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How multiple supernovae overlap to form superbubbles

Naveen Yadav,1‹ Dipanjan Mukherjee,2 Prateek Sharma1‹ and Biman B. Nath3

1Department of Physics & Joint Astronomy Programme, Indian Institute of Science, Bangalore 560012, India
2Research School of Astronomy & Astrophysics, Mount Stromlo Observatory, ACT 2611, Australia
3Raman Research Institute, Sadashiva Nagar, Bangalore 560080, India

Accepted 2016 September 30. Received 2016 September 29; in original form 2016 March 2

ABSTRACT
We explore the formation of superbubbles through energy deposition by multiple supernovae
(SNe) in a uniform medium. We use the total energy conserving, 3D hydrodynamic simulations
to study how SNe correlated in space and time create superbubbles. While isolated SNe fizzle
out completely by ∼1 Myr due to radiative losses, for a realistic cluster size it is likely that
subsequent SNe go off within the hot/dilute bubble and sustain the shock till the cluster lifetime.
For realistic cluster sizes, we find that the bubble remains overpressured only if, for a given ng0,
NOB is sufficiently large. While most of the input energy is still lost radiatively, superbubbles
can retain up to ∼5–10 per cent of the input energy in the form of kinetic+thermal energy till
10 Myr for interstellar medium density ng0 ≈ 1 cm−3. We find that the mechanical efficiency
decreases for higher densities (ηmech ∝ n

−2/3
g0 ). We compare the radii and velocities of simulated

supershells with observations and the classical adiabatic model. Our simulations show that the
superbubbles retain only � 10 per cent of the injected energy, thereby explaining the observed
smaller size and slower expansion of supershells. We also confirm that a sufficiently large
(� 104) number of SNe are required to go off in order to create a steady wind with a stable
termination shock within the superbubble. We show that the mechanical efficiency increases
with increasing resolution, and that explicit diffusion is required to obtain converged results.
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1 IN T RO D U C T I O N

H I holes, shells, rings, expanding cavities, galactic chimneys, and
filaments are ubiquitous structures which are embedded in the large-
scale gas distribution of a galaxy. Heiles (1979) identified large cav-
ities in the local interstellar medium (ISM) with energy requirement
of �3 × 1052 erg as supershells. Our Solar system is itself embed-
ded in such a cavity (radius ∼100 pc) filled with hot (∼106 K)
and tenuous (n ∼ 5 × 10−3 cm−3) plasma (Sanders et al. 1977;
McCammon et al. 1983) known as the local hot bubble (LHB).

When the size of a superbubble becomes comparable to the galac-
tic H I scale height, it may break out of the galactic disc if the shell is
sufficiently fast (e.g. Mac Low & McCray 1988; Roy et al. 2013) and
inject energy and metals into the galactic halo. The widely accepted
model of galaxy-scale superwinds involves injection of mechanical
energy by massive stars in the form of radiation (L�), stellar winds
(Lw), and supernova (SN) explosions (ESN ∼ 1051 erg). Clearly,
such large cavities cannot be created by either the wind from a
single massive star or the SN explosion of a single star. Further,
it is known from observations of O-type stars in the Galaxy that
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∼70 per cent of them are associated with clusters and OB associ-
ations and a very small fraction of the known O-stars are isolated
(Chu & Gruendl 2008). Out of the remaining 30 per cent, more than
one-third are runaway stars which have been ejected in close grav-
itational encounters (Gies 1987). Hence, the most plausible mech-
anism for the formation of large superbubbles is quasi-continuous
energy injection from multiple stars. The expanding shells of each
individual star/SN merge to form a large-scale bubble known as a
superbubble.

Pikel’Ner (1968) and Avedisova (1972) studied the interaction
of a strong stellar wind with the ISM. The circumstellar shell en-
ters the snowplow phase when the radiative cooling time-scale for
the swept gas becomes equal to the dynamical age of the shell.
Weaver et al. (1977) calculated the detailed structure for interaction
of a strong stellar wind with the ISM. Castor, McCray & Weaver
(1975) obtained a solution for the case of continuous energy injec-
tion (at a point) inside a homogeneous medium by a stellar wind
(Lw = Ṁv2

w/2) in the absence of radiative energy losses and found
the presence of a transition region dominated by thermal conduc-
tion between the cold outer layer of the shell (shocked ISM) and
the hot inner layer of the shell (shocked stellar wind). Weaver et al.
(1977) analytically calculated detailed structure of the bubble in var-
ious phases of evolution, including the effects of radiative cooling.
McCray & Kafatos (1987) highlighted that the stellar initial mass
function and stellar ages are such that the impact of mechanical
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energy input from SNe within a star cluster can be well modelled
as a constant luminosity-driven superbubble.

Chevalier & Clegg (1985, hereafter CC85) obtained the steady
wind solution driven by a constant rate of mass and thermal en-
ergy injection within a small spherical volume. Their solution is
subsonic within the injection radius, and beyond that reaches a
constant supersonic speed. They applied their wind solution to un-
derstand the observations of the galactic outflow in M82. Tomisaka,
Habe & Ikeuchi (1981) performed 1D calculations in a medium
with constant particle density. In their calculations, all explosions
occur at the same point in space sequentially inside the cavity cre-
ated by previous SNe. Vasiliev, Nath & Shchekinov (2015) have
recently carried out 3D simulations in which SNe are uniformly
distributed throughout the simulation box. Durier & Dalla Vecchia
(2012) studied the concordance of SNe feedback methods based on
thermal energy deposition and kinetic energy deposition. Sharma
et al. (2014) (hereafter SRNS14) show that the isolated SN, in typ-
ical ISM conditions, loses almost all their mechanical energy by
radiative losses by �0.1 Myr, whereas a sequence of explosions
occurring inside the cavity blown by previous SNe can retain up
to ∼40 per cent of the injected mechanical energy for few tens of
Myr (of the order of the galactic dynamical time ∼50 Myr). Krause
et al. (2013, 2014) have studied the evolution of interacting inter-
stellar bubbles of three massive stars in a uniform medium. Their
key finding is that a larger fraction of energy is retained in the ISM
for more closely packed stars. The hot bubble mostly emits in soft
X-rays below 1.0 keV.

Understanding the impact of massive stars, via their radiation,
winds, and SNe, on the ISM is essential for star and galaxy forma-
tion. Observed star formation is inefficient both locally on molecular
cloud scales (e.g. Krumholz & Tan 2007) and globally on galactic
scales (e.g. Kauffmann et al. 2003). Supersonic turbulence, mag-
netic fields, radiative photoionization and jet feedback from massive
stars, etc., are invoked to explain the inefficiency of star formation
on molecular cloud scales (Krumholz et al. 2014 and references
therein). Because of several complex processes involved, there is
no consensus on the relative contribution of these different mech-
anisms acting on molecular cloud scales. The situation is slightly
better on galactic scales (� 1 kpc) at which thermal SN feedback
seems to be the dominant mechanism for regulating star formation
(e.g. Strickland et al. 2004; De Avillez & Breitschwerdt 2005; Joung
& Mac Low 2006; Creasey, Theuns & Bower 2013; Hennebelle &
Iffrig 2014; Li et al. 2015).

It is well recognized that isolated SNe suffer catastrophic cooling
losses in high-density clouds in which they are born (e.g. Thornton
et al. 1998). In this case, almost all of the injected energy is lost rather
than coupling to the ISM, especially over global dynamical time-
scales (∼10s of Myr). Even when SNe coalesce before each of them
suffer radiative losses (i.e. if the SN rate density is high enough),
they only retain ∼10 per cent of the injected energy (Sharma et al.
2012). Even such a small efficiency of mechanical energy coupling
to the ISM appears more than enough to significantly suppress star
formation on global scales for Milky Way and lower mass galaxies
(e.g. Efstathiou 2000; red dot–dashed line in fig. 4 of Sharma et al.
2012).

Shocks generated by supersonic turbulence (expected within the
dense shell) enhance density perturbations and gravitational insta-
bility locally (e.g. McCray & Kafatos 1987), but turbulence and
magnetic fields in the dense shell, in all likelihood, prevent efficient
global star formation (e.g. Stone & Norman 1992; Mac Low &
Klessen 2004). Since turbulence can only be faithfully captured in
3D, it is necessary to study the ISM using 3D simulations.

The problem of star–ISM interaction involves complex chemical,
ionization/recombination, thermal, and dynamical processes, and it
is necessary to begin with understanding the most important pro-
cesses in some detail. Multi-physics simulations (including gravity,
chemistry, photoelectric heating, molecular physics, and SNe feed-
back) of ISM have been done by many authors (e.g. Gatto et al. 2015;
Martizzi, Faucher-Giguère & Quataert 2015; Walch & Naab 2015;
Walch et al. 2015). In this paper, we ignore all these processes ex-
cept for idealized dynamical and thermal processes associated with
SNe resulting from the death of massive stars. We also ignore mag-
netic fields and thermal conduction, which can greatly modify the
structures with large temperature gradients (e.g. fig. 9 of SRNS14).
We only consider the hot and warm phases of the ISM by turning off
cooling below 104 K, corresponding to the thermally stable warm
neutral medium (WNM) of the ISM. We do not consider the denser
cold neutral phase because: (i) the stable cold phase exists globally
only for a large enough ISM pressure, and hence is unlikely to be
present in substantial amount in galaxies less massive than Milky
Way (Wolfire et al. 1995); (ii) our focus is on feedback at scales
larger than molecular clouds, and we assume that a good fraction of
SN energy is able to leak out (aided by low-density channels formed
due to stellar winds and radiation) into the more uniformly spread
and geometrically thicker warm neutral disc. Thus, this paper is a
generalization of 1D simulations of SRNS14, with a realistic spa-
tial distribution of SNe in 3D. Unlike that work, we also use a total
energy conserving code so that the value of mechanical efficiency
is more accurate.

In this paper, we study the formation of superbubbles using ideal-
ized 3D hydrodynamic numerical simulations of SNe exploding in
an initially homogeneous, isotropic ISM. Ours are among the high-
est resolution uniform-grid 3D simulations of their kind. In Section
2, we describe the physical setup and numerical simulations. In
Section 3.1, we describe the key results from our simulations. Sec-
tion 4 discusses analytic estimates and implications of our work. In
Section 5, we conclude.

2 PHYSI CAL SETUP

We choose an idealized physical setup of a uniform ISM at 104 K,
corresponding to the WNM maintained in thermal balance by pho-
toelectric/photoionization and cosmic ray heating (Wolfire et al.
1995). The Milky Way Giant Molecular Clouds (GMCs) have gas
(H2) densities ranging from 10 to 1000 cm−3 and mean size around
≈10–20 pc, as shown in Roman-Duval et al. (2010). Our scales of
interest are much bigger (�100 pc), corresponding to the WNM.
Thermal energy is injected by SNe going off at random locations
inside a spherical ‘star cluster’ and plasma is allowed to cool due
to free–free and line emission till 104 K. The key aim is to study
the dynamics and thermodynamics of SNe coalescing in the WNM
and to study the conditions for the formation of overpressured su-
perbubbles.

2.1 Simulation setup

We solve the hydrodynamic equations for the evolution of density,
velocity, and pressure in 3D Cartesian coordinates using the static
grid version of the finite volume, conservative, Godunov Eulerian
code PLUTO (Mignone et al. 2007). The mass and energy injected
due to SNe are added as source terms. The grid spacing is taken
to be uniform in x, y, and z directions. We numerically solve the
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following equations:

∂ρ

∂t
+ v · ∇ρ + ρ∇ · v = ρ̇SN(t, x), (1)

∂v

∂t
+ v · ∇v + 1

ρ
∇p = 0, (2)

∂p

∂t
+ v · ∇p + ρc2

s ∇ · v = (γ − 1){ėSN(t, x) − ėrad(t, x)}, (3)

where symbols have their usual meanings, cs = (γ p/ρ)1/2 is the
sound speed, ρ̇SN is the mass density source term, ėSN is the thermal
energy source term mimicking SN feedback (see Section. 2.2), and
ėrad ≡ neni�[T ] (ne is electron number density, ni is ion number
density, and �[T] is the temperature-dependent cooling function) is
the rate of energy loss per unit volume due to radiative cooling. We
use the ideal gas equation

ρε = p

(γ − 1)
(4)

with γ = 5/3 (ε is internal energy per unit mass).
PLUTO solves the system of conservation laws, which can be writ-

ten as

∂u
∂t

= −∇ · � + S, (5)

where u is a vector of conserved quantities, � is the flux tensor,
and S is the source term. The system of equations is integrated
using finite volume methods. The temporal evolution of equation
(5) is carried by explicit methods and the time step is limited by
the Courant–Friedrichs–Lewy (CFL; Courant, Friedrichs & Lewy
1928) condition. The code implements time-dependent optically
thin cooling (ėrad in equation 3) and the source terms (ρ̇SN in equation
1 and ėSN in equation 3) via operator splitting. Our results are
unaffected by boundary conditions because we ensure that our box-
size is large enough such that the outer shock is sufficiently inside
the computational domain. We use the HLLC Riemann solver (Toro,
Spruce & Speares 1994). The solution is advanced in time using
a second-order Runge–Kutta (RK2) scheme and a total variation
diminishing (TVD) linear interpolation is used. The CFL number
is set to 0.3 for numerical stability. The computational domain
is initialized with an ISM of uniform density (ng0), with a mean
molecular weight per particle μ = 0.603 (mean molecular weight
per electron μe = 1.156), and solar metallicity at a temperature
of 104 K.

We have used the cooling module of PLUTO with the solar metal-
licity cooling table of Sutherland & Dopita (1993). The cooling
function is set to zero below 104 K. We do not include self-gravity,
disc stratification, magnetic fields, and any form of gas heating
(except by thermal energy injection due to SNe) in our simulations.

We have two types of simulation setups:

(i) Full box: The full box simulations have a computational do-
main extending from −L to +L in all three directions. Outflow
boundary conditions are used at the boundary of the computational
box (i.e. the planes x = −L, +L, y = −L, +L and z = −L, +L).

(ii) Octant: In octant simulations, the simulation box extends
from 0 to +L along the three directions. We inject SNe in a spherical
‘star cluster’ centred at the origin, and the outcomes are spherically
symmetric in a statistical sense. Therefore, these simulations are
statistically equivalent to the full box simulations, but are computa-
tionally less expensive by roughly a factor of 8. These simulations
are only carried out for a large number of SNe (NOB ≥ 103) be-
cause of a larger spatial stochasticity for small number of SNe; for

small NOB, an octant may have an effective number of SNe, which
is substantially different from NOB/8. For precise mass and energy
budgeting, we account for the actual mass and energy dumped in
by SNe in all cases. Reflective boundary conditions are used at the
faces intersecting within the ‘star cluster’ (i.e. the planes x = 0,
y = 0, and z = 0).

2.2 Supernova energy injection

In our setup, SNe explode within a ‘star cluster’, a spherical region
of radius rcl centred at the origin of the simulation box. Most young
star clusters are �10 pc in size (e.g. see Larsen 1999) but we allow rcl

to be larger. A larger rcl crudely mimics a collection of star clusters
that powers global galactic outflows such as in M82 (O’Connell
et al. 1995). The locations of SNe are chosen randomly, distributed
uniformly within a sphere of radius rcl, using the uniform random
number generator ran2 (Press, Flannery & Teukolsky 1986). SNe
are injected uniformly in time, with the time separation between
successive SNe given by

δtSN = τOB

NOB
, (6)

where τOB (chosen to be 30 Myr) is the lifetime of the OB as-
sociation and NOB is the total number of SNe (which equals the
total number of O and B stars). Ferrand & Marcowith (2010) have
shown that statistically the SN rate is uniform. McCray & Kafatos
(1987) also show that a constant mechanical luminosity is a good
approximation to SN energy injection. Also, it helps to understand
the numerical results with simple analytic calculations.

Each SN deposits a mass of MSN = 5 M	 and internal energy
of ESN = 1051 erg over a sphere of size rSN = 5 pc; the SN energy
injection radius is chosen to prevent artificial cooling losses (see
equation 7 in SRNS14, corresponding to their thermal explosion
model). SRNS14 found that the late time [after a SN enters the
Sedov–Taylor (ST) stage] results are independent of whether SN
energy is deposited as kinetic or thermal energy (see their figs 2
and 3), so we simply deposit thermal energy.

Mass and energy injection from each SN is spread in space and
time using a Gaussian kernel, such that the mass and internal energy
source terms (ρ̇SN in equation 1 and ėSN in equation 3) are propor-
tional to exp(−[t − ti]2/δt2

inj) × exp(−[x − xi]2/r2
SN), where ith SN

is centred at ti in time and at xi in space. The injection time-scale is
chosen to be δtinj = δtSN/10. SN injection with smoothing is found
to be numerically more robust and the results are insensitive to the
details of smoothing. In addition to thermal energy, we deposit a
subdominant amount of kinetic energy because the mass that we
add in each grid cell (equation 1) is added at the local velocity. We
account for this additional energy in our energy budget.

We have carried out simulations with different values of initial
ambient density (ng0), cluster size (rcl), and number of SNe (NOB).
The physical size of the simulation box is chosen according to the
number of SNe and the ambient density (based on the adiabatic
bubble formula of McCray & Kafatos 1987, the outer shock radius
rsb ∝ [NOBt3/ng0]1/5). All our 3D simulations are listed in Table B1
(convergence runs for the fiducial parameters, NOB = 100, ng0 =
1 cm−3, rcl = 100 pc) and Table 1 (all other runs).

3 R ESULTS

3.1 The fiducial run

In this section, we describe in detail the morphology and evolution
of a superbubble for number of SNe NOB = 100, initial gas density
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Table 1. Parameters of our 3D simulations.

NOB ng0 rcl L N δL Sim type δtSN E
‡
inj η

†
mech η

†
O

(cm−3) (×102 pc) (pc) (pc) F/O (Myr) (ESN, 51) (per cent)

100 0.1 1.0 1038 410 2.54 O 0.24 12 12.66 1.00
100 0.3 1.0 876 700 2.50 F 0.24 137 11.37 0.98
100 0.5 1.0 779 620 2.51 F 0.24 137 8.70 0.69
100 0.8 1.0 714 570 2.51 F 0.24 136 6.74 0.61
100 2.0 1.0 698 570 2.45 F 0.24 135 3.28 0.22
100 1.0 0.0 714 580 2.46 F 0.24 123 4.66 0.37
100 1.0 0.7 649 300 4.33 F 0.24 131 4.49 0.41
100� 1.0 1.0 649 512 2.54 F 0.24 136 5.72 0.47
100 1.0 1.5 649 300 4.33 F 0.24 130 3.93 0.36
100 1.0 0.3 601 512 2.35 F 0.24 138 6.38 0.44

1000 1.0 1.0 1136 450 2.54 O 0.024 134 5.34 0.94
1000 2.0 1.0 1055 420 2.51 O 0.024 134 3.17 0.44
1000 3.0 1.0 974 385 2.54 O 0.024 134 1.96 0.21
1000 4.0 1.0 909 360 2.54 O 0.024 134 1.25 0.14
1000 5.0 1.0 876 350 2.50 O 0.024 133 0.83 0.12

104 5.0 1.0 1006 400 2.52 O 0.0024 1408 1.80 0.86
104 6.0 1.0 1006 400 2.52 O 0.0024 1406 1.44 0.58
104 8.0 1.0 974 385 2.54 O 0.0024 1405 1.07 0.16
104 9.0 1.0 974 385 2.54 O 0.0024 1398 0.38 0.08
104 10.0 1.0 860 340 2.54 O 0.0024 1404 0.68 0.07
104 10.0 0.5 649 512 2.54 F 0.0024 16274 1.45 0.44
104 10.0 1.0 649 512 2.54 F 0.0024 16385 1.49 0.48
104 10.0 1.5 649 512 2.54 F 0.0024 15151 1.48 0.47
104 10.0 2.0 649 512 2.54 F 0.0024 13971 1.38 0.45
104 10.0 2.5 649 512 2.54 F 0.0024 13173 1.29 0.43
104 10.0 3.0 649 512 2.54 F 0.0024 12409 1.23 0.44

105 1.0 1.0 2110 850 2.48 O 2.4 × 10−4 16036 4.58 0.92
105 10.0 1.0 1363 550 2.48 O 2.4 × 10−4 15955 1.65 0.92
105 20.0 1.0 1233 490 2.52 O 2.4 × 10−4 15899 1.06 0.83
105 30.0 1.0 1136 450 2.54 O 2.4 × 10−4 15843 0.78 0.47
105 40.0 1.0 1071 425 2.52 O 2.4 × 10−4 15786 0.57 0.09
105 50.0 1.0 1006 400 2.52 O 2.4 × 10−4 15732 0.42 0.05

Notes. ‡The actual energy injected in units of 1051 erg; this can be slightly different from NOBESN because of extra kinetic energy
injection; octant runs should inject ≈ESN/8 as only one octant is simulated.
†ηmech (equation 19) and ηO (equation 13) are averaged over t = 29–30 Myr.
�The fiducial run.

ng0 = 1cm−3, and cluster radius rcl = 100 pc, which we choose
as our fiducial run. The assumed parameters are typical of super-
shells (e.g. Heiles 1979; Bagetakos et al. 2011; Suad et al. 2014),
but as mentioned earlier, rcl is larger than typical cluster sizes. Our
spatial resolution is δL = 2.54 pc (run R2.5 in Table B1). Simu-
lations with different NOB and ng0 evolve in a qualitatively similar
fashion, the differences being highlighted in Section 3.4. Numerical
resolution quantitatively affects our results, although the qualitative
trends remain similar. Strict convergence is not expected because
thermal and viscous diffusion is required to resolve the turbulent
boundary layers connecting hot and warm phases (e.g. Koyama
& Inutsuka 2004). A detailed convergence study is presented in
Appendix B.

Fig. 1 shows the gas density and pressure slices in the midplane
of the simulation domain at times when SNe are effectively isolated
(1.27 Myr) and when they have coalesced (9.55 Myr) to form an
overpressured superbubble. Since the evolution of a single SN is
well known (see e.g. figs 1 and 2 in Kim & Ostriker 2015), in order
to compare with superbubble evolution we just briefly review the
different phases of SN evolution. An SN shock starts in the free-
expansion phase, moving ballistically till the ejecta sweeps up its

own mass in the ISM. The next phase is the well-known adiabatic
ST phase, which transitions to a radiative snowplow phase with a
thin radiative shell. The radius at which an SN enters the ST phase
can be written as

rST ≈ 4.3M
1/3
SN,5n

−1/3
g0,1 pc, (7)

which in all cases is more than twice the grid resolution. Therefore,
in our fiducial run we barely resolve the ST phase of the first few
SNe. The corresponding ST time-scale is

tST ≈ 6 × 10−4M
5/6
SN,5E

−1/2
SN,51n

−1/3
g0,1 Myr. (8)

For SNe going off inside a rarified bubble (in which most subsequent
SNe explode), rST is larger and tST is longer. In the ST phase, the
bubble loses pressure adiabatically. The bubble stops expanding by
∼0.5 Myr after which the interior pressure falls below the ambient
value. In this state, the shock slows down to the sound speed in the
ambient medium and becomes a sound wave. The SN fizzles out by
∼1 Myr. The maximum SN bubble size is � 50 pc.

Various stages of a single SN evolution can be seen in the top
panels of Fig. 1, which show four isolated SNe that have exploded
by 1.27 Myr. The top-left SN (see the projected locations of SNe
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Figure 1. Gas density (left panels; log10ng[cm−3]) and pressure (right panels) snapshots in the z = 0 plane from our fiducial run shown before (top panels)
and after (bottom panels) SNe coalesce. The yellow dots mark the projected location of SNe in the z = 0 plane, with four SNe having exploded by 1.27 Myr
and 31 by 9.55 Myr. Top panels show that the SNe at 1.27 Myr are effectively isolated and even at this short time (say, compared to a galaxy’s dynamical
time) the pressure within their individual bubbles is smaller than the ISM pressure. The bottom panels show the formation of a superbubble due to the overlap
of several SNe. The pressure inside most of the bubble volume, except at the centre, is larger than the ISM value. Note that an SN has gone off just before
9.55 Myr, and it creates a high-pressure sphere right at the centre. Also note that while the density scale is logarithmic, the pressure scale is linear.

in the top-left panel) is the oldest, followed by the bottom left one;
both have faded away, as can be seen from a relatively high den-
sity and low pressure in the bubble region. The other two SNe are
younger. The bottom two panels of Fig. 1 show a fully developed
superbubble; it is impossible to make out individual SN remnants.
Since most stars form in clusters, individual SN remnants are an
exception rather than a norm (e.g. see Wang 2014). Most superbub-
ble volume is overpressured (albeit slightly) relative to the ISM.
Thus, superbubbles as a manifestation of overlapping SNe are qual-
itatively different from isolated SNe.

3.1.1 Global mass and energy budget

A key advantage of using a total energy conserving code like PLUTO

is that energy is conserved to a very high accuracy and we can
faithfully calculate the (typically small) mechanical efficiency of
superbubbles. Fig. 2 demonstrates that our mass injection (mimick-
ing SNe) adds 100MSN by 30 Myr, the intended amount. The energy
added is higher by ≈30 per cent because, as mentioned earlier, the
mass added by the density source term (equation 1) is added at
the local velocity, and hence mass addition leads to the addition of
kinetic energy.
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Figure 2. Energy (thermal + kinetic) and mass injected in the simulation
box (their value at a given time minus the initial value, normalized appropri-
ately) due to SNe as a function of time for the fiducial run. Injected mass and
energy are normalized (5 M	 for mass and 1051 erg for energy) such that
every SN adds 1 unit. Total energy injected is larger than just the thermal
energy put in due to SNe by ≈30 per cent because kinetic energy is injected
in addition to the dominant thermal energy. The insets at top left and bottom
right show a zoom-in of injected energy and mass, respectively. One can
clearly see a unit step in the injected mass and energy for each SN that goes
off.

Fig. 3 shows thermal, kinetic, and total energy efficiency as a
function of time for the fiducial run. Energy efficiency is defined as
the ratio of excess energy (current minus initial) in the simulation
domain and the total energy injected by SNe. The energy efficiency
that is higher at early times decreases and asymptotes to a small
value. Due to efficient cooling, most (≈95 per cent by 30 Myr)
of the deposited energy is lost radiatively. Out of the remaining
five, ≈4 per cent is retained as the thermal energy and 1 per cent is
retained as the kinetic energy of the gas. In terms of the energy de-
posited by a single SN, the total (kinetic+thermal) energy retained
is ≈6 ESN.

3.1.2 Density–pressure phase diagram

A bubble (associated with both an individual SN and a superbubble)
remains hot and dilute for a long time (several Myr) but is not
overpressured with respect to the ISM for a similar duration. The
strength of the bubble pressure compared to that of the ambient
medium is a good indicator of its strength. As pressure decreases
with the expansion of the bubble, it will no longer be able to sustain
a strong forward shock and will eventually degenerate into a sound
wave.

Fig. 4 shows the volume distribution of pressure at all times
for the fiducial run. At t = 0, all the gas is at the ambient ISM
pressure (indicated by the vertical red line at 1.38 × 10−12 dyne
cm−2). Because of a very short-lived high-pressure (ST) phase and
a small volume occupied by the very overpressured gas, the volume
fraction of gas with pressure � 5 × 10−12 is small at all times.
Before few Myr, there is no coherent (in time) structure in the

Figure 3. The fraction (percentage) of injected energy retained as kinetic
energy and thermal energy of gas inside the simulation box. At the end of the
simulation, the gas retains a small fraction, ≈1 per cent and ≈5 per cent of
the total injected energy as kinetic energy and thermal energy, respectively.
The periodic spikes in energies correspond to individual SNe going off. In
the legend, KE stands for the kinetic energy and 
TE for the change in
thermal energy within the computational domain.

Figure 4. Volume distribution of pressure (along horizontal axis; normal-
ized to the initial value p0) at different times (along vertical axis) for the fidu-
cial run. Colour represents the volume fraction (log10(dṽ[p̃]/dp̃); ṽ = v/V ,
where V = 8L3 is the volume of the simulation box; p̃ = p/p0; bin-size
in pressure 
p̃ = 0.007) of different pressures at all times. The vertical
red line at unity corresponds to the large volume occupied by the ambient
unperturbed ISM. The circles connected by a solid line mark the location of
the local pressure maximum on the higher side. Before 5 Myr, a coherent
overlap of isolated SNe has not happened and a distinct structure in the
pressure distribution does not appear.
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Figure 5. Volume distribution of pressure and gas number density (d2ṽ/d log10 ñgd log10 p̃; ṽ = v/V , ñg = ng/ng0, p̃ = p/p0; the bin-size 
 log10 ñg =
0.03, 
 log10 p̃ = 0.01) for the fiducial run at different times. At late times, there are two peaks in the distribution function corresponding to the WNM (ambient
ISM at 104 K) and the hot bubble (at ∼106 − 108 K). At 1.27 Myr, we can see the signatures of non-overlapping SNe fizzling out. Later, after about 5 Myr,
we see the formation of a low density and (slightly) over pressured superbubble. At sometimes, we see streaks with p ∝ n

5/3
g , representing adiabatic cooling

of recent SNe ejecta expanding in the low-density cavity. The white line shows a temperature of 104 K, ‘+’ represents the ambient pressure and density, and
‘x’s at 1.27 Myr represent bubbles corresponding to individual SNe (the bottom-right SN in the top-left panel of Fig. 1 is very young and not clearly seen).

pressure distribution. After overlap of SNe and the formation of a
superbubble, there is a coherent high-pressure peak (shown by the
solid line marked by small circles) in the volume distribution that
decreases with time. Bubble pressure decreases because of radiative
and adiabatic losses. As the input energy is spread over a larger and
larger volume the bubble pressure decreases and eventually (much
later than for an isolated SN) becomes comparable to the ambient
pressure. At this stage, the shell propagates as a sound wave. In short,
the first few SNe behave as if they are isolated, and as their remnants
grow in size they start overlapping and create a superbubble. In
Fig. 4, till 4–5 Myr, the ambient ISM is the most dominant phase.
The overlapping of SNe leads to the formation of a second dominant
branch in the pressure plot, which is at a higher value than the
ambient pressure.

Fig. 5 shows the evolution of gas in the pressure–density plane.
The white plus (+) at ng/ng0, ˜pg/p0 = 1 marks the location of the
ambient ISM. At early times, SNe are isolated as evident from the
multiple bright areas (marked with white ‘x’) in the p − ng distribu-
tion at t = 1.27 Myr. Significant volume is occupied by gas at the
ambient temperature (104 K), which represents dense/isothermal
radiative shells of isolated SNe at early times and weak outer shock
at later times. As the entire cluster volume is filled with hot gas,
it forms an extended hot bubble, and the p − ng plane shows a
bimodal volume distribution in which the shell/ISM gas is on right
and the hot (∼108 K) and rarified gas in the bubble is on left. As

the superbubble ages, the hot (∼108 K) and warm (∼104 K) phases
reach rough pressure equilibrium (most of the superbubble volume
is still slightly overpressured; see Fig. 4). However, the bubble gas
density, even at late times, is ∼4 orders of magnitude smaller rel-
ative to the ambient ISM value. In some snapshots (bottom three
panels), we see a straight line with slope equal to γ = 5/3 stretching
from low density/pressure to the peak in the hot gas distribution.
These streaks represent adiabatic hot winds launched by continuous
(for a short time δtinj) SN energy injection (see Section 2.2) inside
the dilute hot bubble (see the very low-density/pressure sphere at
the centre in the bottom panels of Fig. 1). The curved streak at low
pressure/density is due to smaller energy injection at the beginning
(and end) of SN energy injection (recall that energy injection fol-
lows Gaussian smoothing in time; see Section 2.2). These streaks
are an artefact of our smooth SN energy injection.

3.1.3 Average profiles and overpressure fraction

The radius evolution of a single SN remnant inside a uniform
medium is well known. The radius expands differently with time
in each of the free-expansion, ST, pressure-driven snowplow, and
momentum-conserving phases (e.g. Cox 1972). The radius evo-
lution of a superbubble is qualitatively different from the radius
evolution of a single SN because of the continuous injection of
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mechanical energy till the lifetime of the OB association (e.g.
SRNS14). A large bubble pressure is maintained until the energy
(only a small fraction of it is retained due to radiative losses) is
spread over a large volume.

The bubble retains only a fraction of injected mechanical energy
because of radiative losses. For simplicity, the effects of radiative
losses can be incorporated in the adiabatic relations using a me-
chanical efficiency factor, ηmech. The superbubble radius (rsb) and
velocity (vsb = drsb/dt) evolve with time as (equation 5 of Weaver
et al. 1977)

rsb ≈ 58 pc η
1/5
mech,−1

(
ESN,51NOB,2

τOB,30ng0

)1/5

t
3/5
Myr, (9)

vsb ≈ 34 km s−1 η
1/5
mech,−1

(
ESN,51NOB,2

τOB,30ng0

)1/5

t
−2/5
Myr , (10)

where ESN, 51 is the SN energy scaled to 1051 erg, NOB, 2 is the number
of OB stars in units of 100, τOB, 30 is the age of OB association in
units of 30 Myr, ng0 is the ambient gas density in cm−3, and tMyr is
time in Myr. The mechanical energy retention efficiency ηmech, -1 is
scaled to 0.1. The supershell velocity can be expressed in terms of
its radius as

vsb ≈ 34 km s−1

(
ηmech,−1ESN,51NOB,2

τOB,30ng0r
2
sb,58pc

)1/3

. (11)

The superbubble weakens after the outer shock speed becomes
comparable to the sound speed, i.e. vsb ≈ c0 (c0 ≡ [γ kBT0/μmp]1/2

is the sound speed in the ambient ISM). Thus, using equation (10),
the fizzle-out time is

tfiz ≈ 21.3 Myr η
1/2
mech,−1

(
ESN,51NOB,2

τOB,30ng0

)1/2

c
−5/2
0,1 , (12)

where c0, 1 is the sound speed in the ambient medium in units of
10 km s−1.

Fig. 6 shows density, pressure, and x-velocity profiles along the
x-axis for the fiducial run at the same times as the panels in Fig. 5.
The evolution of various profiles is as expected. The shell becomes
weaker and slower with time and eventually propagates at roughly
the sound speed of the ambient medium (c0). Time evolution of the
angle-averaged (unlike Fig. 6, which shows a cut along x-axis) inner
and outer shell radii (see Appendix A) is shown in Fig. 7.

The radius and velocity evolution of bubbles are critically de-
pendent on the presence of radiative losses (encapsulated by ηmech;
Weaver et al. 1977). In order to assess the strength of a superbubble,
it is useful to define an overpressure volume fraction (ηO) as

ηO = V>

V> + V<

, (13)

where V> is the volume occupied by gas at pressure p > 1.5p0 and
V< is the volume occupied by gas at p < p0/1.5 (p0 is the ambient
ISM pressure; the choice of 1.5 is somewhat arbitrary). Thus ηO

gives the fraction of volume occupied by high-pressure, hot, and
dilute bubble gas. Since we exclude gas close to the ambient ISM
pressure in its definition, ηO is independent of the computational
domain and characterizes the bubble pressure. In Fig. 7, we also
show the evolution of the hot volume fraction (ηO) as a function
of time for the fiducial run. The hot volume fraction drops initially
when SNe have not overlapped, but reaches unity after ≈3 Myr, and
starts decreasing rapidly after radiative losses become significant
and the bubble pressure becomes comparable to the ISM pressure
(or equivalently, the shock velocity becomes comparable to the

Figure 6. Gas density, pressure and x-velocity profiles along the x-axis
(y = z = 0) for the fiducial run at various times. The swept-up shell density
decreases with time as the superbubble weakens and eventually the shell
propagates at the sound speed in the ambient medium (c0 ≈ 15 km s−1). As
seen in Fig. 1, the bubble density is ∼4 orders of magnitude smaller than the
ambient value. The main bubble pressure decreases with time, except during
SN injection, during which a high-pressure core and an adiabatic wind with
large velocity and small pressure (similar to CC85) forms (the streaks seen
in some panels of Fig. 5 are also a signature of this). The inset in the lowest
panel shows that the dense shell propagates at about half the sound speed
in the ambient ISM, but the velocities in the low-density bubble are much
higher.

Figure 7. The inner (green line) and outer (red line) radius of the super-
bubble shell as a function of time for the fiducial run. The blue line shows
the overpressure fraction (ηO) as a function of time. The superbubble starts
to fizzle out when the overpressure fraction starts falling from ≈1, which
happens around 15 Myr. The average outer shell velocity is comparable to
the ISM sound speed; the inner shell speed is smaller. The bottom panel of
Fig. 6 shows that at late times the shell material moves at ≈c0/2, similar
to the inner shell speed. The outer shell velocity is higher, ≈c0, consistent
with the shell density decreasing in time.

MNRAS 465, 1720–1740 (2017)



1728 N. Yadav et al.

Figure 8. A density contour plot and a quiver plot showing the projection of the velocity unit vector (v̂) in the x–y plane for the fiducial simulation with (right
panel) and without (left panel) conduction. Note that in the simulation with conduction, there is a region ≈ 100–150 pc in which the flow is directed inwards,
whereas such a flow is absent in the run without conduction; this flow occurs as conduction leads to evaporation of material from the shell into the bubble. The
parameters of these runs are: number of SNe NOB = 100, initial gas density ng0 = 1 cm−3, and cluster radius rcl = 100 pc. The snapshots are at ≈14.33 Myr.

ISM sound speed). The nature of the hot volume fraction evolution
is discussed in more detail in Sections 3.4.2 and 4.1.

3.2 Effects of thermal conduction

We have done the fiducial run with the isotropic thermal conduction
module in PLUTO code, which implements Spitzer and saturated
thermal conduction based on super time stepping (STS; Alexiades,
Amiez & Gremaud 1996; νSTS = 0.01). Matter evaporates from the
cold shell to the interior of the hot bubble (made of shocked SNe)
due to thermal conduction, as shown analytically by Castor et al.
(1975) (see also the right panel of fig. 9 in SRNS14). Fig. 8 shows
the density snapshots and projected velocity unit vectors for the
fiducial run with (right panel) and without (left panel) conduction.
The density in the hot bubble is much higher with conduction due
to the evaporative flow from the dense shell to the hot bubble, as
indicated by the velocity unit vectors in the right panel. Such a flow
is absent in the run without conduction. The maximum temperature
reached by the gas with conduction is much smaller than without
it (cf. Fig. 19). Overall, we find that the thermal conduction does
not affect the dynamics of the shell (e.g. its radius and velocity) but
affects the temperature distribution of gas within the shell, which
can influence its emission/absorption signatures. Since superbubble
dynamics is unaffected by thermal conduction, we do not include it
in the rest of our simulations.

3.3 Comparison with 1D simulations

Most of SN and superbubble studies are carried out in spherical
1D geometry because these systems are spherical (although only
crudely) and very high resolution runs can be done. We want to
compare our more realistic 3D simulations (albeit with much lower
resolution compared to the modern 1D simulations) with 1D runs
to highlight the similarities and differences between the two.

For a realistic comparison of 1D spherical and 3D Cartesian runs,
we run a 3D simulation in which we explode all SNe at the origin
(i.e. rcl = 0). Both the 1D and 3D runs have the same resolution
as the fiducial run (δL = δr= 2.54 pc; the only difference between
this 3D simulation and the fiducial run is that here rcl = 0). As
discussed in Section 3.1.1, the amount of total mechanical energy
injected in the box is slightly larger than NOB × ESN because of
extra kinetic energy that we put in due to mass addition at the local
velocity. For an exact comparison of our 1D and 3D runs, we match
the total energy injected in our 1D and 3D runs (by slightly scaling
ESN for the 1D run). Three panels of Fig. 9 (except the bottom-
right one) compare the time evolution of 1D and 3D simulations.
The top two panels show that the total radiative losses are slightly
higher (by ≈3 per cent) for the 1D spherical run (correspondingly,
mechanical energy in the box is slightly smaller), and they are sim-
ilar for the 3D Cartesian simulations with rcl = 0 and rcl = 100 pc.
The overpressure fraction (ηO) evolution is also very similar for
the spherical 1D and the 3D simulation with rcl = 0. The rapid
fluctuations in ηO at late times show that the bubble pressure is
close to the ISM value and jumps above 1.5p0 after every new SN
explodes inside it. The outer (inner) shell radius for the 3D simula-
tion (with rcl = 0) is only slightly larger (smaller) than the 1D run.
To conclude, 1D spherical simulations capture the correct evolu-
tion of global (or volume-averaged) quantities such as mechanical
efficiency.

The bottom right panel of Fig. 9 shows the radial distribution
of emissivity for the three runs. For 3D runs, average pressure and
density are obtained by averaging over radial shells of size δL and
emissivity (neni�[T]) is calculated. The almost discontinuous rise
in emissivity corresponds to the contact discontinuity between the
shocked SN ejecta and the shocked ISM. While the 1D emissivity
profile is very sharp, the transition for 3D runs (particularly with
rcl = 100 pc) is smoother. This smoothing is due to deviation from
sphericity, in particular the crinkling of the contact surface seen in
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Figure 9. A comparison of 3D (with rcl = 0 pc; rcl = 100 pc run is also shown for the right panels) and 1D spherical simulations. The top-left panel shows
the kinetic and thermal energy added to the box by SNe. The top-right panel shows the overpressure fraction (ηO; solid lines) for the spherical 1D run and
the 3D Cartesian runs with rcl = 0, 100 pc; also shown in lines connected by symbols are cumulative radiative losses. The bottom-left panel shows the time
evolution of the inner and outer shell radius for the 1D and 3D (rcl = 0) simulations. The bottom right panel shows the angle-averaged emissivity in the shell
for the three simulations at 9.55 Myr (corresponding to the bottom panels of Fig. 1). Note that there is a ‘gap’ in the emissivity for the 1D spherical run in the
dense shell where temperature is ≤104 K and we force �[T] = 0.

the bottom panels of Fig. 1. This also makes the shell in Cartesian
simulations slightly thicker compared to the spherical 1D run. Ra-
diative losses for 3D runs are spread almost throughout the shell but
are confined to the outer radiative relaxation layer in the spherical
run (see fig. 5 in SRNS14).

Both the 1D and 3D simulations show that the bubbles are smaller
than the analytic estimates because of radiative cooling. Even in a
uniform medium, the shell can be unstable to various 3D instabilities
such as ‘Vishniac instability’ (Vishniac 1983), which affects the
morphology of supershells (cf. Fig. 13; see also Krause et al. 2013).

3.4 Effects of cluster and ISM properties

After discussing the fiducial run in detail, in this section, we study
the influence of cluster and ISM parameters (cluster radius rcl,
number of OB stars NOB, and ISM density ng0).

3.4.1 Effects of ISM density

The gas density in which SNe explode is a crucial parame-
ter that determines their subsequent evolution, both in adiabatic
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Figure 10. The influence of ambient ISM density (ng0 = 0.5, 0.8, 2 cm−3) on the overpressure fraction (ηO; left panel), and the inner and outer shell radii
(RI, RO) and the swept-up mass in the shell (msh; right panel) for NOB = 100 and rcl = 100 pc. The vertical lines in the left panel mark the times when SNe
overlap and produce an overpressured bubble and times when they fizzle out due to radiative and adiabatic losses. The bubble expanding in the lower density
medium expands faster and sweeps up smaller mass.

(rsb ∝ ρ−1/5) and radiative (radiative losses are higher for a larger
density) regimes. The left panel of Fig. 10 shows that the overpres-
sure fraction at early times (<5 Myr) both falls and rises slowly for
a higher density ISM. The overlap of SNe at higher densities takes
longer because the individual bubble radius is smaller for a higher
density and one needs to wait longer to fill the whole cluster with hot
gas. At late times, the overpressure fraction drops earlier for higher
densities because of larger radiative losses (although the bubble
pressure scales as n

3/5
g0 according to Weaver et al. 1977 adiabatic

scaling).
The right panel of Fig. 10 shows that the bubble expands more

rapidly in the lower density medium. It also shows that although
the shell in a higher density ISM expands slowly, it sweeps up
more mass. An adiabatically expanding strong bubble in a uniform
medium is expected to sweep up gas at a rate ∝ n

2/5
g0 t9/5. Therefore,

the ratio of mass swept by the shells with ng0 = 0.5, 0.8 cm−3

shown in Fig. 10 is expected to be (0.5/0.8)2/5 ≈ 0.8, whereas
the actual value is ≈0.9. This is because the bubble expanding in
a denser ISM is slower than the adiabatic model due to radiative
losses; moreover, shells in a higher density medium suffer larger
radiative losses. The shell for the highest density run (ng0 = 2 cm−3)
sweeps up an increasingly larger mass at later times because RO ∝
c0t at late times, when the shell moves close to the ISM sound
speed.

3.4.2 Effects of cluster radius

The key difference of this work from SRNS14 is that we are doing
3D simulations, which are necessary to study a realistic spatial
distribution of SNe. In 1D spherical setup, all SNe can only explode
at the origin because of spherical symmetry. Fig. 11 shows the

Figure 11. The evolution of overpressure fraction as a function of time
for ng0 = 10 cm−3 and NOB = 104, but with different star-cluster sizes
(rcl). The overpressure fraction plummets initially as SNe are effectively
isolated and cool catastrophically within 1 Myr. After that, as more SNe go
off, they start to overlap and create an overpressured bubble. As expected,
the transition to overlap happens later for a larger star cluster. The late
time drop in overpressure fraction, occurring due to adiabatic and radiative
losses, is similar for different rcl. This suggests that the superbubble evo-
lution is independent of the cluster size, once the coherent overlap of SNe
occurs.
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evolution of overpressure volume fraction (ηO) as a function of
time for simulations with NOB = 104, ng0 = 10 cm−3, and different
star-cluster radii.1 The plot has a characteristic shape with an initial
fall, a rise and saturation, and an eventual fall. The initial fall occurs
as isolated SNe, without overlapping, fizzle out due to radiative
losses (the top panels of Fig. 1 show density and pressure in this
stage). The rise happens as SNe overlap and form a superbubble.
Eventually, the overpressure volume fraction drops as the volume
of the superbubble becomes too large and the outer shock weakens
due to adiabatic and radiative losses.

We can estimate the time when SNe start to overlap.
The radius of an isolated SN remnant is given by rSNR

∼ (ESNt2/ρ)1/5. Suppose nt SNe have gone off indepen-
dently by some time t. The volume occupied by the non-
overlapping SN remnants is ∼∑nt

i=1(4π/3)(ESNi2δt2
SN/ρ)3/5 ∼

(4π/3)(ESNδt2
SN/ρ)3/5

∑nt

i=1 i6/5 ∼ (4π/3)(ESNδt2
SN/ρ)3/5(5/11)

(tNOB/τOB)11/5. Equating this volume with the volume of the star
cluster 4πr3

cl/3 gives an estimate for the time when SNe start
to overlap (to, ad, estimate for SNR overlap assuming adiabatic
evolution),

to,ad ∼ 0.16 Myr τ
5/11
OB,30N

−5/11
OB,4 E

−3/11
SN,51 n

3/11
g0,1r

15/11
cl,2 , (14)

where ng0, 1 is gas number density in units of 10 cm−3 and rcl, 2 is
the radius of the star cluster in units of 100 pc. Note that we have
used equation (6) to obtain the above equation.

We can make another estimate for the SN overlap time-scale by
assuming that SNe overlap only after they have become radiative.
In this case, by a similar argument as that of the last paragraph, the
overlap time to, rad is given by τOB/NOB(rcl/rb, rad)3, where rb,rad ∼
37 pc E

1/3
SN,51n

−1/3
g0 (equation 2 in Roy et al. 2013) is the hot/dilute

bubble radius when the remnant becomes radiative. Note that the
bubble radius does not increase by more than a factor of 2 after this
time (e.g. fig. 2 in Kim & Ostriker 2015). Thus, the overlap time,
assuming a radiative bubble, is given by

to,rad ∼ 0.6 Myr τOB,30N
−1
OB,4E

−1
SN,51ng0,1r

3
cl,2. (15)

The evolution seen in Fig. 11 lies somewhere in between equations
14 and 15.

The time for the overpressure volume to saturate after overlap of
SNe and transition to a superbubble evolution is given by (using
Weaver et al. 1977 scaling and setting the superbubble shell radius
equal to the cluster radius),

tsb ∼ 1.2 Myr r
5/3
cl,2N

−1/3
OB,4 η

−1/3
mech,−1E

−1/3
SN,51t

1/3
OB,30n

1/3
g0,1, (16)

where we have scaled the result with a mechanical efficiency ηmech

of 0.1 (i.e. only ∼10 per cent of the input SN energy goes into
blowing the superbubble; ∼90 per cent is lost radiatively). This es-
timate for the time of superbubble formation roughly matches the
results in Fig. 11. Finally, the time when the superbubble pres-
sure (∼0.75ρv2

sb) falls to ≈1.5 times the ISM pressure is given by
(apart from factors of order unity, this is essentially the same as
equation 12)

tfiz ∼ 10.3 Myr T
−5/4

4 η
1/2
mech,−1E

1/2
SN,51τ

−1/2
OB N

1/2
OB,4n

−1/2
g0,1 , (17)

(T4 is the ISM temperature in units of 104 K) which is only slightly
lower than the time corresponding to the late time drop in the

1 Here we choose parameters (NOB, ng0) different from the fiducial run
because the different stages of evolution are nicely separated in time for this
choice. The temporal behaviour is expected to be qualitatively similar for
different choice of parameters.

overpressure volume fraction in Fig. 11. Note that unless the cluster
size (rcl) is unrealistically large, overlap of SNe is likely to occur.
In this state, the time for a superbubble to fizzle out is independent
of the cluster size.

3.4.3 Effects of SN rate: formation of a steady wind

CC85 found a solution for the wind driven by internal energy and
mass deposited uniformly within an injection radius (r < R). This
was applied to the galactic outflow in M82. For a large number
of SNe (i.e. a large NOB), the mechanical energy injection can be
approximated as a constant luminosity wind, Lw = NOBESN/τOB.
According to CC85, within the injection radius (r � R) the mass
density is constant, whereas at large radii (wind region, r � R)
density is expected to be ∝r−2. A termination shock is expected at
the radius where the wind ram pressure balances the pressure inside
the shocked ISM. For small NOB, however, the individual SN ejecta
does not thermalize within the termination shock radius (rTS) as the
SN occurs inside a low-density bubble (the bubble density is low in
the absence of significant mass loading as most of the ambient gas is
swept up in the outer shell) created by the previous SNe. For a large
SN rate, the solution should approach the steady state described by
CC85. SRNS14 derived analytic constraints on NOB required for the
existence of a smooth CC85 wind inside the superbubble (see their
equation 11) as

δtSN,CC85 � 0.008 Myr E
−9/26
SN,51 t

4/13
Myr n

−3/13
g0 M

15/26
SN,5	, (18)

where MSN, 5	 is the SN ejecta mass and tMyr is the age of the
starburst in Myr. This time between SNe corresponds to a require-
ment of NOB � 4 × 103 for a smooth CC85 wind to appear by
1 Myr. Using the standard stellar mass function, this corresponds
to a star formation rate (SFR) of ∼0.01M	 yr−1. This is a lower
limit because thermalization just before the termination shock does
not lead to a high density/emissivity core, the characteristic feature
of a CC85 wind. Fig. 12 shows the density profiles for a range of
NOB (NOB = 105 corresponds to a SN rate of ∼0.003 yr−1). As
expected from thermalization of a SN within the ejecta of all pre-
vious SNe (equation 18), a smooth CC85-type wind with density
∝r−2 at 30 Myr only forms for NOB � 104. Since SNe form in OB
associations, they are expected to overlap and form superbubbles.
For a sufficiently large number of SNe (� 105; e.g. in the super
star clusters powering a galactic wind in M82), a strong termina-
tion shock (with Mach number �1) exists till late times, which
may accelerate majority of Galactic and extragalactic high-energy
cosmic rays (e.g. Parizot et al. 2004). In contrast, strong shocks
(especially the reverse shock; McKee 1974) in isolated SNe exist
only at early times (� 103 yr), after which the reverse shock crushes
the central neutron star and the outer shock weakens with time (in
fact catastrophically after it becomes radiative).

Fig. 13 shows the 2D density snapshots of the 3D runs shown
in Fig. 12, albeit at an earlier time. As expected, the shell is much
thinner for a larger number of SNe. Also, a dense injection region
and a clear termination shock are visible for the runs with NOB

� 104. Crinkling of the contact discontinuity and the thin shell
is the key difference of 3D runs as compared to the spherical 1D
simulations.

The SNe-driven wind is able to maintain a strong non-radiative
termination shock that is able to power the outward motion of
the outer shock. The CC85 model has two parameters: the effi-
ciency with which star formation is converted into thermal energy
(α ≡ Ė/SFR), and the mass loading factor (β ≡ Ṁ/SFR), which
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Figure 12. Spherically averaged gas density profiles for 3D runs at 30 Myr
(rcl = 100 pc, except for the 1D spherical run; ng0 = 1 cm−3) with various

NOB. Radius has been scaled with the expected scaling (E1/5
inj,51 ≈ N

1/5
OB is

the total mechanical energy injected in units of 1051 erg; see Table 1). The
thin vertical lines mark the cluster radius (rcl) in the scaled unit. The density
profile attains a smooth, steady CC85 profile (its signature is the ρ ∝ r−2

profile beyond a core region) within the bubble for a large NOB � 104,
consistent with the analytic considerations in section 4.3 of SRNS14 (see
also fig. 3 in their paper). The radiative shell in 1D run (with the same
resolution as the 3D run) is much thinner as compared to 3D because the
3D shell is not perfectly spherical and the contact discontinuity is crinkled
(see Fig. 13). The outer shock is weaker for a smaller NOB but its location
scales with the analytic scaling (∝N

1/5
OB ).

Figure 13. Density slices at t = 9.55 Myr in the x − y (z = 0) plane for
runs with different NOB but with the same ISM density and cluster radius
(ng0 = 1 cm−3 and rcl = 100 pc). The shell becomes progressively thinner
with increasing NOB because a stronger shock causes higher compression.
Like Fig. 12, the axes are scaled with respect to the analytic scaling. The solid
black arcs mark the cluster radius. A termination shock and a high-density
injection region are visible in the bottom two panels.

determine the properties of galactic outflows (e.g. Sarkar et al.
2016). From our setup, we can determine the mass loading for large
NOB simulations by calculating the mass-loss rate from the clus-
ter measured at radii where the mass outflow rate Ṁ(r) ≡ 4πr2ρv

is roughly constant. The mass loading factor for our NOB = 105

run is ≈1 as most of the SN injected mass flows out in a roughly
steady wind. For much larger NOB (or equivalently, SFR) valid for
starbursts, the mass loading factor can be reduced because of ra-
diative cooling and mass drop-out from the dense ejecta of SNe
(e.g. Wünsch et al. 2007, 2008, 2011). Girichidis et al. (2016) have
investigated launching of galactic outflows based on multi-physics
simulations which include variation in SN rate and various strategies
for placing SNe (random, or at density peaks or isolated). Pakmor
et al. (2016) and Simpson et al. (2016) investigate the effect of
cosmic ray diffusion on dynamics of galactic outflows. We will
investigate the effect of additional processes in our future work.

4 D I SCUSSI ON

In this section, we discuss the astrophysical implications of our
work, focusing on radiative losses, comparison the observed H I

supershells, and gas expulsion from star clusters.

4.1 Mechanical efficiency and critical supernova rate for
forming a superbubble

While isolated SNe lose all their energy by ∼1 Myr, even overlap-
ping SNe forming superbubbles lose majority of energy injected by
SNe. The mechanical efficiency of superbubbles is defined as

ηmech ≡ (KE + 
T E)

Einj
, (19)

where KE is the total kinetic energy of the box, 
TE is the in-
crease in the box thermal energy, and Einj is the energy injected by
SNe (which is slightly larger than NOBESN because mass is added
at the local velocity). By energy conservation (the computational
box is large enough that energy is not transported into or out of it),
ηmech = 1 − RL/Einj, where RL are cumulative radiative losses.
Fig. 14 shows the mechanical efficiency (equation 19) as a func-
tion of the initial gas density (ng0) at various times for runs with
different NOB. One immediately sees that mechanical efficiency
decreases with an increasing ISM density (ng0). Efficiency also de-
creases with time (by almost a factor of 10 from 5 to 30 Myr), espe-
cially for higher densities. The maximum efficiency is ∼20 per cent,
occurring at early times. Our simulations show that the mechani-
cal efficiency of 3D and 1D simulations is comparable and almost
independent of the cluster size (rcl, see Section 3.3 and Fig. 9),
provided that SNe overlap before fizzling out. A rough scaling of
ηmech ∝ n

−2/3
g0 , valid at most times, can be deduced from Fig. 14.

Also note that the mechanical efficiency increases very slightly for
a larger number of SNe.

Fig. 14 shows mechanical efficiencies that are about an order of
magnitude smaller than the values quoted in SRNS14. For example,
the efficiency (which equals 1 fractional radiative losses; see the
right panel of fig. 8 in SRNS14) for NOB = 105 and ng0 = 1 cm−3 in
SRNS14 at 30 Myr is ≈40 per cent. The value for the same choice
of parameters from Fig. 14 is ≈6 per cent, smaller by a factor of
≈7. This discrepancy is mainly due to the much higher resolution
in the 1D simulations of SRNS14 (see Section 4.4).

Fig. 11 shows that the overpressure volume fraction ηO for ng0 =
10 cm−3 and NOB = 104 has a similar value for cluster sizes as large
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Figure 14. Efficiency of mechanical energy retention in superbubbles as
a function of ISM density for different simulations. Clearly, the efficiency
decreases with an increasing density because of radiative losses. Colours
represent NOB and the sizes of circles stand for different times. Note that for
the same density, a higher NOB gives a slightly larger mechanical efficiency.
The black solid line shows the n

−2/3
g0 scaling of ηmech, which describes well

the variation of mechanical efficiency with the ambient density at almost
all times. For most runs, especially with high ambient densities (ng0 �
2 cm−3), the mechanical efficiency decreases by almost a factor of 10 from
5 to 30 Myr.

as rcl = 300 pc. This means that the evolution of the superbubble
is independent of rcl, as long as overlap of SNe happens before
the cluster age, which is very likely not only for individual star
clusters but also for clusters of star clusters as in the centre of M82
galaxy (O’Connell et al. 1995). Therefore, the key parameter that
determines if the superbubble remains sufficiently overpressured by
the end of the star-cluster lifetime, for a given gas density, is the
number of SNe NOB (and not the cluster size rcl).

The overpressure volume fraction (defined in equation 13) is an
appropriate diagnostic to determine if a superbubble has fizzled out
or not. As described earlier, we consider a superbubble fizzled out
if the average overpressure fraction falls below 0.5 at late times
(25 to 30 Myr). Fig. 15 shows the plot of critical number of SNe
required to produce an average overpressure volume fraction of 0.5
at late times (25 to 30 Myr), for a given gas density. We vary the
ISM density for a given NOB, such that the late-time overpressure
fraction is close to 0.5. The critical NOB roughly scales as n2

g0.
Now we turn to analytic arguments to understand the scaling

of critical NOB for a given ISM density (ng0). The superbubble
pressure as a function of time, according to the adiabatic model of
Weaver et al. (1977), is ∼ 3

4 ρv2
sb, which at the end of cluster lifetime

becomes
psb,late

kB

∼ 1.7 × 105 K cm−3N
2/5
OB,4η

2/5
mech,−2τ

−6/5
OB,30n

3/5
g0,1, (20)

where mechanical efficiency has been scaled to 0.01. Equating this
to 1.5 times the ambient ISM pressure pISM/kB = 105ng0, 1T4 gives

NOB,crit ∼ 7.3 × 103η−1
mech,−2τ

3
OB,30ng0,1T

5/2
4 . (21)

Figure 15. Critical NOB required for a given density of the ISM for the
superbubble to remain sufficiently overpressured at late times. The colour
bar and the size of squares (a smaller square means that η̄O is closer to 0.5)
represent deviation from an average overpressure fraction of 0.5 at late times
(25 to 30 Myr). The best-fitting power-law scaling is indicated, and 3 − σ

spread about the best fit is indicated by the shaded region.

This estimate of the critical number of OB stars to maintain an
overpressured bubble at late times agrees with Fig. 15 in that the
critical NOB for ng0 = 10 cm−3 is about 104. From equation (21), we
get the scaling of critical NOB as NOB,crit ∝ ng0η

−1
mech, which when

we use the dependence of ηmech on ng0 from Fig. 14 (ηmech ∝ n
−2/3
g0 )

gives NOB,crit ∝ n
5/3
g0 . This scaling is similar to the scaling of critical

NOB observed in Fig. 15; namely

NOB,crit ≈ 200n1.89
g0 τ 3

OB,30T
5/2

4 . (22)

A steeper ηmech versus ng0, which is not inconsistent with Fig. 14,
will give an even better match. The important point to note is that
a decreasing mechanical efficiency with an increasing ISM density
is required to explain the critical NOB curve.

The scaling between NOB and gas density (hereafter critical curve)
in Fig. 15 can be compared with the empirical relation between SFR
and gas density. The Kennicutt–Schmidt (hereafter KS) relation
(Schmidt 1959; Kennicutt 1998) between gas surface density and
SFR surface density is

�SFR

M	 yr−1 kpc−2 ≈ 3 × 10−3

(
�g

10 M	 pc−2

)1.4

, (23)

which is valid for �g ≥ 10 M	 pc−2, below which a much steeper
relation holds (Bigiel et al. 2008). Consider a scale height (H) of
100 pc and a disc radius (Rd) of 1 kpc. For each OB star, the
total stellar mass is ∼100 M	 for Kroupa/Chabrier initial mass
function (Kroupa 2002; Chabrier 2003). Then for a star formation
time-scale of 30 Myr, we have �SFR ≈ 10−6NOB M	 yr−1 kpc−2

τ−1
OB,30R

−2
d,kpc. For a gas density of ng0 cm−3, we also have �g ≈

3 ng0H100pc M	 pc−2 for mean molecular weight μ = 1.3 (assuming
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neutral/molecular disc). Therefore, the KS relation can be re-written
in terms of the parameters used in this paper as

NOB,KS ≈ 550 n1.4
g0 H 1.4

100pcR
2
d,kpcτOB,30. (24)

An important point to note is that the scaling of NOB, KS with gas
density is somewhat shallower than the scaling for the critical curve
(equation 22), but comparable in magnitude (this depends on the
assumed scale height and disc radius). In the case of starbursts, the
normalization for the KS relation can be larger (Kennicutt & Evans
2012), but this normalization is also consistent with the critical curve
in this paper. Also note that the critical number of OB stars (equation
22) depends sensitively on the ISM temperature and can be much
smaller for a cooler (say 100 K) disc. Therefore, a comparison of
equations (22) and (24) should be made only after using appropriate
disc/ISM parameters. A steeper slope for critical NOB as compared
to the KS relation (despite the dependence on other parameters as
disc radius and ISM temperature) implies that SNe can disrupt the
star-forming regions more easily in weak/moderate star-forming
regions but not in dense starbursts. This may explain the observed
higher efficiency of star formation (or a larger normalization of KS
relation; equation 23) in starbursts relative to moderate star-forming
regions. The key uncertain step in this argument (which is beyond
the scope of this paper) is how the maintenance of an overpressured
bubble translates into suppression of star formation.

We can also compare our critical NOB − ng0 curve with the
observed threshold of SFR ∼0.1 M	 yr−1 kpc−2 for galactic su-
perwinds (e.g. Heckman 2002). Using similar arguments used to
derive equation (24), the critical SFR density corresponding to our
critical curve is

�SFR,crit ∼ 2 × 10−4 M	 yr−1 kpc−2n1.89
g0 R−2

d,kpc. (25)

While this is much smaller than the Heckman limit, it is comparable
to the lower limit on SFR density for the appearance of radio haloes
in spiral discs, ∼10−4 erg cm−2s−1 (equivalent to SFR density of
10−5 M	 yr−1 kpc−2; Dahlem, Lisenfeld & Golla 1995). Roy et al.
(2013) argue that to form a galactic superwind the superbubble has
to break out with a sufficiently high Mach number (� 5), but our
critical curve (equation 21) is based on a Mach number of unity.

4.2 Radius–velocity distribution of H I supershells

Our setup provides an opportunity to study the observed properties
of H I shells supershells, especially the ones which are close to spher-
ical and not much affected by the background density stratification.
Fig. 16 compares the radius–velocity distribution of observed H I

supershells (Heiles 1979; Bagetakos et al. 2011; Suad et al. 2014)
with the evolution seen in our numerical simulations; also shown are
the Castor et al. (1975) analytic scalings. We can write the radius
and velocity of the shell in terms of the parameter Lw,38/ng0 (lu-
minosity Lw,38 ≈ NOB, 2ESN, 51/τOB, 30 is the mechanical luminosity
scaled to 1038 erg s−1) using equation (11) as

Lw,38

ng0
=

(
rsb

58 pc

)2 ( vsb

34 km s−1

)3
. (26)

The vertical colour bar in Fig. 16 shows the contours of constant
L/ng0. The ‘�’ symbols represent the radius and velocity obtained
from our simulations (NOB/ng0 ranges from 100 to 105); it is very
encouraging that the observed distribution of rsb − vsb is similar
to our simulations, which correspond to reasonable star-cluster pa-
rameters. The solid red colour track marks the evolution of a bub-
ble with NOB ≈ 103 and ng0 = 1.0 cm−3, which corresponds to
Lw,38/ng0 ≈ 10. But the track lies close to the analytic contours of

Figure 16. Radius–velocity distribution of supershells from analytic esti-
mates (vertical colour bar; ηmech = 1 is used in equation 10), our numerical
simulations (coloured squares; horizontal colour bar indicates time), and
observations (black and white symbols; Heiles 1979; Bagetakos et al. 2011;
Suad et al. 2014) of H I supershells. The radius from simulations corresponds
to the inner radius in spherically averaged density profiles (RI) of the shell
and the velocity is obtained by dRI/dt. Solid black lines correspond to the
dynamical age (1.67rsb/vsb; see equations 9 and 10). The solid red line
shows the evolution of velocity and radius for NOB = 1000, ng0 = 1 cm−3,
rcl = 100 pc. At early times, the line closely follows the analytic curve for
Lw/ng0 = 1038 erg s−1 (corresponding to NOB = 100 and ng0 = 1 cm−3),
with a factor of ∼10 smaller mechanical luminosity; at later times it dips
even further. This is consistent with the radiative efficiency of �10 per cent,
which decreases with time (Fig. 14).

Lw,38/ng0 ≈ 0.5–1.0. It means that for a given rsb − vsb the adia-
batic theory overestimates Lw,38/ng0 by a factor of ∼ 10–20. This
discrepancy is primarily due to large radiative losses; mechanical
efficiency in Fig. 14 � 10 per cent is consistent with the evolution in
the rsb − vsb space. Also we note that some of the simulation points
(below the t = 30 Myr line) have a dynamical age (≡ 5rsb/3vsb)
longer than the simulation time.

If SNe are the dominant cause of bubble formation, then we re-
quire large OB associations for the creation of the observed H I

supershells. In order to quantify the size of OB associations, we
also need to evaluate the mechanical energy injection from stellar
winds and radiation. However, even without accounting for these
additional energy/momentum sources, the observed shells are much
smaller and slower compared to what is expected from the predic-
tions of adiabatic theory applied to the observed stellar population—
the so-called power problem in superbubbles (Oey 2009 and ref-
erences therein). Our simulations show that radiative losses can
account for the power problem.

4.3 Gas removal from clusters

Due to the presence of feedback from OB stars (radiative, stellar
winds and SNe), the star-forming regions clear gas on time-scales
∼106 yr (Lada & Lada 2003). For clusters simulated by us the
mstars/mcl ∼ 0.17NOB,2/ng0r

3
cl,100 < 1 (for each OB star, the total

stellar mass is ∼100 M	 for Kroupa/Chabrier initial mass func-
tion), therefore the gravitational well is largely provided by the
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Figure 17. The fraction of original cluster gas remaining within the cluster (r < rcl; rcl = 100 pc for all these runs) as a function of time for various SN counts
(NOB). Each of the sub-panels shows curves corresponding to different values of gas density ng0, the initial ISM density inside the cluster. It is noted that even
a small NOB makes the cluster lose all its gas by about 8–10 Myr. The evacuation time increases with density, as expected.

cluster gas (this is also true for embedded clusters buried in their
natal molecular clumps.). As a result of gas expulsion, the cluster
potential becomes shallower and the cluster may become unbound
depending on the ratio of gas removal time-scale and dynamical
time-scale of the cluster (Lada & Lada 2003). If the gas expulsion
time is long compared to the dynamical time, the stars can adiabati-
cally attain new viral equilibrium without being unbound. However,
in the opposite regime because of a suddenly reduced gravity ma-
jority of stars become unbound. The time-scale of gas expulsion
is also important to account for multiple populations observed in
globular clusters (e.g. Krause et al. 2016 and references therein).

While our simulations do not account for gravity that holds the
star cluster together (inclusion of gravity is important for strongly
bound massive clouds, not so much for smaller clumps with lower
gravitational binding energies), we can qualitatively understand the
action of SN/stellar wind energy injection in gas expulsion from star
clusters. Fig. 17 shows the mass fraction mcl(t)/mcl(0) (mcl is the gas
mass inside the cluster radius, r < rcl) as a function of time for vari-
ous values of NOB and ng0. Since the ratio of energy injected by SNe
to the gravitational potential energy ∼NOBESN/(Gμ2m2

pn2
g0r

5
cl) ∼

5 × 105NOB,2ESN,51/(n2
g0r

5
cl,2) is large, the effect of neglecting grav-

ity is negligible for the choice of our parameters (for simulations
with gravity, see Calura et al. 2015; Krause et al. 2016). We find
that the clusters are evacuated due to the formation of a superbub-
ble within �10 Myr (Fig. 17). As expected, lower ISM density and
higher NOB evacuate the cluster gas in a shorter time. An estimate
of evacuation time-scale is given in equation (16). The estimate de-
pends strongly on the cluster radius (rcl) but is weakly sensitive to
parameters such as ISM density, NOB, ηmech, etc. The results in
Fig. 17 are consistent with the time-scale in equation (16); there-
fore, for different parameters our numerical results can be scaled
according to the theoretical scaling.

4.4 Convergence of ηmech and temperature distribution of
radiative losses

One of the key questions is whether our results are converged. Con-
vergence of the fiducial 3D simulation is discussed in Appendix B.
Fig. B1 clearly shows that the higher resolution simulations show
finer features. What about the convergence of volume-averaged
quantities such as mechanical efficiency (ηmech)? Fig. 18 shows
mechanical efficiency (equation 19) measured at 30 Myr for the

Figure 18. Mechanical efficiency measured at 30 Myr as a function of
grid resolution for various 1D and 3D superbubble simulations. The grid
parameters are NOB = 100, ng0 = 1 cm−3 and rcl = 0 (for 1D runs) and
rcl = 100 pc (for 3D runs). The blue solid line is the best least squares
power-law fit to the data points. The inset shows the evolution of mechanical
efficiency for the high-resolution 1D runs. Mechanical efficiency does not
converge even for the highest resolution 1D simulations.

fiducial 3D and 1D runs at various resolutions. Even average quan-
tities like ηmech do not show perfect convergence (we get a higher
value of ηmech with increasing resolution.). The 1D simulations can
be carried out at a much higher resolution than the 3D ones, and
yet ηmech increases with an increasing resolution. In Section 3.3, we
show that at the same resolution the radiative losses are comparable
in 3D and 1D (top-right panel of Fig. 9). From this, we expect that
even the very high resolution 3D simulations (which are beyond
the capabilities of current computational resources) will not show
convergence.

Recent, very high-resolution 1D simulations (Gentry et al. 2016;
Gupta et al. 2016) have highlighted the importance of very high res-
olution to obtain mechanical efficiency and momentum delivered
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Figure 19. Radiative loss rate per temperature bin (dErad/dtdT) as a func-
tion of gas temperature at different times for our fiducial simulation with
(TC) and without (NC) thermal conduction. We calculate the radiative loss
rates in logarithmically spaced temperature bins with 
log10T = 0.1. Ther-
mal conduction reduces the maximum gas temperature in the box because
of evaporation of matter into the hot bubble.

to the ISM by SNe. However, our Fig. 18 clearly shows the lack
of convergence even at the highest resolutions. The cooling losses
in any simulation with unresolved boundary layers (radiative relax-
ation layer and contact discontinuity) will keep on decreasing with
an increasing resolution because the volume of cooling layers (and
hence radiative loss rate) decreases with an increasing resolution.
This means that convergence can only be achieved by explicitly
including diffusive processes such as thermal conduction and/or
viscosity, which can numerically resolve the radiative layers. More-
over, the values of physical conductivity and viscosity are too small
(especially for the dense phases) to be resolved on the grid. There-
fore, artificially large numerical diffusivities (which may crudely
mimic small-scale turbulent transport) must be used. The impor-
tance of resolving cooling layers via explicit thermal conduction to
obtain convergence in thermal instability simulations is highlighted
in Koyama & Inutsuka (2004). Similarly, Fromang & Papaloizou
(2007) and Lesur & Longaretti (2007) show that explicit resistiv-
ity and viscosity are required to get converged results for angular
momentum transport due to magnetorotational instability (MRI) in
unstratified shearing boxes.

One observationally important diagnostic is the temperature dis-
tribution of cooling losses in superbubbles; this determines the
wavebands in which they emit. Fig. 19 shows the temperature dis-
tribution of the radiative loss rate for the fiducial 3D run with and
without thermal conduction. Both with and without conduction, the
radiative losses occur primarily at ∼104 K; the fractional radiative
losses for T < 105 K are 99.6 per cent and 99.3 per cent with and
without conduction, respectively. This result is consistent with the
recent superbubble simulations in dense molecular gas (Gupta et al.
2016), which shows that the cooling losses at ∼104 K are about two
order of magnitude larger than X-ray (∼106 − 7 K) and molecular
(∼100 K) losses. Thermal conduction reduces the maximum tem-
perature in the hot bubble due to the evaporation of mass from the
dense shell to the hot bubble, as shown in Fig. 8.

5 C O N C L U S I O N S

We have carried out 3D hydrodynamic simulations of SNe in an OB
association that creates and drives a superbubble. Our aim has been
to study the effect of multiple SNe distributed over a limited region
of a cluster, on the ambient material far outside the cluster, and
derive the dependence of fundamental parameters such as the effi-
ciency of energy deposition and the critical number of SN required
to create overpressured bubbles. Our settings have been admittedly,
and intentionally, kept idealized so that we can perform controlled
numerical experiments. Physical effects such as magnetic fields,
thermal conduction, stratification, and inhomogeneities in the am-
bient gas, which we have not included here, presumably do play
important roles in superbubble formation and evolution, and will be
the focus of our future studies.

The broad astrophysical implications of our results are discussed
in Section 4. Our key results can be summarized as follows.

(i) While isolated SNe fizzle out by ∼1 Myr due to radiation
losses, for a realistic cluster size it is likely that subsequent SNe
go off in a hot and tenuous medium and sustain a shock lasting
for the cluster lifetime ∼30 Myr, comparable to the galactic dy-
namical time-scale. 1D numerical simulations faithfully capture the
global energetics but cannot, by construction, capture morphologi-
cal features such as the crinkling of the contact discontinuity seen
in 3D.

(ii) While most of the input energy is lost via radiative cooling,
the superbubble retains a fraction ηmech of the input energy, and this
fraction scales as ηmech ∝ n

−2/3
g0 , being of the order of ∼6 per cent

for ng0 ∼ 1 cm−3 over a time period of ∼30 Myr. We note that
the mechanical efficiency increases with an increasing resolution,
and that converged result can only be obtained by resolving cooling
layers using explicit diffusion.

(iii) We have explored the parameter space of ISM density (ng0),
number of SNe (NOB) and star-cluster radius (rcl) to study the con-
ditions for the formation of an overpressured superbubble. For re-
alistic cluster sizes, we find that the bubble remains overpressured
only if, for a given ng0, NOB is larger than a threshold value. Our
results show that threshold condition can be roughly expressed as
NOB,crit ∼ 200n1.9

g0 , where ng0 is the particle density in cm−3.
(iv) Classical adiabatic superbubble evolution overestimates the

ratio of the wind luminosity and the ISM density (Lw/ng0) by a
factor of ∼ 10–20, by not taking radiation losses into account. This
explains the ‘power problem’ of the observed size and speed of
superbubbles, and our simulations confirm that radiative losses are
the reason for discrepancies between the size–speed distribution of
H I supershells and the sizes of OB associations driving them.

(v) We confirm that a minimum value of NOB( � 104) is needed
to produce a steady wind and a strong termination shock within the
cluster region. For a smaller number of SNe, all the SN energy is
deposited at the radiative dense shell.
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Wünsch R., Tenorio-Tagle G., Palouš J., Silich S., 2008, ApJ, 683, 683
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A P P E N D I X A : R A D I U S D E T E R M I NAT I O N O F
T H E SH E L L

For 3D simulations, the dense shell is not perfectly spherical. Some
figures (e.g. Figs 7 and 16) show the evolution of the shell radius with
time. Fig. A1 shows how we determine the inner and outer radii of
the supershells. We construct angle-averaged radial density profiles
by dividing the simulation box into spherical shells of thickness
δr = δL, and averaging over all the grid cells contained within the
shell. The inner shell radius is taken at the radius where ng = 0.98ng0

and the outer shell radius has ng = 1.02ng0.
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Figure A1. Determining the radius of supershells: first we calculate the
angle-averaged density profiles in spherical shells of size δr = δL. The outer
shell radius (RO) corresponds to the radius at which the average density is
larger than 1.02 times the ambient ISM density (ng0) and the inner radius (RI)
corresponds to the radius at which the average density falls below 0.98ng0.

A P P E N D I X B : C O N V E R G E N C E

In order to ensure the convergence of the results, we carried out
our fiducial run (ng0 = 1 cm−3, T0 = 104 K, NOB = 100, rcl =
100 pc) with different grid resolutions (see Table B1). The time
step is shorter for a higher grid resolution as 
t ∝ N−1, where N
is the number of grid points along any direction. Hence, the total
computational cost scales ∝N4, which becomes prohibitive for a
large number of grid points. An optimum resolution, large enough
to capture key physical features but computationally feasible, needs
to be chosen.

Fig. B1 compares the evolution of volume-integrated quantities
and the shell radius for various grid resolutions. A larger energy
is retained and the overpressure fraction (equation 13) is larger
for a higher resolution, but the difference is small for the highest
resolutions (δL = 1.27, 2.54 pc). The evolution of the inner and
outer shell radii is also similar.

Fig. B2 shows the density snapshots of four simulations with
the grid resolution of 1.27 pc, 2.54 pc and 3.57 pc and 4.53 pc
at 9.55 Myr. The simulations with higher resolution better resolve
the internal structures within the bubble. Strict convergence is only
expected with explicit viscosity and thermal conductivity. Since
molecular transport is negligible, we do not include these in our
simulations. The run with δL = 2.54 pc looks morphologically very
similar to the run with δL = 1.27 pc, but is ≈16 times faster. Since
simulations of the cluster over its typical lifetime (∼30 Myr) are
computationally expensive, we have chosen a resolution close to
δL ≈ 2.54 (corresponding to run R2.5 in Table B1) for most of our
simulations (see Table 1).

Table B1. Convergence runs for fiducial parameters.

Label L N δL R
†
O R

†
I KE 
TE E

‡
inj ηmech ηO

(pc) (pc) (pc) (pc) (1051 erg) (1051 erg) (1051 erg) ( per cent)

R4.5 714 315 4.54 281 490 0.69 3.84 100.38 4.51 0.40
R3.6 714 400 3.57 293 496 0.79 4.37 103.05 5.01 0.59
R2.5 649 512 2.54 299 505 0.98 5.29 105.02 5.97 0.68
R1.3 649 1024 1.27 308 512 1.19 6.32 106.11 7.08 0.72

Notes. †RO (RI) is the outer (inner) radius of the shell at ≈25 Myr.
‡Kinetic and thermal energy added to the simulation box by SNe.
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Figure B1. Various volume-averaged quantities (kinetic energy, change in thermal energy, overpressure fraction, and inner and outer radii of the shell) for the
fiducial parameters (NOB = 100, ng = 1 cm−3, rcl = 100 pc) as a function of time for different grid resolutions, δL = 1.27, 2.54, 3.57, 4.53 pc. The top two and
the bottom-left panels show binned data with a bin-size of 0.18 Myr. The results show convergence with an increasing resolution.
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Figure B2. Density snapshots in the x − y plane at 9.55 Myr for the fiducial parameters but with various grid resolutions (see Table B1). The runs with higher
resolution better resolve the features at the bubble–shell interface. Yellow filled circles indicate the projected locations of SNe that have gone off.
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