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ABSTRACT

The Murchison Widefield Array (MWA) has collected hundreds of hours of Epoch of Reionization (EoR) data and
now faces the challenge of overcoming foreground and systematic contamination to reduce the data to a
cosmological measurement. We introduce several novel analysis techniques, such as cable reflection calibration,
hyper-resolution gridding kernels, diffuse foreground model subtraction, and quality control methods. Each change
to the analysis pipeline is tested against a two-dimensional power spectrum figure of merit to demonstrate
improvement. We incorporate the new techniques into a deep integration of 32 hoursof MWA data. This data set is
used to place a systematic-limited upper limit on the cosmological power spectrum of D ´2.7 102 4 mK2 at k =
0.27 hMpc−1 and z = 7.1, consistent with other published limits, and a modest improvement (factor of 1.4) over
previous MWA results. From this deep analysis, we have identified a list of improvements to be made to our EoR
data analysis strategies. These improvements will be implemented in the future and detailed in upcoming
publications.

Key words: cosmology: observations – cosmology: reionization

1. INTRODUCTION

Detection and characterization of the cosmic dark ages and
the Epoch of Reionization (EoR) have the potential to inform
our picture of the cosmos in ways analogous to the Cosmic
Microwave Background (CMB) over the past several decades.
The EoR,in particular, is rich with both cosmological and
astrophysical dynamics, as early-universe linear evolution

gives way to nonlinear structure growth, and stars and galaxies
reionize the intergalactic medium (IGM).
Several probes are being used to investigate the EoR. Studies

of the polarization of the CMB have placed integrated
constraints on the timing of reionization (e.g., Bennett et al.
2013; Planck Collaboration et al. 2015a, 2015b). Meanwhile,
observations of highly redshifted quasars have placed upper
bounds on redshifts by which reionization is completed. For
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example, Fan et al. (2006) showed that reionization must be
complete by »z 6, a result thatwas confirmed independent of
themodel by McGreer et al. (2015). Using a >z 6end prior, the
most recent analysis of Planck data found a reionization
redshift = z 8.8 0.9re for a redshift-symmetric model
( = z 8.5 0.9re for redshift-asymmetric), and a duration of
D <z 2.8 (Planck Collaboration et al. 2016). Deep optical and
infrared galaxy surveys are also beginning to reach the redshifts
necessary to further constrain reionization (e.g., Bouwens
et al. 2014), and the James Webb Space Telescope will improve
on their sensitivity (Gardner et al. 2006).

The 21 cm hyperfine transition from neutral hydrogen
residing in the IGM during reionization offers another
promising method to study the EoR. Not only is the 21 cm
signal a direct probe of the IGM, but, due to the narrow width
of the transition and the relationship between the observed
frequency and line-of-sight distance, it can be used to map the
full three-dimensional (3D)space of the epoch. (For reviews,
see Furlanetto et al. 2006; Morales & Wyithe 2010; Pritchard &
Loeb 2012; Loeb & Furlanetto 2013, and Zaroubi 2013.) The
first generation of instruments with primary science goals to
detect the highly redshift 21 cm signal have been built,
including the Giant Metrewave Radio Telescope (GMRT,
Paciga et al. 2013), LOw Frequency Array (LOFAR28 Van
Haarlem et al. 2013; Yatawatta et al. 2013), PAPER (Donald C.
Backer Precision Array for Probing the Epoch of Reioniza-
tion29, Parsons et al. 2010), and the Murchison Widefield Array
(MWA30, Bowman et al. 2013; Tingay et al. 2013). Due to
arelatively low signal-to-noise ratio, these instruments aim for
a statistical measurement of the EoR in the form of a
cosmological power spectrum. Complementary to power-
spectrum experiments are efforts to detect the sky-average
global 21 cm signal from the EoR (e.g., Bowman & Rogers
2010; Patra et al. 2013; Voytek et al. 2014; Sokolowski et al.
2015). Meanwhile, the second generation of 21 cm EoR
interferometers is on its way with the Hydrogen Epoch of
Reionization Array31 (DeBoer et al. 2016), and the low
frequency Square Kilometer Array (SKA1-Low Mellema
et al. 2013), which will further refine the power spectrum
measurement in early build-out stages, but will ultimately be
capable of imaging the ionized bubbles of reionization in its
later stages (Malloy & Lidz 2013; Beardsley et al. 2015).

Using the first generation of instruments, several upper limits
have been placed on the 21 cm EoR signal (Paciga et al. 2013;
Dillon et al. 2014; Parsons et al. 2014; Ali et al. 2015; Jacobs
et al. 2015). Furthermore, Pober et al. (2015) and Greig et al.
(2016) were able to place constraints on physical reionization
models. However, much work is to be done to understand the
data produced by these arrays. Foreground subtraction and
isolation has emerged as a priority in the field. Central to most
analysis strategies is the concept of an “EoR window”—the
region of Fourier space where spectrally smooth foregrounds
have been isolated from the isotropic (spherically symmetric in
Fourier space) cosmological signal (Morales et al. 2006;
Bowman et al. 2009). More recent studies have shown the
existence of a foreground “wedge,” the result of instrumental
mode mixing, throwing power from spectrally smooth fore-
grounds to higher Fourier modes (Datta et al. 2010; Morales

et al. 2012; Trott et al. 2012; Vedantham et al. 2012; Hazelton
et al. 2013; Pober et al. 2013; Thyagarajan et al. 2013, 2015a,
2015b; Liu et al. 2014a, 2014b), while others are investigating
the spectral structure of point sources themselves (e.g.,
Offringa et al. 2016). The EoR window is still expected to be
preserved above the wedge, and several analysis pipelines are
under active development to exploit this foreground isolation
(e.g., Dillon et al. 2013, 2015b; Trott 2014; B. J. Hazelton et al.
2016, in preparation; D. A. Mitchell et al. 2016, in preparation;
Jacobs et al. 2016; Trott et al. 2016).
This paper serves two purposes: to demonstrate several new

analysis techniques and their impact on power spectrum
estimation, and to present the first deep integration power
spectrum from the MWA. Using a three-hour test set of data,
we introduce several novel techniques, including calibration of
cable reflection contamination, high-resolution gridding ker-
nels, subtraction of a diffuse foreground model, and develop-
ment of quality control methods thatwill be crucial for deeper
integrations. We apply these new techniques to a deep
integration of data from the first semester of MWA observa-
tions (2013 August–November), with a total of 32 hourson a
single EoR field and redshift range < <z6.2 7.5.
Our best result is a limit on the cosmological power spectrum

of D ´2.7 102 4 mK2 at k = 0.27 hMpc−1 and z = 7.1. This
is lower than the GMRT 40-hourlimit ( D ´6.15 102 4 mK2

at =z 8.6; Paciga et al. 2013), but significantly higher than the
latest PAPER result,which integrated over
700 hours( D 5022 mK2 at =z 8.4; Ali et al. 2015). Several
EoR experiments are reaching sensitivity levels where very low
systematics become dominant. The PAPER team saw evidence
that antenna cross-talk and foreground leakage was limiting
their result at several scales. The LOFAR team has seen excess
noise and diffuse foreground suppression due to calibration
(Patil et al. 2016). It is essential for EoR experiments to
understand and overcome these systematics in order to reach a
cosmological detection.
While not expecting to detect the EoR with less than

100hours of observations, our intermediate integration will
serve to identify and diagnose systematics, allowing for
improved analysis in future work. We list several directions
to improve our modeling of foregrounds and the instrumental
response, which, in turn, will improve our calibration and
foreground subtraction. Our strategy to perform periodic deep
integrations allows us to continue uncovering systematics,
refine algorithms and data analysis, and understand the
subtleties of the instrument to execute this challenging
experiment.
The remainder of this paper is organized as follows. In

Section 2,we briefly describe the MWA instrument and the
observations used in this work;in Section 3, we describe our
analysis pipeline;in Section 4,we describe several novel
techniques in our analysis;in Section 5,we discuss our efforts
to apply the analysis pipeline to a deep data integration and
compare it with an alternative analysis pipeline for robust
estimation;andin Section 6, we discuss future work,including
a summary of planned improvements to the analysis.
Throughout this paper, we use a ΛCDM cosmology with
W = 0.73m , W =L 0.27, and h = 0.7, consistent with WMAP
seven-year results (Komatsu et al. 2011). All distances and
wave numbers are in comoving coordinates.

28 http://www.lofar.org
29 http://eor.berkeley.edu
30 http://www.mwatelescope.org
31 http://reionization.org
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2. THE MURCHISON WIDEFIELD ARRAY AND
OBSERVATIONS

The MWA is one of several first generation radio
interferometers with a primary science goal of detecting the
21 cm EoR power spectrum. The remote Australian outback
offers relative isolation from human-made radio-frequency
interference (RFI), such as FM radioor TV stations. A recent
study of the RFI environment at the Murchison Radio
Observatory can be found in Offringa et al. (2015).

While the 21 cm EoR signal is priority, the MWA is a
general observatory serving several science programs beyond
cosmology, including Galactic and extragalactic surveys, time
domain astrophysics, solar monitoring, and ionospheric
science. The array was thus designed with these programs in
consideration and the layout was optimized using a pseudo-
random antenna placement algorithm (Beardsley et al. 2012) to
obtain a well-behaved point-spread function (PSF) while
retaining a dense core for EoR sensitivity (Bowman et al.
2006; Beardsley et al. 2013).32 A full description of the science
capabilities of the array is found in Bowman et al. (2013). The
high imaging capability of the MWA enables us to calibrate
and subtract foregrounds based on sky models, leveraging the
full capability of the observatory for the EoR experiment. This
strategy is in contrast to more targeted EoR experiments, like
PAPER, which utilize a highly redundant layout to enhance
sensitivity. Redundant arrays can exploit symmetries of the
instrument for quick calibration and analysis, but have poor
point-spread functions, making foregrounds more difficult to
characterize.

The technical design of the MWA is reviewed in Tingay
et al. (2013), and we highlight a few key characteristics that
will become important in our analysis of the data. Each antenna
of the MWA comprises 16 dual-polarization dipoles placed on
a regular grid, lying on a ground screen. The radio-frequency
signals from these dipoles feed into an analog beamformer,
which uses physical delays to “point” the antenna. The MWA
contains 128 of these antennas, with a tightly packed core of
radius 50 m, and extending out to a radius of 1.5 km for higher
resolution calibration and imaging.

The beamformed signals (one for each polarization) are then
transmitted to receivers in the field, which digitize the signal
and perform a first stage coarse frequency channelization of the
data (1.28MHz coarse bands; Prabu et al. 2015). This step
applies a filter shape and aliases channels on the edge of the
coarse bands, which will later be flagged in our analysis. The
observer now selects 24 coarse bands (30.72MHz total
bandwidth) to pass onto the correlator via fiber optic link.
The correlator further channelizes the data to 10 kHz resolu-
tion, cross multiplies signals between antennas to form
visibilities, and averages in time and frequency to a resolution
specified by the observer. For the data in this work, the
correlator output resolutions were 0.5 s in time and 40 kHz in
frequency. The data are then written to the disk on a cadence of
112 s, constituting a single observation, or snapshot.

The EoR observing campaign has adopted a “drift and shift”
tracking strategy—we point the telescope toward a sky field of
interest, allow the field to drift overhead for about 30 minutes
until it begins to leave our field of view, then repoint the
instrument at the field. The telescope is thus only pointed at

discrete positions, or “pointings.” This tracking is repeated
until the field is too low in the sky to track. We have identified
three EoR fields relatively devoid of Galactic emission and
bright extragalactic sources for observing: “EoR0” (Right
Ascension (R.A.)=0 00, Declination (decl.)=−27°),
“EoR1” (R.A.=4 00, decl. = - 27 ), and “EoR2” (R.
A.=11 33, decl.=−10°). In addition, we observe these
fields in high and low bands centered at 182MHz ( »z 6.8)
and 154MHz ( »z 8.2),respectively.
The data for this work includes two sets. First we use a set of

94 two-minute high-band observations of the EoR0 field from
2013 August 23, which were taken early in telescope
operations and found to be particularly well behaved. The
MWA EoR collaboration has designated this set as a “golden
data set,” which is used to build analysis tools and compare
early results (e.g., Dillon et al. 2015a; Jacobs et al. 2016; Pober
et al. 2016; Trott et al. 2016). All techniques demonstrated here
will use this golden data set. In Section 5,we will use a larger
data set to move toward a deep integration. This data set
consists of all EoR0 high-band observations beginning 2013
August 23 (including the golden data set), and concluding
when the field was no longer accessible for the season: when
the Sun was above the horizon for most or all of the field’s
transit. The final observation of this set was on 2013 November
29. The individual snapshots are 112 s of data at 0.5 s, 40 kHz
resolution. In total, we analyze 2780 snapshots, or about
86.5 hoursof data.

3. ANALYSIS PIPELINE

In order to ensure consistency in analysis, the international
MWA EoR collaboration has defined two independent
reference analysis pipelines; the details of this strategy are
outlined in Jacobs et al. (2016). This study is based on the
FHD-to-òppsilon pipe, which is in turn based on the Fast
Holographic Deconvolution (FHD33, Sullivan et al. 2012) and
Error Propagated Power Spectrum with Interleaved Observed
Noise (òppsilon34, B. J. Hazelton et al. 2016, in preparation)
packages. The general flow of the pipeline is shown in
Figure 1, and we give an overview below. As a point of
comparison,and to demonstrate robustness of the results, we
compute the output power spectra with an independent
calibration and power spectrum estimation pipeline, and
demonstrate consistency.

Figure 1. Schematic of the analysis pipeline used in this work. The raw
correlator data is preprocessed by performing RFI and other flagging. The
dataare thencalibrated and imaged using an iterative foreground modeling
approach with the FHD package. Finally, a power spectrum is formed using the
òppsilon package.

32 A drone flyover view of the array layout is available on YouTube at
https://youtu.be/yDWdTUzTUMo.

33 https://github.com/EoRImaging/FHD
34 https://github.com/EoRImaging/eppsilon
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3.1. Preprocessing

The preprocessing step converts the data from the non-
standard memory dump format from the correlator’s GPUs to a
standard UVFITS format (Greisen 2012), phases the data to the
center of the pointing, performs flagging, averages in time and
frequency, and writes to thedisk. For this step we use the
COTTER package (Offringa et al. 2015), which in turn calls the
AOFLAGGER35 to perform RFI flagging (Offringa et al. 2010).

Besides RFI, we manually flag data to remove three other
effects. As mentioned in Section 2, the edges of the coarse
bands contain aliasing from the filter applied in the digital
receivers. We flag two 40 kHz channels on either side of the
coarse-band edges (total of four channels per coarse-band
edge). In principle, the aliasing could be calibrated out and
these channels could be recovered, but this is left for future
work. Second, early data from the MWA also contained some
instances where antennas were not pointed properly at the
beginning of observations due to a beamformer error. This
problem has since been resolved, but exists in our data. We
therefore flag the first two seconds of each observation to avoid
any potentially mis-pointed data. Finally, we flag the central
40 kHz channel of each coarse band. This channel corresponds
to the coarse-band DC mode, which has been observed to
contain anomalous power, likely due to very low-level
rounding errors in the polyphase filter bank of the digital
receivers.

In the final step of preprocessing, COTTER averages the data
to 2 s, 80 kHz resolution and writes to thedisk. At this stage,
each snapshot is contained in a single UVFITS file, which
serves as the base unit for calibration and imaging.

3.2. Calibration and Imaging

The next step in our pipeline is to calibrate the visibilities. As
shown in Figure 1, a sky model is derived from our imaged
data, which feeds back into the calibration. This is naturally an
iterative process as the sky model is refined with improved
calibration solutions. We will describe the sky model in detail
in Section 4, but here we present the production mode of
analysis after the model has been determined.

Calibration is accomplished within the FHD package in two
steps. First we match the raw data to model visibilities formed
using a realistic simulation of the array response to our
foreground model. This step results in independent complex
gains for each antenna, 80kHz frequency channel, and
polarization. In the second step we impose restrictions on
these gains motivated by our understanding of the spectral
response of the instrument. By reducing the number of free
parameters in this step we increase our signal to noise on
calibration solutions and avoid absorbing unmodeled confusion
source flux density into our gain solutions which has been
shown to contaminate the EoR window (Barry et al. 2016).
Recently, Patil et al. (2016) demonstrated excess noise and a
suppression of diffuse foregrounds in LOFAR images after
calibration and subtraction of bright discrete foreground
sources. They suggested a multi-frequency calibration solution
as a potential solution to these systematics, similar to the
scheme implemented here. Indeed we have not seen evidence
of these systematics through simulations and direct propagation

of our noise (B. J. Hazelton et al. 2016, in preparation; Barry
et al. 2016).
In the first calibration step, we allow our complex gains to

account for any direction-independent response on a per
antenna, per 80kHz frequency channel, per polarization basis.
To define our gains in this way, we have made two
simplifications. First, we push all direction-dependence of the
antenna response into the model of the primary beam. FHD is
capable of using separate models for each antenna, though this
has not been implemented in this work. The second
simplification is to ignore any cross terms between our
different axes;for example, a mutual coupling between two
antennas. In principle, these terms would introduce baseline
dependent gains, rather than antenna dependent. We have not
yet seen evidence of these terms in MWA data, and so we
currently neglect them in our solutions.
Under these assumptions we can express the measured,

uncalibrated visibility for an antenna pair (i, j) as

*n n n n¢ »V g g V , 1ij i j ij( ) ( ) ( ) ( ) ( )

where ngi ( ) and ngj ( ) are the complex gains for antennas i and
j, respectively, and nVij ( ) is the true visibility, which we aim to
recover through calibration. Because we are treating thepolar-
izations independently, we allow the antenna subscript to run
over both east–west (E–W) and north–south (N–S)
polarizations.
FHD utilizes the StEFCal algorithm described in Salvini &

Wijnholds (2014) to find the minimum c2 estimate with respect
to the complex gains. The result of this operation is estimated
gains for every antenna, frequency channel, and polarization.
However, with certain known properties of the antenna
response we can reduce the number of free parameters in our
solution. This takes us to the second step of calibration.
Our initial gain model included an amplitude bandpass

common to all antennas, nB ( ), and an antenna-dependent low-
order polynomial in frequency. Mathematically, we can express
our restricted gain as

n n n=g B P , 2i iˆ ( ) ( ) ( ) ( )

where the polynomial term can be further decomposed as

n n n= + + f nf+P A A A e . 3i i i i
i

,0 ,1
2

,2 i i,0 ,1( ) ( ) ( )( )

The coefficients nB ( ), Ai n, , and fi n, are real quantities. This
model allows us to capture arbitrary spectral responses due to
common antenna factors (such as the polyphase filter shapes or
phased array response), as well as slowly varying antenna-
dependent deviations. We also found it necessary to include
terms dependent on the length of the cable connecting the
beamformers to the receivers, which we will discuss in
Section 4.1.
Once all calibration terms are found, we complete the

calibration by dividing the raw data by the gain estimates to
produce calibrated visibilities. The entire calibration process is
done for every snapshot of EoR data, providing both a two-
minute resolution time dependence of calibration solutions, as
well as model visibilities thatare used for foreground
subtraction and diagnostic purposes.
After calibration, we form snapshot image cubes (frequency

mapping to line-of-sight direction). The visibilities are gridded
using the primary beam as the gridding kernel, placing the data
in the “holographic frame,” which has been shown to be the35 http://aoflagger.sourceforge.net/
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optimal weighting scheme for combining images in the sense
that it preserves all information for parameter estimation
(Bhatnagar et al. 2008; Morales & Matejek 2009). We use a
simulation-based primary beam model for MWA antennas
developed by Sutinjo et al. (2015), which incorporates an
average embedded element pattern for the dipoles, as well as
mutual coupling between dipoles within an antenna. At this
stage, we also average in frequency, by a factor of two,by
gridding pairs of frequency channels to the same (u, v ) plane,
resulting in a frequency resolution of 160 kHz. This is done to
reduce the data volumeand has little impact on our results,
because our sensitivity to the EoR is extremely low at the
corresponding line-of-sight k modes (Beardsley et al. 2013).

The data are gridded into separate cubes for even/odd
interleaved time samples. The sum of the even and odd cubes
contains power from the sky as well as noise, while the
difference between the two contains only noise power.
Subtracting the power spectrum of the difference from that of
the sum yields an unbiased estimate of the sky power (Jacobs
et al. 2016).

The gridded (u, v) data are then Fourier transformed to create
sky-frame images. To avoid aliasing, we image out 90° from
phase center (gridding resolution of a half wavelength), and
crop the image. We found that cropping the image based on
beam value resulted in hard edges when integrating images
from different snapshots having beams pointed in slightly
different directions. To avoid the hard edges, we predetermine
a set of HEALPix pixels to interpolate to, and use the same set
for all snapshots on a given field. The final cropped field of
view for this work is a 21 square centered at R.A.=0h,
decl.=−27°.

In principle the foregrounds could be subtracted from the
data immediately after calibration, before gridding and
imaging. However, for diagnostic reasons, we have found it
beneficial to carry the model through the entire pipeline, and
only subtract just before squaring to power spectrum units,
allowing us to form power spectra of the dirty, model, and
residual data.

FHD provides all inputs needed for the òppsilon package,
which include weightcubes (for proper accumulation of data),
variance cubes (for error propagation), and even/odd inter-
leaved data cubes (for an unbiased estimator and a direct
measurement of the noise). We also retain both E–W and N–S
polarizations. At this time, we can remap our coordinates to
cosmological units according to the relationships given in
Morales & Hewitt (2004), where angular and frequency units
q q f, ,x y( ) map to cosmological distance units r r r, ,x y z( ). Often,
rz is referred to as the line-of-sight dimension, and denoted as
r . Similarly, r r,x y( ) is the plane perpendicular to the line of
sight and is denoted as r̂ .

3.3. Power Spectra

In the final steps of our pipeline, we integrate the snapshot
image cubes, and calculate a power spectrum estimate. Though
the integration step is formally an imaging component, we
conceptually group it with the power spectrum step. This is
because all steps of the pipeline up to this point have been
performed on a per-snapshot basis (no communication between
snapshots beyond foreground modeling), and the integration
step can be used to select subsets of data for diagnosing power-
spectrum artifacts. The images produced by FHD are in the
holographic frame, which is already properly weighted for

combining images, so the integration is simply adding the
cubes togetherand propagating the weights.
The òppsilon package performs a discrete Fourier transform

(DFT) on each r slice of the integrated HEALPix cube,
forming a cube in k̂ r,( ), where k̂ represents the cosmolo-
gical wave number in the plane perpendicular to our line of
sight, and r is the distance to the observed redshift slice along
the line of sight. The Fourier transform along the r dimension
is treated separately due to incomplete (u, v ) sampling and
flagged frequency channel; thisleads to structure in the
frequency sampling along any given k⊥ pixel. We thus adopt
the Lomb–Scargle least-squares method to determine the
orthogonal eigenfunctions given our sampling function and
estimate the total power in each k mode (Scargle 1982). In
addition, because the spectrally smooth foregrounds contain
vastly more power than the expected EoR signal, we apply a
Blackman–Harris window function prior to the r to k
transform. This has the effect of trading lower effective
bandwidth for higher dynamic range (e.g., Thyagarajan et al.
2013, 2016).
The pipeline as described up to this point is applied to both

the calibrated data and the foreground model. At this point,we
subtract the model from the data to form residual data as well.
All three sets of data (dirty, model, and residual) are carried
through the remaining steps to form corresponding power
spectra.
After squaring and dividing by our observation window

function (Bowman et al. 2006), we arrive in 3D power
spectrum space. We use the even/odd interleaved cubes to
form a signal (odd plus even) and noise (odd minus even)
power spectrum, which we subtract from one another to form
an unbiased estimate of our signal power. This is mathema-
tically equivalent to cross multiplying the even and odd cubes.
The 3D power spectrum cube can next be averaged in annuli of
constant k⊥ and k (i.e., orthogonal to the k axis) to form
2Dpower spectra, or spherical shells to form one-dimensio-
nal(1D)power spectra where we will ultimately constrain
the EoR.
An example 2D residual power spectrum formed from the

three-hour golden data set is shown in Figure 2. The bulk of the
residual power is in the so-called foreground “wedge,”
indicated with the diagonal black lines where the solid line
corresponds to sky emission at the horizon, and the dashed
linecorrespondsto emission at the edge of the MWA field of
view. Above the wedge,we see horizontal lines of contamina-
tion due to the periodic frequency sampling function. These
lines are often referred to as the coarse-band harmonics. We see
vertical streaks at high k and high k⊥. These are due to sparse
(u, v ) sampling beyond the dense core of the MWA (starting

l~70 ), which results in non-uniform spectral sampling after
gridding. This, in turn, causes theforeground power to mix to
high spectral modes (Bowman et al. 2009). The frequency-
dependent sampling creates a PSF in the k for each (u, v ) cell.
In principle, covariance weighting along the frequency
dimension may be able to mitigate this leakage (e.g., Liu &
Tegmark 2011), and an òppsilon implementation is under
development. We provide axes more closely related to the
measurements to assist in connecting these instrumental effects.
The right axis shows delay (Fourier dual to frequency), and the
top axis shows thebaseline length measured in wavelengths.
Between the coarse-band lines and to the left of the vertical
streaks we see regions thatcontain both positive and negative
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(indicated by blue on the color bar) pixels. These regions are
where we have successfully isolated the foregrounds and
retained a noise-like EoR window in the three-hour integration.

Figure 3 shows the uncertainty level corresponding to the 2D
power spectrum in Figure 2. These levels are found by
propagating noise measured from calibrated visibilities through
the entire pipeline. The dense core of the MWA results in
relatively low noise at low k̂ . As the (u, v ) density of the array
decreases at longer baselines, the noise increases. The noise is
mostly constant across k because the thermal noise amplitude
is relatively constant over frequency and the Fourier transform
distributes the noise power across all modes (Morales &
Hewitt 2004). The exception is the second k bin, which has
slightly lower noise than the rest of the k modes. As explained
byB.J.Hazelton et al. (2016, in preparation), this is a result of
the Lomb–Scargle periodogram interacting with the Black-
man–Harris window function we apply to the data. Most of the
bins have the noise equally distributed between cosine and sine
terms, with the exception of the =k 0 bin, where the cosine
term carries all the information. Due to the correlations
introduced by the Blackman–Harris window function, the first
non-zero k mode is highly covariant with the bottom bin—
therefore, the noise on this mode’s cosine term is lower than
other higher order cosines.

4. ANALYSIS METHODS FOR TESTING DATA QUALITY

The two-dimensional (2D)power spectrum is a useful figure
of merit (FoM) as we improve and refine our analysis pipeline.

Foregrounds and systematics often manifest with characteristic
shapes in this space, enabling us to diagnose problems and
quantify improvements (Morales et al. 2012). We use the
MWA three-hour“golden” data set from 2013 August 23to
repeatedly form power spectra to test and refine our analysis.
While an exhaustive catalog of these improvements is outside
the scope of this paper, we demonstrate the utility of the
2Dpower spectrum as an FoM with a few key techniques we
have employed in our analysis.

4.1. Cable Dependent Calibration

Early in our analysis it became apparent that the bandpass of
each MWA antenna requires more free parameters than those
described in Equation (2). In particular, differing lengths of
cable connecting the beamformers to the receivers lead to
different bandpass shapes due to signal attenuation. We
therefore allow the amplitude bandpass factor to depend on
cable length, naB ( ), where α denotes the cable type.36

The top panel of Figure 4 shows a 2D power spectrum using
the gain model described so far. Three of the horizontal lines in
the EoR window can be attributed to the coarse-band gaps, as
they reside at the harmonics expected for 1.28MHz periodic
sampling. But the sampling cannot account for the fourth line,
highlighted by the arrow. The corresponding delay time of the
line, t » 1.23 μs, corresponds almost exactly to twice the
signal travel time through the 150 m cables (with velocity
0.81c). Wetherefore introduced a reflection term into our gain

Figure 2. Example two-dimensional, E–W polarization residual power
spectrum formed using the three-hour golden data set from 2013 August 23.
The foreground wedge dominates the region below the solid black horizon line,
while regions above are mostly noise-like, with the exception of horizontal
coarse-band harmonic lines. The vertical streaks at high k and high k⊥ are due
to sparse (u, v ) sampling beyond the dense core of the MWA. The right axis
shows the delay (Fourier dual to frequency) corresponding to the k ∣ axis, and
the top axis shows the baseline length (in wavelengths) corresponding to the
k⊥ axis.

Figure 3. Uncertainty level corresponding to Figure 2. The noise is relatively
low at short baseline length (low k⊥) due to the dense MWA core. The array is
more sparse at longer baselines, and the noise increases. The second k bin has
slightly lower noise than the rest of the k modes due to the interaction between
the Lomb–Scargle periodogram with the Blackman–Harris window function
applied to the data.

36 For logistical purposes, the beamformer to receiver cables were installed in
six set lengths. Cables of length 90, 150, and 230 m are RG-6, while 320, 400,
and 524 m cables are LMR400-75.
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model, which allows our restricted gains to account for the
interference of the incident signal with a round-trip reflected
signal in the cable. A similar approach was taken at lower
frequencies in Ewall-Wice et al. (2016). The full gain model is

expressed as

n n n n= +ag B P R , 4i i iˆ ( ) ( )( ( ) ( )) ( )

where the reflection term can be further decomposed as

n = p t n-R R e . 5i i
i

,0
2 i( ) ( )

The reflection coefficient, Ri,0, is allowed to be complex, while
the reflection delay, ti,is real. After fitting for all other
parameters, we fit for the reflection mode. We found that if we
did not first fit and remove the polynomial terms, our reflection
fits would be dominated by the large power in the smooth
structure, resulting in solutions that did not match physical
reality. The reflection fitting is done for antennas with
suspected reflections, the most offensive of which is seen in
the antennas with cables of 150 m. Because the cables were not
cut at exact lengths (variations on order tens of centimeters), we
solve for both the reflection coefficient and delay by
performing a direct Fourier transform to a highly over-resolved
delay grid and selecting the mode where the reflection
amplitude is largest. This fitting produces a single reflection
coefficient for each antenna with nominal cable length
of 150 m.
The resulting 2D power spectrum after fitting for cable

reflections is shown in the bottom panel of Figure 4, where the
reflection line is suppressed below the noise level. This
example demonstrates the power of the 2D power spectrum as
an FoM. The power in the reflection line was about five orders
of magnitude below the foregrounds, making it very difficult to
detect in image-based metrics. However, the power spectrum is
specifically designed to be sensitive to low-level spectral
structure, and using the two-dimensional spectrum allows us to
identify the “shape” of contamination, enabling a precise
diagnosis.

4.2. Gridding Kernel Resolution

A similar, low-level effect thathad the potential to
contaminate the EoR window is shown in Figure 5. The
spectra shown are the model spectra—calculated by propagat-
ing the sky model visibilities through the entire pipeline.
Despite our foreground model not containing spectral structure,
the EoR window in the top panel seems to have a floor at a
level ~107 mK2h−3Mpc3, comparable to predicted EoR
signals. In addition, there is a faint line in the upper left of the
plot thathas the same slope as the wedge, but seems to
originate far beyond the horizon.
The source of this floor and super-horizon line was traced to

the resolution at which we formed the gridding kernel
whilegridding visibilities. In the interest of computational
speed and efficiency, the kernel is pre-calculated at a high
resolution, then a nearest-neighbor lookup table is used to
approximate the beam values at discrete pixels. This is a
common practice in most analysis software packages. The
kernel resolution used in the top panel of Figure 5 was 0.04
wavelengths—much smaller than the half-wavelength grid
corresponding to horizon-to-horizon imaging. However, as a
baseline migrates in (u, v ) coordinates across frequencies, it
undergoes discrete steps between kernel values used. This
effectively results in small baseline position errors, which shift
periodically in frequency, resulting in power being mixed into
the window and a relatively strong harmonic at the frequency
of the shifting (the faint line in the upper left of the window).

Figure 4. Top: single polarization dirty power spectrum formed from the
golden data set, before implementing cable reflection fitting into the calibration
loop. The small gray arrows point to the bands resulting from the periodic
coarse-band sampling. The black arrow points to a horizontal band at

»k 0.7 hMpc−1, which cannot be accounted for by the coarse bands.
Bottom: after we implement the cable reflection fitting in our calibration
solutions, we see the reflection line disappears.
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While we illustrate this effect with a model power spectrum,
the same problem exists in the data, but is below the noise
levels at three hours of integration.

This effect is distinct from more fundamental wedge effects
(e.g., Morales et al. 2012; Hazelton et al. 2013) in that it is a
result of the computational limitation of the analysis. The
primary contribution to the foreground mode mixing is due to
the loss of information as each baseline samples a range of

(u, v) modes. On the other hand, the effect discussed here is due
to small positional offsets in the gridding kernel and only exists
after gridding.
We resolved this issue by increasing the resolution at which

we form the kernel. While the most accurate answer is to model
at infinite resolution, it is not computationally feasible to do so.
Instead, we chose a resolution at which the effect no longer
materially impacts the power spectrum. With experimentation,
we found that a kernel resolution of 0.007 wavelengths was
sufficient. The resulting model power spectrum is shown in the
bottom panel of Figure 5. The contamination within the EoR
window now drops significantly lower. Of course, without
knowing the exact level of the cosmological signal, we cannot
know if this level is sufficiently low. This effect may need to be
revisited if the EoR power spectrum is lower than predicted.
The improvement in beam model resolution came at the cost of
20% increase in memory usage for our imaging pipeline.

4.3. Improving the Point-source Model

Our pipeline uses two modes of FHD—the full deconvolu-
tion mode to identify point sources and build a catalog, and a
production mode, where we calibrate using the sky model and
subtract it from the data without further fitting. Because full
deconvolution on every observation from the MWA is
computationally not feasible, we currently restrict ourselves
to the golden data set to build our model. The process of
building the catalog is presented in Carroll et al. (2016). They
applied machine learning classification methods to select
reliable detections from the full deconvolution FHD mode,
culminating in the KGS catalog.37 The work here uses an early
iteration of the KGS catalog that was available at the time of
analysis.
It has been shown that subtracting a foreground model

strictly within the main lobe of the primary beam will not be
sufficient to suppress the power spectrum wedge and unlock
the EoR window (Thyagarajan et al. 2015a, 2015b; Pober et al.
2016). We are in the process of repeating the model building
described above using additional MWA observations pointed
away from our field of interest. Until that work is complete, we
supplement the extent of our point-source model using
additional catalogs. We accomplish this through a hierarchical
catalog pulling from our early KGS catalog, the MWA
Commissioning Survey38 (MWACS, Hurley-Walker
et al. 2014), the Culgoora catalog (Slee 1977), and the
Molonglo Reference Catalog (MRC, Large et al. 1981). Source
flux densities are prioritized in this order based on our
confidence in their predicted flux density at 182MHz. We
first cluster the source lists to avoid redundant sources, using a
3.5 arcmin neighborhood radius, wethen select the flux density
from the highest priority catalog. Spectral indices were
obtained from the MWACS and Culgoora catalogs when
available, otherwise a two-point spectral index was estimated
for Culgoora–MRC matches or MRC–SUMSS matches. All
other sources were given a spectral index of −0.8, the
previously determined median spectral index of sources below
1.4 GHz (Oort et al. 1988; Hunstead 1991; De Breuck
et al. 2000; Mauch et al. 2003). The spectral index was used

Figure 5. Top: single polarization model power spectrum demonstrating the
contamination in the EoR window when using insufficient gridding kernel
resolution. The window has a floor comparable to an expected EoR signal, and
a faint super-horizon line appears at high k . The black arrow indicates the
location and direction of the faint line. Bottom: model power spectrum after
increasing the gridding kernel resolution from 0.04 wavelengths to 0.007
wavelengths. The floor is now far below the expected EoR signal level.

37 KGS is an abbreviation of KATALOGSS, the KDD (Knowledge Discovery
in Databases) Astrometry, Trueness, and Apparent Luminosity of Galaxies in
Snapshot Surveys.
38 The more complete GLEAM Survey (Wayth et al. 2015; Hurley-Walker
et al. 2017) was not available at the time of analysis.
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to extrapolate the flux density from the catalog frequency to
182MHz, but a uniform spectral index of −0.8 wasused
within our band when forming model visibilities for calibration
and foreground subtraction.

The resulting hierarchical catalog is shown in Figure 6. The
EoR0 field corresponds to the red KGS source patch. All
sources above the horizon and within a primary beam value
greater than 1% maximum (including sidelobes) are included in
both our calibration and foreground subtraction models.

To show the effect our hierarchical catalog has on the power
spectrum FoM, we ran our entire analysis pipeline on the
golden data set with two foreground models—first with only
the MWACS catalog, and again with the full hierarchical
catalog. We then compare the resulting 2D power spectra to
inspect whether the new catalog results in more accurate
calibration and foreground subtraction.

Because we use the input foreground model to calibrate our
visibilities, the gain estimates for our two runs differed. In
particular, we saw the overall flux scale of the calibrated
visibilities was higher when using the full hierarchical catalog,
owing to a more complete sky model requiring lower amplitude
gains to describe the data. This difference is on the order ofa
part in 103 in mK2 units, but is largely amplified when
observing the difference in the power spectra. In order to put
both residual 2D power spectra onto the same scale for
comparison, we first divide each k̂ k,( ) cell by the corresp-
onding dirty power spectrum pixel, then subtract to arrive at a
ratio difference,

ratio difference residual
dirty

residual
dirty

= - .

6

1

1

2

2

( )

Here we use subscript 1 to represent the MWACS catalog
spectra, and 2 for the hierarchical catalog spectra. The ratio

difference is shown in Figure 7. The entire wedge being
positive (blue) demonstrates that using the new catalog resulted
in successfully subtracting ahigher fractional power. Not only
does this indicate thatwe subtract more power, but it also
confirms that our calibrated data is more closely matched to the
model, meaning that our calibration solutions, in general, are
more accurate.
Line et al. (2016) performed a similar analysis, but with an

emphasis on the positional accuracy of catalog entries. By
using simulations of visibilities, they were able to isolate the
effect of using perfect versus offset source positions. In their
simulations, source position offsets of 14% of the synthesized
beam-width had asignificant impact on foreground subtraction,
confirming the importance of a complete and accurate point-
source catalog in order to retain a clean EoR window.

4.4. Diffuse Foreground Model Subtraction

In addition to a point-source foreground model, we also
introduce a diffuse emission model within the primary field of
view of the MWA. Though the EoR0 field was chosen to be
relatively devoid of Galactic emission, we find this diffuse
structure still highly contaminating due to the very high
sensitivity of the MWA at large scales. For computational
purposes, we have divided the diffuse emission into two
regimes—the faint clouds in our main lobe, and the bright
plane and other structures in the sidelobes. While the latter has
been studied by many people and a Global Sky Model (GSM)
is readily available (de Oliveira-Costa et al. 2008), the
computational obstacle of simulating the instrument response
to a full-sky diffuse model is yet prohibitive, though under
active pursuit (Thyagarajan et al. 2015b). We instead focus
here on the diffuse structure within the primary field and leave
the full-sky model to future iterations of analysis.

Figure 6. Hierarchical catalog used for foreground subtraction. This catalog combines the source lists from the KGS catalog, the MWACS catalog, Culgoora sources,
and the MRC, prioritizing in that order. The EoR0 field corresponds to the red KGS patch, while we use the other catalogs to fill in the sidelobes of the MWA. The size
of each dot is proportional to the 182 MHz flux density of the source, clipped at 20Jy.
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This first iteration of modeling the diffuse structure within
our primary field was done by simply using output point-source
subtracted residual images of FHD from the three-hour golden
data set. We combine the images from three hours to leverage
the rotation of the Earth to improve the PSF of the instrument.
This integrating of images is done with uniform weighted data
to minimize the effect of double instrument convolution (once
when the data are taken, andagain when we use the output as a
model). We then form a pseudo Stokes I image by adding
beam-weighted E–W and N–S polarizations. We also integrate
in frequency to form a single continuum image for our model.
By forcing our model to contain no spectral structure, we
mitigate the risk of subtracting a cosmological signal.

Future iterations of this model will contain a spectral index
and multiple polarization components. Lenc et al. (2016)
demonstrated the presence of strong polarized large-scale
structures in the EoR0 field at 154MHz with varying Faraday
depths. They observed rotations in the Stokes Q–U plane due to
ionospheric conditions, which will need to be taken into
account in our future diffuse models.

Ultimately, we need model visibilities to subtract from our
data. However, rather than storing a model for all observations
(different pointings and phase centers), we find it simplestto
treat the model as a single HEALPix image that can be used to
create model visibilities for each independent observation.
FHD treats each pixel in the image as a point source at the pixel
location with the total flux density equal to the surface
brightness of the diffuse image times the area of the pixel, and
it creates model visibilities for each snapshot in the same way

that it imports a catalog of point sources. This is similar to the
strategy employed by Thyagarajan et al. (2015b) to model
diffuse structure.
The diffuse model used for this work is shown in Figure 8.

While the actual model image is uniform weighted with
resolution~6 arcmin, we show it smoothed to degree scales to
emphasize the large-scale structure and toapproximate what
the MWA instrument observes with a natural weighting.
For this iteration of analysis, we only use the diffuse model

for subtraction, and omit it for calibration. At the time of
writing, short baselines were not producing reliable results in
the calibration loop. Instead, we chose to omit the diffuse
model and mask baselines shorter than 50 wavelengths for
calibration purposes. However, we add the diffuse model and
unmask short baselines when performing foreground subtrac-
tion. We compare the total residual power in the images by
squaring and summing the residual image cube from before and
after the diffuse subtraction. This includes all scales measured
by the instrument, but,because the image cubes are naturally
weighted, the k space weighting is the inverse of Figure 3,
meaning that k̂ h0.05 Mpc−1 dominates the average. We
saw a 70% reduction in residual power when including our
diffuse model—a strong indication that our diffuse model
improves our subtraction. Future iterations will incorporate the
model in calibration and gradually improve the model itself.
We demonstrate the impact of our diffuse model again by

running the golden data set through our entire analysis pipeline
with and without using the diffuse model. Because the
foreground models used for calibration in the two runs are
identical (diffuse is omitted for calibration), the calibration
solutions were identical and therefore the dirty power spectra
were identical as well. We compare the model and residual
power spectra by direct subtraction in Figure 9. The top panel
shows our point-source foreground model power spectrum
minus the model power spectrum when including diffuse.
Because our diffuse model added power to the full foreground
model, the entire plot is negative (red). Even the EoR window
is red (albeit at a much lower level than the wedge) because of

Figure 7. Power spectrum ratio difference, according to Equation (6). This
metric shows the difference in the fractional E–W residual 2D power spectrum,
comparing the MWACS catalog and our hierarchical catalog. By dividing the
residual spectrum by the corresponding dirty spectrum before subtracting, we
remove the effect of the overall flux scale change due to differing calibration
solutions. We see that the wedge is completely positive (higher fractional
residual when using the MWACS catalog), confirming that the hierarchical
catalog subtracts more power from the data. This also reassures that the
calibration using the new catalog is more accurate.

Figure 8. Diffuse foreground model within the EoR0 field used for foreground
subtraction. This model was created using residual images from the golden data
set. The image shown is smoothed to degree scales to emphasize the large-scale
structure and to approximate an MWA snapshot natural weighting. Note that
the negative brightness values are a consequence of not sampling the zero-
spacing part of the (u, v) plane.
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power leakage from non-uniform spectral sampling and from
the dynamic range limit of the Blackman–Harris window
function. The bottom panel is the difference in residual power.
The wedge is completely positive (blue), indicating that the
diffuse model successfully subtracted from the dirty visibilities.
The differences in the window are positive and negative,

indicating that the differences in the foreground model in this
region are below the three-hour noise level.

5. A DEEP INTEGRATION

Up to this pointwe have only discussed testing and analysis
on the three-hour golden data set. We next turn toward a deeper
integration, incorporating the techniques described above. We
start with all MWA observations taken on the EoR0 field at
182MHz between 2013 August 23 and November 29. This
includes 2780 snapshots, or about 86.5 hoursof data. We first
make data quality cuts, then form power spectra.

5.1. Data Selection

All 2780 snapshots in the data set are preprocessed,
calibrated, and imaged using the pipeline described in the
previous sections of this article. Similar to tests on the golden
data set, we rely heavily on the 2D power spectrum as a
diagnostic tool, this time to identify and excise poor-
quality data.
We use the jackknife method to filter out bad data and detect

patterns. This involves dividing the data into many subgroups
and forming power spectra. The goal is to find observational
parameters thataffect the quality of the data, such as the day or
time of night. A powerful grouping is to divide the data into the
observation day and “pointing” (which direction the antennas
were pointed while tracking the EoR0 field). We show an
example of one day’s worth of per-pointing power spectra in
Figure 10. The pointings are labeled sequentially with −5
corresponding to five pointing steps prior to zenith transit, 0
corresponding to zenith, and +4 corresponding to four steps
after zenith. This numbering scheme is shown graphically in
Figure 11. Early in the night (−5 through −3) the bulk of the
Galactic plane was still above the horizon, and, despite being
very far from our primary field of view, highly contaminated
our observations through the sidelobes of the instrument. We
then have relatively well-behaved pointings, with the EoR
window dominated by noise, until the final pointing of the
night, when we can see evidence of the Galaxy rising again
indicated by strong lines of power at the edge of the foreground
wedge. We saw the same contamination on all days of
observation and decided to cut all −5, −4, −3, and +4
pointings from our data set. In principle, it may be possible to
model the Galactic plane well enough to account for its
presence, but we leave this to future work.
Motivated by the manual classification done with power-

spectrum jackknives, we developed another metric to quickly
predict thepower spectrum quality for each snapshot in our
data set. We do this by forming a delay spectrum (Parsons et al.
2012) from the raw, uncalibrated visibilities. We then calculate
an estimated total EoR window power by integrating the power
above the horizon line and below the first coarse-band line.
While we would ideally use calibrated visibilities for this
metric, we have found that the uncalibrated power is strongly
correlated to the calibrated power, and the cuts we make below
are independent of calibration. This is encouraging because
future analysis could use this metric before processing the
snapshots, saving valuable computing resources.39

Figure 9. Single polarization (E–W) power spectrum differences from the
golden data set showing the effect of subtracting a diffuse foreground model.
The calibration is identical with and without the diffuse model, so the dirty
power spectra are identical. In the top panel, the model power spectrum
difference is almost entirely negative (red), indicating that the diffuse model
added a large amount of power to the foreground model. The bottom panel
shows the residual power spectrum difference is positive in the wedge (blue),
demonstrating a successful subtraction. While this first attempt at a diffuse
model was rudimentary, it successfully removed 70% of the residual power.

39 Because calibration involves generating model visibilities for each snapshot,
approximately half ofthe computational cost of the entire imaging pipeline is
required to obtain calibration solutions.
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We plot the window power for each snapshot in our data set
in Figure 12(a). We first note that our conclusion from the
jackknife tests is confirmed here—early pointings contain
strong contamination and have high window power. We also
see many outlier snapshots with excess power. Inspecting

power spectra from these individual snapshots confirmed poor
data quality, even after calibration. The cause of these
contaminants is yet unknown, but could easily be attributed
to low-level RFI that was missed by the AOFLAGGER, or
intermittent hardware failures. To remove the poor data, we
made the cut shown with the black box, keeping only snapshots
inside.
Next we compare the power in our two instrumental

polarizations. When conducting our jackknife tests, we saw
contamination could exist in one polarization and not the other
—potentially due to RFI, or an instrumental failure. We plot the
ratio of N–S power to E–W power in Figure 12(b), after
applying the previous cut. We see that the ratio is generally flat,
with the exception of some outliers and almost all of pointing
+3. We suspect that the excess N–S power in the later pointing
is due to the Galaxy leaking back into the sidelobe of the N–S
polarization, but not in the other. Again, we make the cut
shown with a black box.
Our final data cut was made when inspecting the snapshot

residual continuum images output from FHD. We estimate a
proxy for the residual flux density from foreground sources by
calculating the rms of the fractional residual flux densities for
all subtracted sources greater than 0.5 Jy within half-beam
power. The fractional residual flux density is measured as the
ratio of the residual image pixel value (Jy) at the source

Figure 10. Example jackknife test. For this test, we divided the data into days and pointings. This is an example array of power spectra (residual E–W polarization)
for a single day, 2013 August 26. The early pointings are heavily contaminated by the Galaxy in the sidelobes, the window becomes more clear near zenith, and we
can see trace contamination at the end of the night (pointing +4) when the Galaxy has risen again.

Figure 11. Cartoon depiction of the numbering scheme used to label pointings
in Figures 10 and 12. Looking south, a field transits from the east (left), and the
telescope begins observing about 5 pointings before zenith (−5). As the field
drifts overhead, we periodically repoint the telescope to recenter the field. Each
shift increments the pointing label by one, and the zenith pointing is defined as
zero. While a+5 pointing (and beyond) is possible with the MWA, this
observing campaign did not contain any such data,because we instead
switched to the EoR1 field at that time.
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position to the integrated flux density of the source. We found
that most snapshots had residual flux density rms <10% with
some outliers, which we cut from the data. This cut largely
overlapped with previous cuts, but removed an additional 95
observations. The cause of the high-residual flux density rms is
yet unknown and is not localized by observation day, LST,
pointing, or any other jackknife we have performed.

After the cuts described above, we are left with 1029
snapshots, or just over 32 hoursof data. This is an aggressive
cut, with the aim of removing all poor-quality data and
retaining a data set as clean as we can determine from our data
quality checks. As mentioned earlier, more sophisticated
analysis could allow us to recover data cut from this study in
the future (e.g., modeling and removing the Galaxy in
observations pointing far off zenith).

5.2. Results

In this section, we discuss the results after processing the
remaining 32 hoursof data through the òppsilon pipeline, and
place an upper limit on the EoR power spectrum.
The bandwidth of the MWA and our data set is 30.72MHz,

but in order to avoid the effects of cosmic evolution over the
span of our measured redshift range, we limit observations to
about 8 MHz, or D ~z 0.3 at our frequency. We do this by
dividing the band into three overlapping sub-bands of
15.36MHz each, which, after applying the Blackman–Harris
window function, will result in effective bandwidths of
7.68MHz. We label these sub-bands as “low” ( »z 7.1),
“mid” ( »z 6.8), and “high” ( »z 6.5).
The 32-hourintegrated residual power spectra for our three

sub-bands and both instrumental polarizations are shown in
Figure 13. A number of features can be seen in these spectra. In
all cases the foreground wedge is prominent, with extra power
at large scales (low k⊥). This is an indication that our diffuse
model needs to improve for deeper subtraction.
The lowest region of the EoR window, above the horizon

line and around »k h0.25 Mpc−1, contains purely positive
bins, indicating non-noise-like power. The cause for this
seeming leakage is yet unknown, and itlimits our integration in
this analysis. One suspected origin of this contamination was
individual snapshots with high contamination that slipped
through our cuts. However, dividing the data into random
subsets and comparing results indicated that there is not a small
number of offending observations, instead, the leakage appears
to exist at a low level in all of the data.
Another potential cause of the foreground leakage into the

EoR window is insufficient calibration quality—particularly
the spectral shape of the instrumental bandpass. Investigations
are underway to combine snapshot observations for higher
signal-to-noise calibration solutions, as well as more sophisti-
cated parameterization of the gain model in Equation (4) to
account for more physical effects, such as dependence on
ambient temperature variation.
Moving up in the window, between the first two coarse-band

harmonic lines we can see an additional faint line. This is the
re-emergence of the 150 m cable reflections. While the method
described in Section 3.2 sufficiently calibrated out this
reflection line for the three-hour golden set integration, the
lower noise level in this deeper integration shows it is not
completely removed. Future analysis will require higher signal
to noise on the reflection fitting, which may require combining
snapshots for calibration solutions.
Between the coarse-band harmonic lines and the reflection

line, we do see regions where our spectra appear noise-like
(positive and negative values). This is encouraging, despite the
leakage at lower k , and motivates us to be selective when
binning to 1D power spectra.
Figure 14 shows slices of power that help isolate the

contamination. The two-dimensional power spectrum is the
N–S, mid-band spectrum from Figure 13. We have drawn a
horizontal solid blue line to indicate the slice used to plot
power as a function of k⊥ for a fixed k (top right), and a
vertical dashed line to show the slice used to plot power as a
function of k for a fixed k⊥ (bottom right). In the k⊥ power
plot, we can see leakage at high k⊥ from the residual of the
vertical streaks due to poor sampling at large (u, v ). While the
increased noise would mean that we will down weight the bins
at large k⊥, the contamination is even larger, meaning it would

Figure 12. Top: window power for each observation in our data set. The
window power is calculated from the delay spectrum of uncalibrated data as a
fast quality metric. Because uncalibrated data is used, the units are arbitrary.
Each color is a distinct day of observing, and the vertical dashed lines represent
pointing shifts, with the pointing numbers indicated at the bottom of the plot
above the horizontal axis. The black box indicates observations thatpassed this
cut. Bottom: data cut based on window power polarization ratio. For each
snapshot that passed the total power cut, we plot the ratio of window powers in
the N–S and E–W polarizations. Clear outliers can be seen, including the whole
of pointing +3. The black box again indicates the selected data.
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bias our estimate even though those bins are down weighted.
The low end of k⊥ contains exceptionally bright foregrounds at
large scales, which, due to the width of the coarse-band
harmonics, contaminate most of the k modes. With both of
these regimes in consideration, we exclude bins with l<u 10
and l>u 70 , shown with gray boxes. Between these two
regimes are many bins consistent with the noise level, which
we include in our 1D averages.

Similarly, we inspect the k power in the bottom right plot of
Figure 14. Here, we see the huge contamination from
foregrounds at low k . While the leakage drops significantly,
our measurements do not reach the noise level until after the
first coarse-band harmonic. However, we chose to include bins
below the first coarse band with >k h0.15 Mpc−1 because
the cosmological signal is expected to contain substantially
higher power at large scales, and ultimately these low k bins
provide our most competitive limits, despite being systematic
limited. We exclude the coarse-band harmonics by masking out
the harmonic bin itself and two bins on either side (total of five
bins per harmonic).

The final mask we apply is the wedge. We found that a small
buffer beyond the horizon was necessary to completely mask
out the wedge, consistent with Dillon et al. (2015a). We

implement the buffer by increasing the slope of the horizon line
by 14%. This line is shown as the dashed diagonal line in the
left panel of Figure 14.
The various masking described above is summarized with

the black contours shown on the two-dimensional power
spectra in Figure 13. The contours show the cuts in two-
dimensional space, but the masking is actually performed
directly in the 3D power spectrum cube and averaged directly
to one-dimension.
The resulting 1D power spectra are shown in Figure 15,

where the measured power is shown with solid blue, the 1σ
noise level is shown with thin red, and the 2σ upper limit for
each bin is shown with magenta. Where our unbiased estimator
is negative, the absolute value is shown, but with a dotted blue
line. For consistency with the literature, we plot our 1D power
spectra as pD =k k P k 22 3

21
2( ) ( ) ( ), which has units of mK2.

In all bands and polarizations, we are heavily signal
dominated in our most sensitive region (low k ). This is not
surprising based on the 2D spectra we examined earlier. The
gaps in the data are due to the excised coarse-band harmonics.
We can see the cable reflection line between the first two gaps
in all polarizations and sub-bands. Between the coarse-band
harmonic lines, especially at larger k, are bins thatapproach the

Figure 13. Residual two-dimensional power spectra for the three sub-bands used to place limits on the cosmological signal. The left panels show the low band,
centered at 174.7 MHz, or a redshift of 7.1. The middle panels show the mid band, centered at 182.4 MHz, or a redshift of 6.8. The right panels show the high band,
centered at 190.1 MHz, or a redshift of 6.5. The top row corresponds to east–west instrumental polarization, while the bottom row shows north–south polarization. The
contours show the window used for averaging to one-dimension.
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noise level and are consistent with zero (notably the N–S
polarization for the low and mid bands). The bin just above the
first coarse-band harmonic is also consistent with zero in the
low band. These regions are encouraging because they have the
potential to continue integrating down with more data without
further analysis improvements. Further suppression of the
coarse-band harmonicand cable reflection lines will also
improve the limits presented here.

Our best upper limits for a cosmological signal are at low k,
despite the strong leakage. Because any foreground leakage
should not correlate with the EoR signal, we can assume that
the power of the sum of leakage and cosmological signal is
greater than the power of the EoR signal alone, allowing us to
set an upper limit. We quote the best 2σ upper limits, DUL

2 , for
each polarization and band in Table 1. These limits and their
context in the field are further discussed in Section 6.

5.3. Comparison with Reference Pipeline

As demonstrated in Jacobs et al. (2016), comparison
between independent analysis pipelines is essential to evaluate
the validity of algorithms under active development. Such
comparison provides insight into the strengths and weaknesses
of the pipelines, as well as confirmation of results. The analysis
discussed so far has been based on the FHD-to-òppsilon
pipeline, and here we compare with the Real Time System
(RTS, Mitchell et al. 2008; Ord et al. 2010) to Cosmological
H I Power Spectrum (CHIPS, Trott et al. 2016) pipeline.

Below, we present a brief overview of the reference pipeline
and highlight thelessons learned from the comparison.
The RTS uses a fundamentally different calibration and

foreground subtraction approach than FHD, as well as a
different input point-source model. The primary differences lie
in the use of ionospheric corrections, the bandpass calibration,
and the lack of a diffuse model. RTS accomplishes the
interferometric calibration in two steps: a direction-independent
calibration to a single compound calibrator created by
combining the 1000 apparently brightest sources in the sky,
followed by an individual calibration and subtraction of those
sources inside the Calibration Measurement Loop (CML,
Mitchell et al. 2008). The CML estimates individual iono-
spheric corrections for all sources and performs a full direction-
dependent calibration for the 5 very brightest ones. These tasks
are distributed over independent parallel threads for each
1.28MHz coarse channel.
The bandpass calibration is also fundamentally different to

FHD. The bandpass for each antenna is fitted to a third-order
polynomial within each 1.28MHz coarse band and each
direction and polarization individually. The delay of the 150m
cable reflection discussed earlier is comparable to the scale of
the polynomial fit, so we expect it to naturally be fit out of the
gain solutions. Indeed, the RTS has not yet seen evidence of
the reflection in the processed data (Jacobs et al. 2016).
The source catalog used with RTS was a combined cross-

match created with the Positional Update and Matching
Algorithm (PUMA, Line et al. 2016). Full details of PUMA

Figure 14. Left: the N–S, z = 6.8 two-dimensional power spectrum repeated from Figure 13. Here we have superimposed blue lines to show slices in k⊥ (solid) and k
(dashed). Top right: residual power as a function of k⊥ for fixed k , averaged in rings from the full 3D power cube (blue). The gray boxes show regions that will be
excluded from the 1D averages. The red line shows the 1σ noise level, and the vertical black dashed line shows the intersection of this slice with the wedge. Bottom
right: residual power as a function of k for fixed k⊥, again averaged in rings from full 3D power cube (blue). The strong foreground contamination is evident at low k ,
and the coarse-band harmonic lines appear as expected. The thin gray line in both right panels is the equivalent power slice from the RTS+CHIPS comparison
pipeline, which is discussed in Section 5.3.
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and this cross-matched catalog can be found in Line et al.
(2016), but we include a brief description here. PUMA is
designed to cross-match low radio-frequency (1 GHz)
catalogs. It utilizes a Bayesian probabilistic positional cross-
match approach based on Budavári & Szalay (2008), combined

with criteria based on catalog resolution and fitting the spectral
energy distribution to a power-law. These criteria allow for
surveys with differing resolutions, which can introduce
confusing sources into the matched process. Primarily, the
source catalog was based on the MWACS(Hurley-Walker
et al. 2014), which was cross-matched to the 74MHz Very
Large Array Low Frequency Sky Survey redux(VLSSr, Lane
et al. 2012), the MRC, (Large et al. 1981), the 843 MHz
Sydney University Molonglo Sky Survey(SUMSS, Mauch
et al. 2003),and the 1.4 GHz NRAO VLA Sky
Survey(NVSS, Condon et al. 1998). MWACS covers
approximately < <20 . 5 R.A. 8 . 5h h , d-  < < - 58 14 , so to
complete the sky coverage needed, MRC was used as a base
catalog outside of the MWACS coverage and was matched to
VLSSr, SUMSS and NVSS.
Since RTS has the added step of individual source peeling,

there is a greater possibility for numerical calibration failure.
Before passing to CHIPS, a simple quality assurance step is
considered, which is based upon the variance of residual
visibilities in each 1.28MHz coarse band. Observations with
divergent or unstable calibrations were readily identified by
variances far outside the otherwise observed distribution of
values. Of the 1029 observations calibrated and used by the

Figure 15. 1D power spectra for our three sub-bands and both instrumental polarizations. The solid blue line shows the measured power spectrum with step widths
corresponding to the bin size used in the average. Where the measured signal is negative, we plot the absolute value with a dotted line. The gray boxes show the s2
error bars on the measured power spectrum. Where the boxes meet the horizontal axis we are consistent with zero. The thin red line is the 1σ noise level, and the
magenta line is the 2σ upper limit for each k bin. A fiducial theoretical model for a fully neutral IGM from Furlanetto et al. (2006) is shown in black for reference.

Table 1
Upper Limits on the EoR Power Spectrum for Our Three Sub-bands and Two

Polarizations

FHD+òppsilon RTS+CHIPS

Sub-band z0 Pol k DUL
2 k DUL

2

Low 7.1 E–W 0.231 3.67×104

Low 7.1 N–S 0.27 2.70×104 0.16 3.2´104

Mid 6.8 E–W 0.24 3.56×104

Mid 6.8 N–S 0.24 3.02×104 0.14 2.6×104

High 6.5 E–W 0.20 4.70×104

High 6.5 N–S 0.24 3.22×104 0.14 2.5×104

Note.Upper limits, DUL
2 , are at the 97.7% confidence level. Cosmological

wave numbers, k, are in Units of h Mpc−1 and upper limits are in units of mK2.
The last two columns, RTS+CHIPS, are produced from the reference pipeline,
which is discussed in Section 5.3.
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FHD pipeline, the RTS+CHIPS pipeline successfully cali-
brated and included 1003. The remainder failed to calibrate
successfully, potentially due to adverse ionospheric conditions.

The CHIPS power spectrum estimator applies a full
maximum-likelihood estimator to the data. In its full form,
the data are weighted by the thermal noise, and a model for the
residual point-source signal, within a full frequency-dependent
description of the instrument. For this comparison, the
foreground weighting is not used, in order for a direct
comparison with the weighting scheme used by òppsilon. The
data were divided into the same three redshift bins, and the 2D
and 1D power spectra formed.

Table 1 displays comparison 2σupper limits, demonstrating
broad consistency between the pipelines. The RTS+CHIPS
best limits appear at a lower k bin than FHD+òppsilon, owing
to the different structure of the foreground leakage for the two
pipelines. Figure 14, which shows the resulting FHD+òppsilon
slices in k and k̂ , also displays the equivalent power profiles
for RTS+CHIPS. The comparison pipeline shows significantly
more power at low k̂ , consistent with no diffuse model being
subtracted from the data. Aside from this area, the two
pipelines show consistent results. Figure 16 compares the 1D
power from both pipelines for the three central redshifts studied
in this work. The magenta line reproduces the FHD+òppsilon
results from Figure 15, while the gray line plots the equivalent
RTS+CHIPS results (with coarse-band harmonics included).
Despite the differences in the two pipelines, they produce
consistent power across a range of scales, supporting the
robustness of the results.

6. DISCUSSION

Inspecting our 32-hourintegrated power spectra we see two
places where we are limited. First, there is a region that is
leakage-dominated at low k. The cause of this leakage is yet
unknown, but likely due to imperfect calibration, beam models,
and/or foreground models. In order to improve on our limit in
this regime, future analysis will require calibration thatbetter
accounts for the instrumental response, perhaps by increasing
signal to noise through multiple-snapshot solutions or refined
antenna response models. Through simulation, Thyagarajan
et al. (2016) recently demonstrated the necessity of precise
foregrounds and instrumental models in order to retain a clean
EoR window. Studies of the beam are underway (e.g., Neben
et al. 2015; Sutinjo et al. 2015), and will likely help to further
isolate the foreground contaminates in our power spectra. The
foreground model is a constant area of investigation, but
improved spectral dependence in both thepoint-source catalog
and the diffuse model, as well as the addition of an all-sky
Galactic model, will continue to improve the foreground
subtraction and further unlock the EoR window.

The second limited region in our 1D power spectra is
between the coarse-band harmonics where our measured signal
approaches the noise level. Additional data will likely reduce
the noise, and therefore our upper limit, in this regime.
However, until the leakage at low k is understood, progress at
higher k is susceptible to running into the same systematic with
longer integrations.

Finally, we place our best upper limits in context with the
21 cm EoR field as a whole. A direct comparison between
measurements from different instruments is difficult due to the
varying methods, redshifts, and scales probed. However, if we
approximate the power spectrum in units of mK2 to be roughly

flat over the scales probed by the MWA, PAPER, and GMRT,
we can glean a view of the current state of the field. The best
result from this analysis is an upper limit on the power
spectrum of D ´2.7 102 4 mK2 at =k h0.27 Mpc−1 and z
= 7.1. This is a modest improvement over the previous best
MWA results (Dillon et al. 2015a), which is not surprising-
given that this integration contains about 10times more data,
but is systematics limited. Our results are also consistent with
the 40 hr GMRT limit of D ´6.15 102 4 mK2 at =k h0.5
Mpc−1 and z = 8.6 (Paciga et al. 2013), though they probe
significantly different periods of the EoR. The front runner in
terms of an upper limit is the PAPER experiment (Parsons et al.
2014; Ali et al. 2015; Jacobs et al. 2015). The PAPER-64 limit
of D 5022 mK2 at z = 8.4 from a 135-day observing
campaign is about one and a half orders of magnitude lower
than our best limit in power units, though again probing a
significantly different redshift. The MWA analysis is rapidly
improving as we uncover and mitigate systematics to realize

Figure 16. Herewe compare the upper limits from the FHD+òppsilon pipeline
with those from the RTS+CHIPS pipeline. The magenta lines are repeated
from Figure 15, and the gray lines are the power plus 2σthermal error bars
lines generated by CHIPS. Due to the logarithmic binning used by CHIPS,
some bins are empty, resulting in gaps in the spectra. CHIPS does not excise
the coarse-band harmonic lines, and so we see their strong effect where there
are gaps in the magenta lines. The RTS+CHIPS pipeline accesses larger k
modes because the data is processed at 80kHz, whereas the FHD+òppsilon
pipeline averages to 160kHz when gridding. The most notable differences are
the ability of the RTS+CHIPS pipe to access lower k modes, while the
FHD+òppsilon pipe suppresses more power before and after the first coarse-
band harmonic. While the different analysis methods result in slightly different
upper limits, they are generally in agreement.

17

The Astrophysical Journal, 833:102 (19pp), 2016 December 10 Beardsley et al.



the full sensitivity of the telescope. The red lines in Figure 15
indicate the noise level possible to reach with these data if
systematics can be overcome.

6.1. Summary of Planned Analysis Improvements

Through the reduction of the first season of MWA high-band
EoR observations, we have identified several opportunities to
improve our analysis. Here, we compile a list of future
improvements and their potential impact on the power-
spectrum results. Broadly speaking, these improvements
emphasize a need to better understand the foregrounds and
the instrument, and are likely to be relevant to imaging based
analyses in general.

Extended point-source model. The hierarchical catalog used
here was a definite improvement over the MWACS catalog
alone. This point-source model will continue to improve with
the release of the GLEAM Survey, as well as dedicated MWA
observations to target sources in the sidelobes of the EoR fields.
Improving the foreground catalog in our sidelobes will be
crucial in controlling the foreground leakage into the EoR
window (Pober et al. 2016). Incorporating these improved
catalogs into our analysis will improve both the foreground
subtraction and the calibration.

Diffuse emission model. The diffuse model here contained no
spectral information and represented only the Stokes I
polarization. Nevertheless, subtracting this model removed
70% of the residual power in the foreground wedge. Adding a
spectral index and multiple polarization components to the
model will improve this subtraction even further. As Lenc et al.
(2016) demonstrated, substantial polarized diffuse structure
exists in the EoR0 field. The contributions to Stokes Q and U
depend on the ionospheric conditions, which will be accounted
for in future analyses to appropriately model this emission. In
addition, the diffuse model will be extended to an all-sky
model. It is evident from the jackknives shown in Figure 10
that strong emission near the horizon is leaking into our power
spectra during off-zenith observations. By modeling and
subtracting this emission we may be able to recover these
observations in future analyses.

Primary beam model. In order to properly model the
instrument response to the sky we also need an accurate
primary beam model. This is especially important for EoR
power spectrum measurements because the (often bright) near-
horizon emission resides at the edge of the foreground wedge
(Thyagarajan et al. 2015a, 2015b; Pober et al. 2016), but the
low elevation beam can be difficult to model at the necessary
precision (Thyagarajan et al. 2016). Asad et al. (2016)
demonstrated the need for a polarized primary beam model in
order to mitigate the risk of diffuse polarized emission leaking
into Stokes I, conflating with a potential cosmological
measurement. The MWA primary beam model is continuously
improving to incorporate mutual coupling between the phased
dipoles, and embedded element patterns for each of the 32
dipoles on each antenna (Sutinjo et al. 2015). Other methods
are also being pursued to directly measure the full beam
response in situ using the ORBCOMM satellite constellation
(Neben et al. 2015), and drone-flown calibrator sources (D.
C. Jacobs et al. 2016, in preparation). The latter method is
similar to the strategy Virone et al. (2014) used to verify SKA
beam patterns.

Calibration. The most limiting factor in our analysis is likely
to be insufficiently precise calibration solutions, which can

cause foreground power to leak into the EoR window, as we
see in the integrated 2D power spectra (Figure 13). Because our
calibration is based on sky and instrument models, the
improvements described above will improve our calibration.
We also plan to combine many snapshot observations when
estimating gains andachieving higher signal to noise, which in
turn will enable more sophisticated parameterizations of the
antenna bandpasses. This will require an overhaul of the data
flow depicted in Figure 1 because snapshots will need to be
combined in the calibration step.Preliminary investigations
have shown that the gains are stable enough to be fit across
several hours of observation.
Between 2013 and the time of writing, the MWA has

collected over 2,000hours of data targeting the EoR fields.
These observations include the three designated sky fields and
two frequency bands. In addition, observations are underway to
further characterize the sources in the instrument sidelobes. The
second phase of the MWA will be commissioned in the latter
half of 2016, and will include two sets of highly redundant
cores of antennas. This hybrid configuration will enable a
unique opportunity to study the calibration techniques used in
imaging and delay spectrum analyses, providing another view
of the systematics limiting our current results.
While the analysis presented here has not reached full

potential, it represents the deepest power spectrum integration
to date produced by an imaging pipeline. Imaging involves
many difficulties (e.g., efficient gridding and mapmaking,
foreground modeling), but if systematics can be overcome, it
has the potential to compete with other more targeted
experiments and analysis styles. More broadly, imaging
analyses will be necessary to perform cross-correlation studies
with complimentary probes such as galaxy surveys or other
intensity mapping experiments (e.g., Lidz et al. 2009; Doré
et al. 2014; Beardsley et al. 2015; Silva et al. 2015; DeBoer
et al. 2016; Vrbanec et al. 2016), which will ultimately unlock
the full potential of 21 cm observations. Here, we have
identified a crucial region of power spectrum space that is
currently contaminated, with suggestions for improvement in
future analysis. With improved calibration techniques, primary
beam models, and understanding of foregrounds, the MWA
and other imaging analyses will be able to quickly approach the
most competitive upper limits in the field.
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