foreground effects. In this thesis work we have primarily investigated

two methods, one is based on the ‘delay spectrum’ approach for tracking observations and

the other focuses on the ‘Drift scan’ methodology.

The use of radio interferometers to estimate the underlying power spectra has been suc-

cessfully employed for CMB data analysis (Hobson et al. (1995)). This method has also

been suggested as a possible probe of the intensity correlations of the redshifted HI line,
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including from the EoR (Bharadwaj & Sethi (2001); Datta et al. (2007); Bharadwaj & Ali

(2005)). In chapter 2, we review the relation between the radio interferometric variables

and EoR observables. We show that the HI power spectrum PHI(k) can be estimated from

the correlation of observed ‘visibilities’ which are the primary data measurements of an

interferometer. The ‘visibility correlation’ function (Eq. 2.10) effectively captures the fluc-

tuation in HI signal in terms of PHI(k). We have particularly considered an approach based

on the ‘delay space’ technique. In Eq. 2.18 the linear relationships between the observable

parameters (uν , τ) and Fourier space components of power spectrum are shown. Eq. 2.18

also describes the k modes which can be accessed by the interferometer, and such estimates

can be obtained from the baseline distribution and frequency range of observation of the

instrument. The shortest and longest baselines probe the smallest and largest value of k⊥;

the limits on k‖ are obtained from the bandwidth and frequency resolution information. In

‘delay space’ approach, the foregrounds can be in principle separated from the HI signal

owing to their fundamental difference in spectral behaviour. Foregrounds tend to have a

smooth spectral characteristics, whereas the HI signal decorrelates fast with frequency. This

opens up a window in Fourier space to study the HI power spectrum as the foregrounds

are isolated in a ‘wedge’ shaped region (Fig. 2.5). The region beyond the foreground wedge

(‘EoR window’) can be assumed to be free from any foreground contamination, and only

consisting of HI signal and thermal noise.

‘Delay spectrum’ approach is a special variant among the visibility based power spectrum

estimators. In this approach the observed interfometric data—visibilities for each antenna

pair as a function of frequency—is Fourier transformed along the frequency axis. The Fourier

conjugate variable effectively captures signal delay between antenna pairs, which allows one

to isolate foregrounds. In the context 3d HI power spectrum this variable can be related to

cosmological distance along line of sight. This strategy has been applied for redundant drift

scan observations. In chapter 3, we propose a unique method ‘Delay Spectrum with Imaging

Arrays (DSIA)’ to construct the ‘delay spectrum’ for non redundant imaging arrays. In this

work we have taken into account two effects of a wide beam for a tracking observation. In

particular our aim is to assess how these effect alter the correlation of visibilities produced

by the HI signal. The impact of w-term is discussed in section 3.1. Here we show that
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the inclusion of w-term tends to reduce the signal but also increases its correlation length

|u − u′|. The former effect dominates in our case. We also present several analytic results,

using our approach, which are known in the literature, e.g the primary beam scales as 1/
√
w

for large w. We also take into account another wide field effect: the distortion of intensity

pattern in a tracking run. This effect is known in the literature and can be illustrated with

point sources (e.g. Perley 1999, chapter 19). During a tracking run point sources change

their position with respect to the phase center and the sources further away form the phase

center move faster. Their nonuniform stretching distorts the intensity pattern. In this work,

we construct a coordinate system which is time dependent and it allows us to compute the

correlation of visibilities produced by the HI signal at two different times. These wide field

effects are used to weigh the measured visibilities as the HI signal normalization is defined

for w = 0, and t = t′ (equal time correlation) (Eq. 2.19). The corresponding weights are

defined in Eq. 3.13 for non-zero w and t 6= t′. The aim of applying these weights is to link

the measured visibilities correlations with the 3D HI power spectrum.

We apply this method to 3-hours of tracking observations with MWA from EoR1 field.

We present both 2d (k⊥, k‖) and 1d (k) power spectrum from this analysis. This is the

first demonstration in literature on how the ‘delay spectrum’ approach can be implemented

for imaging arrays. The power spectra for both XX and YY polarizations are shown for

calibrated and residual visibilities in Figures 3.8 and 3.9. Our analysis clearly demonstrates

the isolation of the foregrounds in a wedge shaped region and the existence of the ‘EoR

window’. MWA has low angular resolution, so foreground isolation is particularly useful for

MWA like instruments. We also observe improvement of sensitivity in the ‘EoR window’

with increasing duration of data. Maximum foreground contamination occurs for low k‖

values. k‖ = 0 is the most foreground affected mode, power level of this mode being

1014−1015mk2(Mpc/h)3. The outcomes of the method are in good match with other power

spectrum pipelines within MWA EoR collaboration. We also compare our results with a

full foreground + thermal noise only simulation in Fig. 3.11. Jacobs et al. (2016) have done

a detailed comparison between other pipelines and find that the 1d power spectra vary by

up to an order of magnitude depending on the pipeline. Our results–the power spectrum

magnitude in the foreground wedge and EoR window and the 1d power spectrum–are within
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this range.

As noted above the HI signal from EoR is extremely weak with added complications

of strong foregrounds. This means the statistical detection would require careful analysis

of long stretches of (∼ hundreds of hours) data with modern radio interferometers. This

requires great instrument stability with large volume data to reduce the thermal noise, in

addition to the complexity of measuring and subtracting the foregrounds. The standard

technique of tracking a region on sky requires constant change in the pointing center and

primary beam. This might not be favourable for any EoR experiments. An alternative

method is ‘drift scan’ where the pointing center is fixed to a particular point on the sky

(preferably zenith) and observation is carried out with variable sky pattern. The main

advantage of this method is the invariant shape of primary beam. We have investigated

the prospects of Drift scan strategy as a viable approach for EoR experiments. We show

that drift scan introduces a new dimension to the problem as the visibilities might remain

correlated for a considerable amount of time, which can be used as an advantage for power

spectrum estimation. We calculate the ‘visibility correlation’ function as a function of time

for HI signal. We find that the HI signal remains correlated for a long duration (upto 1 hr)

depending on the pointing center of the instrument. The correlation time scale is maximum

for equitorial scans. The decorrelation time scale is dependent on the choice of the phase

center. For equitorial zenith drift scans, the decorrelation time scale is independent of the

baseline length. For other cases the timescale also depends on the baseline vector. This

strong correlation in time may be used as an additional feature while calculating the power

spectrum. We have computed the error on ‘visibility correlation’ function for drift scans and

compared with the expected noise of tracking case, which suggest that detection of HI may

be possible with ∼ 900 hours of observation using MWA in Drift scan mode with comparable

or better sensitivity than the tracking case with added advantage of stability of the system.

Drift scan also provides possible extraction and subtraction strategy of foregrounds as HI

signal is statistically homogeneous and foregrounds do not share this property.

Based on our efforts, there are multiple possible future avenues of research that can be

pursued to detect the cosmological 21cm signal with modern and upcoming radio interfer-
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ometers (MWA, LOFAR, HERA, SKA). We now discuss possible extensions of this thesis

work and future plans related to this research.

Continuation of ‘delay spectrum’ methodology: We have successfully developed the

’delay spectrum’ methodology for tracking interferometric observation and applied it on

3 hrs of MWA data in this thesis work. However, theoretical predictions suggest the de-

tection of EoR might be possible with hundreds of hours of observation with present day

radio interferometers. This project can be carried out as continuation of ‘delay spectrum’

estimation from longer tracking observation. Based on the existing attempts and as a con-

tinuation of this work we would analyse larger datasets with this methodology. We would

like to begin with analyzing 50 hours of data from MWA. This would involve working on

building more sophisticated algorithms and pipelines as analysing large datasets comes with

the cost of increasing computing power. Being generic, our method can be applied to data

from other interferometers like LOFAR, PAPER data, etc. In the near future we also plan

to analyse identical datasets for more apt comparison with other power spectrum pipelines

in literature.

Drift scan pipeline: As mentioned earlier, the challenging part in EoR study is the de-

tectability. The traditional method of tracking a region on the sky results in a changing

primary beam along with changing system parameters in the process of tracking. This could

lead to many artrifacts in the resulting power spectra. An alternate method of observation

is the drift scan. The most distinct advantage of this technique is the stability of the sys-

tem. We have shown (Paul & Sethi et al. (2014)) that drift scans might provide a viable,

and potentially superior, method for extracting the EoR signal. As a continuation of this

effort we are currently working on building a pipeline to analyse the ‘Drift scan’ data for

widefield instruments like MWA. The pipeline developed for the drift scan will be applied

first to simulated observation including various components like bright point sources, diffuse

sources, thermal noise and model EoR signal. This will be extended by applying it to real

observations by MWA. The cross comparison between simulations and real observation will

provide greater insight into the problem and will allow us to infer the prospects of the drift

scan for the present and future EoR experiments.

Beyond Power spectrum, Three point correlation / Bispectrum studies: The ob-
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served large scale structure today is believed to have originated from primordial density

fluctuations which were initially Gaussian. In the process of gravitational instability to

form objects, early star formation and the formation and expansion of the HII bubbles,

various non-Gaussian effects are expected to arise (Furlanetto et al. (2006)). In this thesis,

we have only focussed on power spectrum or two-point correlation studies. For CMB studies

the power spectrum depicts an excellent description of statistical properties of the Universe

as the related conditions were highly Gaussian. However given the nature of the reionization

process, the HI signal from EoR is expected to be non-Gaussian in nature. The Gaussian

approximation holds only for scales where PHI ∝ Pδδ (Cooray (2005)). The evolution of the

HI signal developes skewness as a function of redshift (Harker et al. (2009)). The lowest

order statistics for the quantification of these non-gaussian features is three point correlation

function, and its Fourier transform, the bispectrum. The three point correlation can provide

important information on the evolution of large scale structure. These studies so far are re-

stricted to low redshift case (z<1) as they are based on galaxy surveys which are limited

to low redshifts only. It may be possible to measure the three point correlation function

during reionization epoch from radio interferometric observations. The bispectrum or the

non-gaussianity is parametrized by a dimensionless parameter fNL. Recent CMB anisotropy

bispectrum measurements put very stringent constraints on primordial non-Gaussianity:

fNL = 2.7 ± 5.8 (P. A. R. Ade et al. (2013)). The HI signal from the EoR can in principle

also put further constraints on this parameter.

The 21 cm Cosmology holds highly promising prospects in modern observational Cos-

mology. In past few years enormous efforts have been put towards detection of HI from the

reionization epoch, both on instrumental and data analysis fronts. This endeavour is similar

to CMB research in many ways except the bigger observational challenges at lower radio fre-

quencies. Presently operational interferometers like MWA, LOFAR, PAPER are expected to

detect the statistical fluctuation of HI with hundreds hours of observation. Among the up-

coming instruments HERA is a second generation radio interferometer which combines the

expertise and lessons learned from MWA and PAPER. The primary science goal of HERA is

statistical detection of HI signal and it has the ability to image large scale structures during
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and post reionization. It is expected to be operational in next few years. In the next decade

the SKA would be operational, which is expected to give a huge leap in sensitivity; SKA

also has the ability of imaging during reionization. The EoR research is likely to remain

an important frontier of cosmology in the near future. The richness of information that is

likely to emerge from this venture on the evolution of the Universe makes this apparent long

journey a worthwhile endeavour.
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