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Synopsis

The aim of this thesis is to obtain and understand the nature of diffusion of a tagged particle

in classical one-dimensional systems, starting from microscopic equations of motion. Though

the general problem of tagged-particle diffusion in a fluid has been studied theoretically for more

than a century, the problem came to be studied for microscopic models in one-dimension only

in the second half of the last century. The major attention has been on stochastic models,

where individual particles execute stochastic diffusive motion (hopping/random walk/Brownian

motion). For a one-dimensional system of such particles interacting via hard-core collisions

or general short ranged interactions, one interesting observation is that of sub-diffusion of the

tagged particle. This came to be known as Single-File Diffusion (SFD) and has subsequently been

verified by experiments on particles diffusing in zeolites, lithographically and optically prepared

one-dimensional channels and carbon nanotubes.

Though theoretical studies on such microscopic models have been extremely successful, it has

to be appreciated that they still are coarse grained descriptions, in the sense that the source of

stochasticity of the individual particle dynamics is unaccounted for. Thus, for a deeper under-

standing, it is desirable to study tagged particle diffusion from purely deterministic equations of

motion. Moreover, in the very few studies that have concentrated on one-dimensional Hamilto-

nian systems, most of them being on integrable models of harmonic chain and equal mass hard

particle gas, tagged particle diffusion has been found to be normal. This is in striking contrast to

the sub-diffusive behaviour observed in stochastic systems. The question of whether this normal-

diffusion survives when the integrability is broken is a fundamentally interesting question which

has, surprisingly, not been investigated much. Also, how the boundary effect sets in has not been
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studied in these deterministic systems. In this thesis we present extensive study on tagged-particle

diffusion in various one-dimensional Hamiltonian systems with two major aims. Firstly, to study

the robustness of this normal-diffusion in Hamiltonian systems and secondly, to study the effect

of boundary conditions on tagged-particle diffusion.

We obtain various auto-correlation functions of the central tagged-particle in various one-

dimensional Hamiltonian systems. We consider classical point particles in a finite box interacting

with their nearest neighbours through various Hamiltonians. The system is prepared in thermal

equilibrium and starting from this initial state, the system is allowed to evolve through Hamiltonian

dynamics. The systems we study are: (i) a gas of hard particles of equal masses, (ii) a similar

gas of hard particles, but with alternate masses, (iii) a chain of particles interacting via nearest

neighbour harmonic potential, (iv) a chain of particles interacting via nearest neighbour Fermi-

Pasta-Ulam (FPU) potential, both the β and the α−β case, and (v) a chain of particles interacting

via nearest neighbour Lennard-Jones (LJ) potential at different densities. We also study some

special cases of these systems.

In all the systems studied we find normal-diffusion for the tagged particle asymptotically, before

boundary effect sets in. The exact nature of the correlation functions, however, is found to be

system specific. The boundary effect is studied for both reflecting/fixed and periodic boundary

conditions. We see that for the fixed boundary case, the mean squared displacement of the

tagged-particle saturates at long times. For the periodic case, due to the presence of centre of

mass motion, the tagged-particle motion goes from diffusive to ballistic rather than saturating.

In both the cases, we see oscillations in the correlation functions when boundary effect sets in.

This we assign to disturbances generated by particle fluctuations travelling in the system as sound

wave, interfering with the motion of the tagged particle periodically.

The structure of the thesis is as follows. In Chapter 1, we begin with a historical overview of

the subject of diffusion and introduce the systems and problems studied in the thesis. In Chapter

2, we begin our study on tagged-particle diffusion with the equal mass hard particle gas, where

we evaluate the correlation functions both analytically and through molecular dynamics (MD)

simulations. We then study the alternate mass hard particle gas. This case cannot be solved

analytically, so we obtain the correlations through MD simulations only. In Chapter 3 we move

to the study of various soft chains. We begin with the harmonic chain which we study both
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analytically and through MD simulations. We then study the anharmonic potentials through MD

simulations. We study the FPU chain for both β and the α − β models to see if the difference

between the two models, found in the studies of heat conduction, is found here too. We study

the LJ chain for various densities because the potential is highly inter-particle spacing dependent

and we expected it to show different density dependent behaviour. In Chapter 4 we present an

effective harmonic model for the non-linear Hamiltonians and compare its predictions with the

simulation results of the various nonlinear systems studied in the previous chapters. Finally, in

Chapter 5, we study some special cases of the systems studied above. In particular, we study the

effect of periodic boundary condition, the random mass hard particle gas, mass ratio dependence

of the alternate mass hard particle gas, dynamics of a heavy particle in the centre of a light equal

mass system and dynamics of a heavy particle in a special configuration of hard particle system.
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1
Introduction

1.1 Historical introduction to diffusion

Philosophy of physics throughout its history has mostly been reductionist. Understanding the

nature of complex physical occurrences through the nature of its constituents has occupied

human minds for centuries. Such wish-fullness is reflected in the following piece of scientific

poem of Lucretius, dating 60 BC [1]:

”Observe what happens when sunbeams are admitted into a building and shed light on its

shadowy places. You will see a multitude of tiny particles mingling in a multitude of ways... their

dancing is an actual indication of underlying movements of matter that are hidden from our

sight... It originates with the atoms which move of themselves [i.e., spontaneously]. Then those

small compound bodies that are least removed from the impetus of the atoms are set in motion

by the impact of their invisible blows and in turn cannon against slightly larger bodies. So the

3



4 Introduction

movement mounts up from the atoms and gradually emerges to the level of our senses, so that

those bodies are in motion that we see in sunbeams, moved by blows that remain invisible.”

But such ideas of atomistic/molecular basis of matter remained only that, fragments of wishful

thinking, for centuries to come. Solids and fluids were seen mainly as continuous matter without

any internal structure, whose statics and dynamics are governed by deterministic laws such as

Newton’s equations, Pascal’s law, Archimedes’ principle, Bernoulli’s principle, etc. Hence when

Ingenhousz in 1785 [2] and Brown in 1827 [3] observed the highly zig-zag motion of mesoscopic

particles in fluids, they could not explain its origin. Although in 19th century great minds like that

of Gibbs, Boltzmann and Avogadro, among others, came up with explicit ideas of molecular basis

of fluids, the biggest success for such ideas came when Einstein in 1905 [4, 5] and Smoluchowski

in 1906 [6] applied the molecular ideas to successfully describe this zig-zag motion, known as the

Brownian motion. Their idea was that the incessant molecular bombardments that a mesoscopic

particle feels in the fluid medium results in net unbalanced forces acting on the particle at every

instant of time which in turn causes the particle to do a random walk [7]. Einstein further used

the concept of osmotic pressure of suspended particles in fluid medium and, by balancing the

diffusion current with the drift current, obtained the diffusion constant of the Brownian particle

in terms of the fluid temperature and the fluid viscosity (through Stokes law),

D = RT/6πηaN , (1.1)

where D is the diffusion constant of the Brownian particle in the fluid medium, R is the gas

constant, T is the temperature of the surrounding fluid medium, η is the viscosity, a is the radius

of the Brownian particle and N is the Avogadro number. This relation, known as the Einstein

relation, was later generalized in terms of the famous regression hypothesis by Onsager [8], the

quantum fluctuation-dissipation theorem by Callen and Welton [9], and with the linear response

theory by Green [10, 11] and Kubo [12–14]. It is worth noting that this Einstein relation was

independently obtained and reported earlier (in 1904) by Sutherland. This work was actually

submitted for publication even somewhat earlier (March 1905) as compared to Einstein’s paper

(May 11, 1905) [15], see also [16, 17]. In these papers Einstein and Smoluchowski also heuristically

derived the (overdamped) diffusion equation,

∂ρ(~r, t)

∂t
= D∇2ρ(~r, t) , (1.2)
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where ρ(~r, t) is the density of such particles at position ~r at time t. Note that, even though the

above equation is written for concentration of the diffusing particles, it can be carried forward to

the case of an individual Brownian particles in the fluid, by replacing the concentration with the

probability of finding the particle at position ~r at time t. This above equation, on assuming that

the Brownian particles start at origin, has the solution :

ρ(~r, t) =
1√

12πDt
exp

(
− ∆r2

12Dt

)
, (1.3)

where ∆r2 = (~r(t)− ~r(0))2. From this he deduced the famous prediction that the root mean

square displacement of suspended particles is proportional to the square root of time, or〈
∆r2

〉
= 6Dt . (1.4)

Einstein also noted that the trajectories of such Brownian particles would be memory-less and

non-differentiable [18], a concept made more precise by work of Weiner [19, 20].

A crucial consequence of Einsteins theory was that from the measurement of the diffusion

constant it would have been possible to extract an independent estimate of the atomistically im-

portant, and much debated Avogadro number. Perrin and his students, in a series of experiments

from 1908-1911, not only verified Einstein’s equations for the mean square displacement and the

probability distribution function of the Brownian particles but also obtained the then most accu-

rate estimate of the Avogadro number, Fig. (1.1) [21, 22]. The immediate validation of his theory

finally vindicated the ideas of atomistic/molecular basis of matter; the remaining critics, such as

Ostwald, and in particular Mach [the latter being famous for his cynical remark against such ideas

of atomistic/molecular basis: “haben wirs denn gesehen?”(die Atome/Moleküle), meaning “have

we actually seen it?”(the atoms/molecules)] had thus no choice left but to concede [17].

An alternative and more general treatment of Brownian motion came with the work of Langevin

who introduced a continuous, coarse grained equation of motion, now called the Langevin equa-

tion, to describe the individual trajectories of the Brownian particles [23]. His equation, which is

a stochastic differential equation can be written in the modern form:

m~̈r = ~η(t)− γ~̇r . (1.5)

Here the effect of net unbalanced force of multitude of molecular bombardments is modelled

as random uncorrelated noise (~η) and phenomenological damping constant (γ), related to each
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Figure 1.1: Recorded random walk trajectories by J B Perrin [21]. Left: three trajectories obtained
by tracing a small grain of putty at intervals of 30 seconds. Right: the starting point of each motion
event is shifted to the origin. The figure illustrates the probability distribution function of the travelled
distance to be Gaussian, in accordance with Eq. (1.3).

other by the fluctuation-dissipation relation

〈ηα(t)ηβ(t′)〉 = 2kBTγδ(t− t′)δαβ , (1.6)

where kB is the Boltzmann constant (kB = R/N). This relation, which fixes the strength of the

noise and dissipation (damping) is chosen such that the Brownian particle reaches an equilibrium

with the fluid medium in the long time, its velocity distribution function then being given by

the Maxwell-Boltzmann distribution at temperature T . This equation gives, for the velocity

auto-correlation function of the Brownian particle, the form 〈v(0)v(t)〉 ∼ exp (−γt/m). In the

overdamped limit, i.e. when the coefficient γ is large, this equation also gives Eqs. (1.2−1.4) at

long times.

One should, however, draw attention to the fact that in the above description a strong assump-

tion has been made, that the description of the phenomenon can be separated into two parts.

This is an ad-hoc assumption that is based on the intuition that there is a separation of time scales

in the problem, i.e., the time interval dt of the particle trajectory is small enough so that it has
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executed only a small displacement while it is large enough that it has undergone large number

of collisions with the fluid molecules, thereby validating the assumption of delta-correlated noise,

and it is justified on the basis of the a posteriori success that the hypothesis enjoys in describing

real phenomena. Clearly, it is desirable to derive the phenomenological Eqs. (1.5, 1.6), starting

from a completely microscopic dynamical point of view. Real systems containing a large number

of particles, however, are complicated in general and difficult to handle in full rigour. In order to

understand the dynamical behaviour of such systems, it is important to have a number of sample

systems in which the dynamical equations can be handled exactly. An interesting problem, thus,

is to derive Eq. (1.5) and Eq. (1.6), starting from a completely Hamiltonian description of the sys-

tem. This entails integrating out the degrees of freedom of the smaller particles (fluid molecules)

and writing an effective equation for the larger particle (Brownian particle). A related problem is

to understand self-diffusion, where all the particles are of similar size (no big separation of scales)

and one is interested in the effective motion of one of the particles. An interesting question will

then be whether and how this self-diffusion is different from Brownian diffusion. We will also be

interested in understanding if a single labeled/tagged particle motion is always diffusive or if it

can be anomalous in the sense that 〈∆r2〉 ∼ tα with α 6= 1. In the next section we shall review

such attempts of microscopic dynamical derivation of tagged-particle diffusion in various model

systems, mainly concentrating on studies in 1-dimension.

1.2 Dynamical/kinetic studies of diffusion in one-dimension

As mentioned in the previous section, microscopic dynamical derivations for the diffusion phe-

nomena were sought for and various theoretical works were directed towards it in the second

half of the 20th century. This pursuit got further accelerated in the last couple of decades due

to increased interest and advancements in single-molecule experiments. These experiments used

fluorescence microscopy techniques to study dynamics of individual labeled or tagged components

in various synthetic and natural systems, viz. fluorescence imaging of dye molecules in silica gel

glasses to study microscopic inhomogeneities [24], study of dynamics of lipid molecules in biolog-

ical membranes [25, 26], studying anomalous diffusion of fluorescent proteins in cells [27, 28] and

observation of anomalous diffusion of hydra cells in cellular aggregates [29], see also [30, 31]. The
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advantage of observing the dynamics of a single tagged particle is that it constitutes a simple way

of probing the complex dynamics of an interacting many body system. As a result such studies

have been made extensively, not only experimentally but also theoretically [32–34].

In particular, 1-dimensional systems started attracting major attention when it was found that

the mean square displacement of a tagged particle in such systems grows as ∼
√
t instead of

∼ t seen in normal-diffusive systems. The idea of such sub-diffusion in 1-dimensional systems,

referred to as Single-File-Diffusion, though existed in the field of biological physics to account

for the transport of water and ions through molecular-sized channels in membranes [35–40], ex-

perimental verification of the
√
t scaling came much later due to lack of ideal experimentally

accessible single-file systems. With progress in the synthesis of zeolitic materials, which consist

of long quasi-cylindrical pores with diameters of several angstroms, came the first verification of

this anomalous scaling, for methane/ethane molecules diffusing in the channel [41, 42]. How-

ever, because of the shortage of structural information on the atomic level, the mechanism of

molecular diffusion in zeolites has been under constant debate [43–45]. An alternative and more

straightforward verification came from experiments on colloidal systems which were confined to

move in 1-dimensional physical/optical channels [46–48]. Recently such Single-File-Motion was

also demonstrated in water molecules diffusing in carbon nanotube [49]. Theoretical studies

that obtained this single-file scaling of the tagged-particle dynamics looked into various stochas-

tic models [50–56], where the particles were assumed to undergo stochastic motion (Brownian

motion/random walk/stochastic hopping) between hard elastic collisions. It was realized that

the inability of the particles in these systems to cross each other leads to the tagged particle

motion getting coupled to collective motion, which results in this interesting deviation from the

normal-diffusion [56, 57].

For deterministic Hamiltonian systems in 1-dimension, the problem came to be theoretically

studied first for two simple systems, (i) the harmonic chain [58–61] and (ii) the equal mass hard

particle gas [62–67], both of which could be solved exactly analytically. One of the questions

addressed in these papers was that of tagged-particle dynamics and it was proved that in both

these systems the motion is normal-diffusive. This is in striking contrast to the anomalous

diffusion seen for 1-dimensional stochastic systems. Moreover, the long time form of the velocity

auto-correlation function was found to be ∼ 1/t3 for the hard particle gas and sin(ωt)/
√
t for the
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harmonic chain. Note that these functional forms are very different from the exponential form

obtained from the Langevin dynamics. This may be seen as a signature of the self-diffusion being

different than diffusion of a heavy particle. Also, note that both these systems are integrable

models and an interesting problem would be to study tagged-particle dynamics in non-integrable

models. Since the dynamics in the non-integrable models is expected to be ergodic, it would be

interesting to see its implication on tagged-particle diffusion.

In the late 60’s Alder and Wainwright published series of papers on the velocity auto-correlation

of a hard particle gas in 3− and 2−dimensions and obtained, through molecular dynamics com-

puter simulations and hydrodynamic theory, the famous result that 〈v(0)v(t)〉 ∼ t−d/2, where d

is the dimensionality [68–70]. Notice that, given the Green-Kubo formula D =
r∞

0
〈v(0)v(t)〉dt,

this would imply diverging diffusion constant in 1− and 2−dimensions for t → ∞. Moreover,

this form for the velocity auto-correlation function is clearly not satisfied by the hard particle

gas and the harmonic chain mentioned above. In fact, the hydrodynamic theory is based on

vortex formations which is applicable only in the 3− and 2−dimensions and should not hold in

1−dimension.

Thus we see that there are lots of important questions that needs to be addressed in 1−dimensional

Hamiltonian systems :

(i) What is the effect of non-integrability on tagged-particle dynamics; does it remain normal-

diffusive?

(ii) What is the nature of velocity auto-correlation function in general, when does one get Brow-

nian motion like exponential decay for the velocity auto-correlation function and whether it ever

decays so slow, so as to give rise to divergent diffusion constant?

(iii) Whether and when does one get Single-File-Diffusion like scaling of the mean square dis-

placement in these systems?

(iv) Also, the question of how boundary conditions effect the dynamics at short and long times

has remained mostly unattended.

While the problem of tagged-particle dynamics in stochastic systems were extensively studied

for various situations of Brownian motion/random walk/hopping [57, 71–80], only few studies

were done on non-integrable Hamiltonian systems like the alternate mass hard particle gas [81–

83] and the Lennard-Jones chain [84–86]. Moreover, the computational studies suffered from
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inadequate statistics. Thus, the question of robustness of the normal-diffusion in 1−dimensional

Hamiltonian systems remains poorly understood.

Notice that though there has been considerable work on these integrable and non-integrable

systems in the context of heat conduction [87–89], this involves studying the propagation of

conserved quantities as a function of position and time without reference to the identity of

each particle. This changes things considerably: for instance, conserved quantities propagate

ballistically for an equal mass hard particle gas, resulting in a thermal conductivity proportional

to system size, while tagged particle dynamics in the same system is diffusive.

1.3 General introduction to the thesis

In this thesis we present a detailed study of tagged-particle dynamics in various 1−dimensional

Hamiltonian systems, like the hard particle gas (HPG) and various oscillator chains (OSC) like

the harmonic (H) chain, the Fermi-Pasta-Ulam (FPU) chain and the Lennard-Jones (LJ) chain,

with the aim of addressing the questions raised in the previous section [90–92]. The Hamiltonian

of these systems are given by

HHPG =
N∑
l=1

p2
l

2ml

(1.7)

HOSC =
N∑
l=1

p2
l

2m
+

N+1∑
l=1

[
k

2
(ql − ql−1)2 +

α

3
(ql − ql−1)3 +

β

4
(ql − ql−1)4

]
(1.8)

HLJ =
N∑
l=1

p2
l

2m
+

N+1∑
l=1

[
1

(xl − xl−1)12
− 1

(xl − xl−1)6

]
, (1.9)

where pl is the momentum, ql is the displacement about equilibrium position and xl is the absolute

position of the lth particle in the system. For the harmonic chain we have k 6= 0, α = 0, β = 0

while for the β FPU chain k 6= 0, α = 0, β 6= 0 and for the α−β FPU chain k 6= 0, α 6= 0, β 6= 0.

We study both reflecting/fixed boundary condition, where x0 = 0, xN+1 = L or q0 = qN+1 = 0

and periodic boundary condition, where xN+1 = x1 or qN+1 = q1. For the reflecting boundary

we consider various correlation functions of the central particle (M) of the system which is our

tagged particle. For periodic boundary all particles are equivalent and any particle can be chosen

as the tagged particle. In particular, the correlation functions we compute are the mean square
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displacement (MSD) 〈[∆x(t)]2〉, the velocity auto-correlation function (VAF) 〈v(0)v(t)〉, and

the time dependent diffusion constant D(t) ≡ 〈∆x(t)v(0)〉. Here ∆x(t) = xM(t)− xM(0) and

v(t) = vM(t). Note that the three correlation functions are related to each other as

1

2

d

dt
〈[∆x(t)]2〉 = 〈∆x(t)v(0)〉 ≡ D(t),

d

dt
〈∆x(t)v(0)〉 = 〈v(t)v(0)〉. (1.10)

The above equations follow from ∆x(t) =
r t

0
v(t′)dt′ ⇒ 〈∆x2(t)〉 =

r t
0
dt1

r t
0
dt2〈v(t1)v(t2)〉 =

r t
0
dt1

r t
0
dt2〈v(t1 − t2)v(0)〉 = 2

r t
0
dτ〈v(τ)v(0)〉(t − τ) and then taking time derivatives. The

last equation on the first line of Eq. (1.10) defines the time dependent diffusivity D(t). We

note that in a finite closed box of size L, 〈[∆x(t)]2〉 is bounded and so limt→∞D(t) would

always either vanish or oscillate. However one is usually interested in the nature of the MSD

of the particle before it sees the effect of the boundary, and it is then appropriate to study the

limit D∞(t) = limL→∞D(t). We define the tagged particle motion as “normal diffusive” when

D∞(t→∞) is a constant, which is the diffusion constant. On the other hand, D∞(t→∞) is

zero for sub-diffusive, and divergent for super-diffusive behaviour.

For systems with Hamiltonian dynamics, the time evolution of the system is completely deter-

ministic and all the randomness in the system is due to the randomness in the initial condition.

Thus the averages 〈· · · 〉 are taken over the random initial configurations which we choose to be

always taken from the equilibrium distribution.

The form of the correlations are examined at both “short times”, when boundary effects are

not felt and hence the correlation functions are system size independent, and at “long times”,

after boundary effects show up. At short times the form of the correlation functions is un-affected

by the boundary conditions, e.g. periodic or reflecting boundary conditions. Hence in simulations

we sometimes use periodic boundary conditions for short time studies, since one can then do an

averaging over all particles, resulting in better statistics. The usage of boundary conditions will

be specified again for each of the cases in their respective places.

The short time regime, as expected, typically has an initial ballistic regime with 〈∆x2(t)〉 ∼ t2,

and we will find that this is always followed by an asymptotic diffusive regime, with 〈∆x2(t)〉 ∼

Dt, before boundary effect sets in. We obtain exact value of this diffusion constant for the

integrable cases, while for the nonlinear cases we obtain the diffusion constant through an effective
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damped harmonic model.

The long time behaviour depends on boundary conditions. We see that the mean square

displacement of the tagged particle saturates for the reflecting boundary case. For the periodic

case, however, due to the presence of centre of mass (CoM) motion, the tagged particle motion

goes from diffusive back to ballistic rather than saturating. In both the cases oscillations are seen

in the correlation functions when boundary effect sets in. These are assigned to disturbances

caused by particle fluctuations travelling as sound waves in the system and interfering with the

motion of the tagged particle periodically. As we will see, the boundary effect typically shows up

at times t ∼ L/c where L is the system size and c the sound speed in the system. We obtain

this sound speed for our models and find it to match the period of oscillations too. In major part

of this thesis we focus mainly on the reflecting boundary condition to see the long time boundary

effect on tagged-particle diffusion. Only in chapter 5, we study in detail the effect of periodic

boundary condition on the long time behaviour of the tagged particle.

The rest of the thesis is organized as follows:

In Chapter 2 the problem of tagged-particle diffusion is studied for the hard particle gas. Here

we study both the equal mass case where all the particles are of the same mass m, as well as

the alternate mass case where the particles are of masses m1 and m2 alternately. The equal

mass case is special because the particles on collision just exchange velocities and this lends

a mapping to the non-interacting picture, making it analytically tractable. We obtain analytic

results for the various correlation functions in the short time diffusive regime and the long time

approach to the saturation value. We also perform molecular dynamics (MD) simulations, via

event-driven algorithm[93], on this system and confirm that it matches with the exact results.

In the case where the masses are unequal, exact analytic evaluation of the correlation functions

is no longer possible and here we only perform MD simulations. The numerical simulations for

the alternate mass case indicate slow approach to normal-diffusive behaviour before saturating

when the reflecting boundary effect sets in. The way it saturates, however, is very different from

the equal mass case. The various correlation functions, involving the velocity and position of the

tagged particle, show damped oscillations at long times after boundary effect sets in. This is due

to the sound waves mentioned earlier in this section. We compute the speed of sound in this gas

and find it to match the period of these oscillations. All these oscillations are however absent for
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the equal mass case which doesn’t support sound waves in equilibrium [64].

In Chapter 3 the problem of tagged-particle diffusion is studied for various oscillator chain

systems. We start with the harmonic chain where we obtain the correlation functions both

analytically, through normal mode analysis and computationally, through molecular dynamics

(MD) simulations with velocity-verlet algorithm [93]. We find normal-diffusion in the intermediate

time and size dependent oscillations after boundary effect sets in. We also find that even in times

before the boundary effect plays role, there are oscillations in the 〈v(0)v(t)〉 and D(t) correlation

functions. These were absent in the hard particle gas and are due to the elastic nature of the

system in the microscopic scale. For the non-linear FPU and LJ chains, where the equations of

motion cannot be solved exactly, we obtain the correlation functions through MD simulations

exclusively. We find the results for the FPU chain to be qualitatively similar to results for the

harmonic chain, in the sense that the tagged particle shows normal-diffusion and that there are

oscillations in the correlation functions, both at short times and at long times. However, there

are important differences too in the details of the correlation functions. We study both the β

and the α − β FPU chain and find similar behaviour between the two as far as tagged particle

diffusion is concerned. The behaviour of LJ gas depends on its density. At low densities, it

behaves like a hard-particle gas while at high densities, like an anharmonic chain. Importantly,

this means that the tagged-particle diffusion is normal here as well. The long time oscillations

are persistent for the harmonic chain while they damp out for the non-linear ones. Moreover, we

find that the nature of the long time oscillations for the soft chains differ qualitatively from that

for the alternate mass hard particle gas.

In Chapter 4 we attempt to tackle the problem of tagged-particle diffusion in non-linear sys-

tems analytically, by formulating a linearized equation where we model the non-linearity of the

interaction potential in terms of momentum conserving noise and dissipation acting on a har-

monic chain, thereby making the problem analytically tractable. The idea is that for any mode,

all the other modes act as an internal heat bath. We solve this effective damped harmonic

model analytically and compare its solutions with the simulation results of the various non-linear

Hamiltonian systems studied in the earlier chapters. We find the effective model to describe the

β FPU chain very well. For the α − β FPU chain and the high density LJ chain, though the

effective model reproduces the qualitative features, the fits are not always very good. For the
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alternate mass hard-particle gas or the low density LJ chain, this description fails altogether in

describing the dynamics. These differences in the success of the effective model in describing the

various non-linear systems shed some important light on the nature of 1-dimensional Hamiltonian

systems which will be qualitatively discussed.

In Chapter 5 we consider some special cases of the models discussed in earlier chapters. In

particular, we study the following problems:

(i) The long time effect of the periodic boundary condition on tagged particle dynamics. Here

we focus our study on the hard particle gas and the harmonic chain and demonstrate the main

general features. Among other things, we find that the centre of mass velocity, i.e. the zero

mode, plays an important role.

(ii) The random mass hard particle gas where we do an averaging over the random particle masses

and find the tagged particle motion to be normal-diffusive.

(iii) Mass ratio dependence in the alternate mass hard particle gas.

(iv) The case where the tagged particle is much heavier than the rest of the particles. Here, as

should be expected, we re-obtain the short time exponential decay of the velocity auto-correlation

function which is characteristic of regular Brownian motion.

(v) A hard particle configuration where heavy particles are separated by many light equal mass

particles in-between. Our aim to study this configuration is to see if the heavy tagged particle,

which reaches normal-diffusive regime quickly, shows any sign of transition from this normal-

diffusion to single-file diffusion (which is subdiffusive).



2
Hard Particle Gases

2.1 Introduction

We begin our study of diffusion of a tagged particle in 1-dimensional Hamiltonian systems by

considering N classical hard point particles in a 1-dimensional box of length L (see figures

below). We consider the central particle of the system as the tagged particle. The particles

move ballistic ally between collisions with their neighbours which are instantaneous and elastic

in nature, conserving energy and momentum. The velocities of the colliding pair (say l and

l+1) post-collision (primed variables) can be obtained from the pre-collision velocities (unprimed

variables) from the two conservation principles,

mlv
′
l +ml+1v

′
l+1 = mlvl +ml+1vl+1 (2.1)

15
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and

1

2
mlv

′2
l +

1

2
ml+1v

′2
l+1 =

1

2
mlv

2
l +

1

2
ml+1v

2
l+1. (2.2)

Solving these equations we get,

v′l =
(ml −ml+1)

(ml +ml+1)
vl +

2ml+1

(ml +ml+1)
vl+1,

v′l+1 =
2ml

(ml +ml+1)
vl +

(ml+1 −ml)

(ml +ml+1)
vl+1 . (2.3)

The particles at the two ends (l = 1, N) collide elastically with the fixed walls so that their

velocities simply reverse on collision.

Since the evolution of the system is completely deterministic, the only source of randomness

will come from the initial conditions. We draw the initial state of the system from the canonical

ensemble at temperature T . This implies that the initial velocities of the particles are chosen

independently from the Gaussian distribution with zero mean and a variance vi
2 = kBT/mi

and that the initial positions of the particles are uniformly distributed in the box. Let xi be

the position of the i-th particle measured with respect to the “left” wall. Then, the order

0 < x1 < x2 < · · · < xN−1 < xN < L is maintained at all times. We study two main cases of

hard particle gas in this chapter, namely the equal mass case where all the particles are of same

mass m [Fig. (2.1)], and the alternate mass case where the particles are of masses m1 and m2

alternately [Fig. (2.2)].

In Sec. 2.2 we consider the equal mass case which is an integrable model. Here, as can be

seen from Eq. (2.3) by putting ml = ml+1, the particles on collision just exchange velocities.

m m m m m m m

Tagged

Figure 2.1: Schematic diagram of an equal mass hard particle gas with centre particle as tagged
particle.
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m1 m2 m1 m2 m1 m2 m1

Tagged

Figure 2.2: Schematic diagram of an alternate mass hard particle gas with centre particle as tagged
particle.

This lends a mapping to the non-interacting picture, making it analytically tractable. This idea

was first used by Jepsen [62]. For an infinite system at a fixed density of particles Jepsen had

shown that the tagged-particle diffusion is normal, and that the velocity auto-correlation function

at large times decay as

〈v(0)v(t)〉 ∼ −1/t3. (2.4)

He further showed that the diffusion constant is given by

2D = nl2, (2.5)

where l (or a) is the step length (average inter-particle spacing) and n is the rate of jump given

by

n = ρ
w ∞
−∞
|v|g(v)dv, (2.6)

where ρ = N/L is the number density and g(v) is the velocity distribution function. In our case

where the initial distribution g(v) is thermal, the diffusion constant becomes

2D = l
√

2kBT/mπ. (2.7)

For a finite system, however, there must be corrections to Jepsen’s result since the mean square

displacement must saturate at long times (to a value that depends on the size of the system).

This situation has been extensively studied for stochastic dynamics [54, 57, 76, 77, 79, 80] but

not much for the Hamiltonian case [65–67]. Lebowitz and Sykes [65] considered finite size effects
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for some special initial conditions. In Sec. 2.2 we study the problem for finite systems considering

Boltzmann distributed initial conditions. We use an approach different and simpler than Jepsen’s

and obtain analytic expressions for the velocity auto-correlation function that are valid over the

entire regime: both for t << N diffusive regime (à la Jepsen) and t >> N saturation regime

(when boundary effect sets in). The short and long time analytic results are then confirmed

through MD simulations.

In Sec. 2.3 we discuss the alternate mass case which is non-integrable. In this case there are

no analytic results and we obtain the correlation functions through extensive MD simulations.

Since the dynamics is expected to be ergodic, the correlation functions in this case should be very

different from those of the equal mass case. Our motivation for studying this system would be to

test the effect of this non-integrability on the tagged-particle diffusion. A similar case of binary

mixture was studied by Masoliver and Marro [81, 82] who, based on MD simulations, obtained

the velocity auto-correlation to decay as

〈v(0)v(t)〉 ∼ −1/t. (2.8)

This would, however, imply the diffusion constant to be going to −∞. This negative infinite

diffusion constant is not possible since 〈[∆x(t)]2〉 is positive definite. Since their results were not

statistically clean and conclusion was unphysical, we here try to understand this system better

through improved statistics.

In this chapter we focus on the case with reflecting walls to study the long time boundary

effect. The long time effect of periodic boundaries has lots of interesting features and will be

presented separately in chapter 5. As mentioned in the previous chapter, before the boundary

effect sets in, in the form of disturbances travelling through the system and interfering with

the tagged-particle correlations, the correlation functions are un-affected by the nature of the

boundary conditions. Thus, whenever better statistics are required for the short times study,

we will use periodic boundary conditions. The advantage of using periodic periodic boundary

condition is that in this case all the particles become equivalent and one can then do averaging

over the particles thereby improving the statistics.

Before going into a detailed study of the two cases, we here point out that the long time

saturation value of the mean square displacement can be exactly calculated and is independent of
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the masses of the particles. This follows from the fact that the N-particle equilibrium measure is

a product of momentum and position variables. The calculation is then based on the observation

that the particles are uniformly distributed in the box and that their ordering is maintained at all

times. For a system of N particles in a box of size L this gives,

〈xi〉 =
iL

N + 1
, (2.9)

〈x2
i 〉 =

i(i+ 1)L2

(N + 1)(N + 2)
. (2.10)

Hence at long times, when correlations vanish, we get

〈∆x2
i 〉 = 〈(xi(t)− xi(0))2〉 = 2

[
〈x2

i 〉 − 〈xi〉2
]

= 2
i

N + 1

[
(N + 1)(i+ 1)− (N + 2)i

(N + 1)(N + 2)

]
L2

= 2
i

N + 1

[
(N + 1− i)

(N + 1)(N + 2)

]
L2. (2.11)

Thus we see that, for the central particle

MSDsat ∼
L

2ρ
. (2.12)

2.2 Equal mass hard particle gas

2.2.1 Analytic results for equal mass hard-particle gas

We begin this section by the analytic derivation of the velocity auto-correlation function for a

system of N particles in a box of length L. We use reflecting boundary condition and obtain

the correlation function for both short and long times, although as discussed earlier, the short

time results are expected to be independent of whether the boundary conditions are periodic

or reflecting. As mentioned in the previous section, by exchanging the identities of the particles

emerging from collisions, one can effectively treat the actual interacting particle system [Fig. (2.3)]

as non-interacting [Fig. (2.4)]. In the non-interacting particle picture, each particle executes an

independent motion. The particles pass through each other when they ’collide’ and reflect off

the walls at x = 0 and x = L.
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The initial condition is that each particle is independently chosen from the single particle

distribution p(x, v) = L−1(2πv̄2)−1/2e−v
2/2v̄2 , where v̄2 = kBT/m. To find the velocity auto-

correlation function of the middle particle in the interacting-system from the dynamics of the

non-interacting system, we note that there are two possibilities in the non-interacting picture:

(1) the same particle is the middle particle at both times t = 0 and t [Fig. (2.5)], or (2) two

different particles are at the middle position at times t = 0 and t respectively [Fig. (2.6)]. We

denote the velocity auto-correlation function corresponding to these two cases by 〈vM(0)vM(t)〉1
and 〈vM(0)vM(t)〉2 respectively. The complete velocity auto-correlation function is given by

〈vM(0)vM(t)〉 = 〈vM(0)vM(t)〉1 + 〈vM(0)vM(t)〉2. (2.13)

Tagged

t

x

Figure 2.3: Equal mass hard particle gas in the interacting picture.
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t

x

Figure 2.4: Equal mass hard particle gas in the non-interacting picture.

To compute 〈vM(0)vM(t)〉1, we pick at time t = 0 one of the non-interacting particles at

random from the distribution p(x0, v0). At time t let the position and velocity of the particle be

given by xt(x0, v0) and vt(x0, v0) respectively. We then calculate the probability, P
(1)
N (x0, xt; t),

that it has an equal number of particles to its left and right at both the initial and final times, i.e.,

at t = 0 and t. For 〈vM(0)vM(t)〉2, we pick two non-interacting particles from the distribution

p(x0, v0) p(x̃0, ṽ0) and let them evolve to xt, vt and x̃t, ṽt respectively. We then calculate the

probability P
(2)
N (x0, x̃t; t) that at time t = 0, the first particle x0 is the middle particle while at



22 Hard Particle Gases

xt

x0

Figure 2.5: Diagram illustrating possibility (1)

x̃t

x0

Figure 2.6: Diagram illustrating possibility (2)
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time t the second particle x̃t is the middle particle. The normalized VAF is thus given by:

C(1)
vv (t) =

〈vM(0)vM(t)〉1
v̄2

=
N

v̄2

w L

0

dx0

L

w ∞
−∞

dv0√
2π v

e−v
2
0/2v

2

v0vt P
(1)
N (x0, xt; t) , (2.14)

C(2)
vv (t) =

〈vM(t)vM(0)〉2
v̄2

=
N(N − 1)

v̄2

w
· · ·

w dx0

L

dx̃0

L

dv0dṽ0

2πv2 v0ṽt e
−(v20+ṽ20)/2v2 P

(2)
N (x0, x̃t; t) . (2.15)

In the non-interacting picture, xt and vt, as well as the number of collisions m, suffered by the

particle with the walls upto time t, are completely determined by the initial configuration (x0, v0).

The number of collisions with the wall is given by

m =


⌊
x0 + v0t

L

⌋
if v0 > 0,⌊

L− x0 − v0t

L

⌋
if v0 < 0 ,

(2.16)

where bxc is the integral part of x. When m is even, we have vt = v0 whereas vt = −v0 for odd

m. The final position xt is given by one of the following relations depending on m and v0. When

m is even, we have x0 +v0t = mL+xt for v0 > 0 and L−x0−v0t = mL+L−xt for v0 < 0. On

the other hand for odd m we get x0 +v0t = mL+L−xt for v0 > 0 and L−x0−v0t = mL+xt

for v0 < 0. Combining all these four cases, we can write x0 + v0t = 2nL ± xt. Here n = m/2

and −m/2 respectively for the first two cases where m is even and the plus sign is taken. For

the last two cases, where m is odd, n = (m+ 1)/2 and −(m+ 1)/2 respectively and the minus

sign is taken. In other words, for a given values of x0 and v0 in the relations x0 + v0t = 2nL±xt
and vt = ±v0, the values of n and xt, and the signs taken from the ± are uniquely determined.

Therefore, inserting the term [δ(x0 +v0t−2nL−xt)δ(vt−v0)+δ(x0 +v0t−2nL+xt)δ(vt+v0)]

in the integrand of Eq. (2.14) while integrating over xt and vt, and summing over all integer

values of n, does not change the result, i.e.,

〈vM(t)vM(0)〉1 = N
w L

0
dxt

w ∞
−∞

dvt

∞∑
n=−∞

w L

0

dx0

L

w ∞
−∞

dv0√
2π v

× e−v20/2v2 v0vt P
(1)
N (x0, xt; t)

×
[
δ(x0 + v0t− 2nL− xt)δ(vt − v0) + δ(x0 + v0t− 2nL+ xt)δ(vt + v0)

]
. (2.17)
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Now, carrying out the integrations over vt and v0, after some straightforward manipulation we

obtain

C(1)
vv = N

w L

0
dx0

w L

0
dxt P

(1)
N (x0, xt; t) ∂v [vP−(x0, xt; t)], (2.18)

where

P±(x, y; t) =
1

L
√

2πvt

∞∑
n=−∞

{
exp

[
−(2nL+ y − x)2

2v2t2

]
± exp

[
−(2nL− y − x)2

2v2t2

]}
. (2.19)

Using the Poisson resummation formula we can also write the above series in the form

P−(x, y; t) =
1

L2

∞∑
k=−∞

exp[−v2t2k2π2/(2L2)] sin
πkx

L
sin

πky

L
,

P+(x, y; t) =
1

L2

∞∑
k=−∞

exp[−v2t2k2π2/(2L2)] cos
πkx

L
cos

πky

L
. (2.20)

The second part of the velocity auto-correlation function is given by Eq. (2.15) and in this case

we trade the v0, ṽ0 integrals for xt, x̃t by introducing two sets of δ-function, one for each particle

as in Eq. (2.17). After some manipulations we then get

C(2)
vv = N(N − 1)

w
· · ·

w
dx0dx̃0dxtdx̃t P

(2)
N (x0, x̃t; t)[

vt ∂x0P+(x0, xt; t)
][
−vt ∂x̃tP+(x̃0, x̃t; t)

]
, (2.21)

Evaluation of P
(1)
N (x0, xt; t): This gives the probability that, at t = 0 and at time t, the selected

particle has an equal number of particles to its left and right. We note that the remaining N − 1

particles are independent of each other and the selected particle. Let p−+(x0, xt; t) be the

probability that one of these particles is to the left of x0 at t = 0 and to the right of xt at time

t. Let p+−, p−− and p++ be similarly defined. Thus

p−+(x, y; t) =
w x

0
dx′

w L

y
dy′P (x′, y′; t) ,

p+−(x, y; t) =
w L

x
dx′

w y

0
dy′P (x′, y′; t) ,

p−−(x, y; t) =
w x

0
dx′

w y

0
dy′P (x′, y′; t) ,

p++(x, y; t) =
w L

x
dx′

w L

y
dy′P (x′, y′; t) . (2.22)
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where

P (x, y; t) = 〈δ(x− x0)δ(y − xt)〉

=
w L

0

dx0

L

w ∞
−∞

dv0
e−v

2
0/2v̄

2

√
2πv̄

δ(x− x0)δ(y − xt)

=
w L

0
dxt

w ∞
−∞

dvt

∞∑
n=−∞

w L

0

dx0

L

w ∞
−∞

dv0
e−v

2
0/2v̄

2

√
2πv̄

δ(x− x0)δ(y − xt)

×
[
δ(x0 + v0t− 2nL− xt) δ(vt − v0) + δ(x0 + v0t− 2nL+ xt) δ(vt + v0)

]
= P+(x, y; t) . (2.23)

In terms of these probabilities, it is easily seen that

P
(1)
N =

∑
n1+n2+n3+n4=N−1

(N − 1)!

n1!n2!n3!n4!
pn1
−−p

n2
−+p

n3
+−p

n4
++ δn1,n4δn2,n3 , (2.24)

where in the summand, n1 particles go from the left of x0 to the left of xt, n2 particles from

the left to the right, n3 particles from the right to the left, and n4 particles from the right to

the right. The two Kronecker delta functions ensure that an equal number of particles cross the

selected particle in both directions in time t and that an equal number of particles remain on

either side of the selected particle. Together, these conditions are equivalent to an equal number

of particles being on either side of the selected particle at time 0 and t, that is, n1 +n2 = n3 +n4

and n1 + n3 = n2 + n4. The multinomial coefficient takes care of all possible permutations

among the particles. Now, after using the integral representation of the Kronecker delta, δm,n =

(2π)−1
r 2π

0
ei(m−n)θ dθ in the above equation, it immediately follows that

P
(1)
N =

w π

−π

dφ

2π

w π

−π

dθ

2π

[
p++e

iφ + p−−e
−iφ + p+−e

iθ + p−+e
−iθ
]N−1

=
1

(2π)2

w π

−π
dφ

w π

−π
dθ
[
1− (1− cosφ) (p++ + p−−) + i sinφ (p++ − p−−)

− (1− cos θ) (p+− + p−+) + i sin θ (p+− − p−+)
]N−1

=
1

2π2

w π/2

−π/2
dφ

w π

−π
dθ
[
1− (1− cosφ) (p++ + p−−) + i sinφ (p++ − p−−)

− (1− cos θ) (p+− + p−+) + i sin θ (p+− − p−+)
]N−1

. (2.25)

where we used the identity p++ + p+− + p−+ + p−− = 1. In the last step the range of the φ

integral has been broken into two parts and, for even N − 1, each of these contributes equally.
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Evaluation of P
(2)
N (x0, x̃t; t): In calculating P

(2)
N we have to keep track of both the particles.

There arise four situations: (a) x0 > x̃0 and xt < x̃t, (b) x0 > x̃0 and xt > x̃t, (c) x0 < x̃0 and

xt > x̃t, and (d) x0 < x̃0 and xt < x̃t. Let there be n1 particles go from the left of x0 to the

left of x̃t, n2 particles from the left to the right, n3 particles from the right to the left, and n4

particles from the right to the right. Since two of the particles are considered separately, the rest

can be chosen (N − 2)!/(n1!n2!n3!n4!) different ways and n1 + n2 + n3 + n4 = N − 2. Now, in

the first situation we have (a) n1 +n2 +1 = n3 +n4 and n1 +n3 +1 = n2 +n4. These conditions

are equivalent to n2 = n4 and n1 = n4 − 1. Similarly one can work out the conditions for the

other three situations which gives (b) n1 = n4 and n2 = n3 − 1, (c) n2 = n3 and n1 = n4 + 1,

and (d) n1 = n4 and n2 = n3 + 1, respectively. Following the procedure used to evaluate P
(1)
N ,

it is easily found that

P
(2)
N =

w dθ

2π

w dφ

2π
[p++e

iφ + p−−e
−iφ + p+−e

iθ + p−+e
−iθ]N−2 ψ(θ, φ), (2.26)

=
2

(2π)2

w π/2

−π/2
dφ

w π

−π
dθ
[
1− (1− cosφ) (p++ + p−−)

+ i sinφ (p++ − p−−)− (1− cos θ) (p+− + p−+)

+ i sin θ (p+− − p−+)
]N−2

ψ(θ, φ) . (2.27)

where the extra phase factor ψ(θ, φ) originates from added ±1 that appear in the relations among

ni’s above, and ψ(θ, φ) = e−iφ, e−iθ, eiφ and eiθ for situations (a), (b), (c) and (d) respectively.

Using these we finally obtain

C(1)
vv = N

2

(2π)2

w L

0
dx

w L

0
dy

w π/2

−π/2
dφ

w π

−π
dθ ∂v̄[vP−(x, y, t)]

×
[
1− (1− cosφ) (p++ + p−−) + i sinφ (p++ − p−−)

− (1− cos θ) (p+− + p−+) + i sin θ (p+− − p−+)
]N−1

(2.28)

and

C(2)
vv = −N(N − 1)v2t2

2

(2π)2

w L

0
dx

w L

0
dỹ

w π/2

−π/2
dφ

w π

−π
dθ P 2

−(x, ỹ, t)

×
[
1− (1− cosφ) (p++ + p−−) + i sinφ (p++ − p−−)

− (1− cos θ) (p+− + p−+) + i sin θ (p+− − p−+)
]N−2

× (2 cosφ− 2 cos θ). (2.29)
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Short time regime : When v̄t << L, the tagged particle does not feel the effect of the walls

and we can make the following approximations

P (x, y; t) = P+(x, y; t) = P−(x, y; t) =
1√

2πvtL
exp

[
−(y − x)2

2v̄2t2

]
. (2.30)

In this limit the expressions for p−+, etc. given in Eq. (2.22) also simplify by using Eq. (2.30)

and taking the limits of the y′ integral to be from y to ∞ for p−+, p++ and from −∞ to y for

p+−, p−−, we then get

Np++(x, y; t) ≈ ρ√
2πv̄t

w L

x
dx′

w ∞
y
dy′ e−(y′−x′)2/2v̄2t2 ≈ N

2
− λz+

2
− λq(z−) ,

Np−−(x, y; t) ≈ ρ√
2πv̄t

w x

0
dx′

w y

−∞
dy′ e−(y′−x′)2/2v̄2t2 ≈ N

2
+
λz+

2
− λq(z−) ,

Np+−(x, y; t) ≈ ρ√
2πv̄t

w L

x
dx′

w y

−∞
dy′ e−(y′−x′)2/2v̄2t2 ≈ −λz−

2
+ λq(z−) ,

Np−+(x, y; t) ≈ ρ√
2πv̄t

w x

0
dx′

w ∞
y
dy′ e−(y′−x′)2/2v̄2t2 ≈ λz−

2
+ λq(z−) , (2.31)

where z+ =
x+ y − L

v̄t
, z− =

x− y
v̄t

, λ = ρv̄t with ρ = N/L,

and q(z−) =
e−z

2
−/2

√
2π

+
z−
2

Erf(z−/
√

2) (2.32)

Hence we get N(p++ + p−−) = N − 2λq(z−), N(p++ − p−−) = −λz+, N(p+− + p−+) =

2λq(z−), N(p+− − p−+) = −λz− . Using these in Eqs. (2.28) and (2.29), and changing

variables from x0, xt and x0, x̃t to z+, z− we get, for large N

C(1)
vv (t) =

λ√
2π(2π)2

w ∞
−∞

dz+

w ∞
−∞

dz−z
2
−e
−z2−/2

w π/2

−π/2
dφ

w π

−π
dθ

× e−N(1−cosφ)e−iλz+ sinφe−2λq(z−)(1−cos θ)e−iλz− sin θ ,

C(2)
vv (t) = − λ2

4π3

w ∞
−∞

dz+

w ∞
−∞

dz−e
−z2−

w π/2

−π/2
dφ

w π

−π
dθ (cosφ− cos θ)

× e−N(1−cosφ)e−iλz+ sinφe−2λq(z−)(1−cos θ)e−iλz− sin θ .

For large N , the major contribution of the integral over φ comes from the region around φ = 0.

Therefore, the φ integral can be performed by expanding around φ = 0 to make it a Gaussian

integral (while extending the limits to ±∞). Subsequently, one can also perform the Gaussian
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integral over z+. This leads to the following expressions:

C(1)
vv (t) =

1

(2π)3/2

w ∞
−∞

dz−z
2
−e
−z2−/2

w π

−π
dθe−2λq(z−)(1−cos θ)e−iλz− sin θ , (2.33)

C(2)
vv (t) = − λ

2π2

w ∞
−∞

dz−e
−z2−

w π

−π
dθ (1− cos θ) e−2λq(z−)(1−cos θ)e−iλz− sin θ . (2.34)

Thus we have closed form expressions of the VAF which are valid in the entire short time regime.

For any value of λ = ρvt, these integrals can be performed numerically, and as we see from

Fig. (2.7), the results are in excellent agreement with the numerical simulation.

We now analyze the above expression in the large λ limit, i.e., (vρ)−1 � t. Together with the

condition vt << L for being in the short time regime, this means that t is much larger than

the typical time between inter-particle collisions, i.e. outside the ballistic regime, while being

much smaller than the time it takes to see boundary effects. We first make a change of variables
√
λz− = z and

√
λθ = x. The integrands can then be expanded as a power series in powers of

1/λ. The integrals acquire the forms:

C(1)
vv (t) =

1

(2π)3/2

w ∞
−∞

dz
w √λπ
−
√
λπ
dx e

− x2√
2π
−ixz

∞∑
n=2

an(x, z)λ−n, (2.35)

C(2)
vv (t) = − 1

2π2

w ∞
−∞

dz
w √λπ
−
√
λπ
dx e

− x2√
2π
−ixz

∞∑
n=1

bn(x, z)λ−n, (2.36)

where an(x, z) and bn(x, z) are polynomials in x and z. For example, a2(x, z) = z2, b1(x, z) =

x2/2, and so on. Now, integrating term by term (while extending the integrating limits of x to

±∞) we get

C(1)
vv (t) =

1

π
λ−2 − 2(π − 3)

(2π)3/2
λ−3 +O(λ−5), (2.37)

C(2)
vv (t) = − 1

π
λ−2 − 1

(2π)3/2
λ−3 +O(λ−4). (2.38)

Therefore, adding the above two results, we recover Jepsen’s result [62]

Cvv(t) = −(2π − 5)

(2π)3/2
λ−3 +O(λ−4). (2.39)

Long time regime: In the limit v̄t >> L we use the series representation of P± given in
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Figure 2.7: Plot of the separate contributions C
(1)
vv and C

(2)
vv to the velocity auto-correlation function

of equal mass hard-particle gas, for two different system sizes (N = 101, 201) with fixed number density
ρ = 1. The solid lines correspond to the simulation data, whereas the points are from the analytic
results given by Eqs. (2.28) and (2.29) for short time behaviors (N), and Eq. (2.45) for the long time
behaviors (�). In the first panel, the dashed rectangle is enlarged in the inset.

Eqs. (2.20) . Integrating this expression over the appropriate ranges, we obtain

p−−(x0, xt; t) =
x0xt
L2

+ f(x0, xt; t)

p−+(x0, xt; t) =
x0(L− xt)

L2
− f(x0, xt; t)

p+−(x0, xt; t) =
xt(L− x0)

L2
− f(x0, xt; t)

p++(x0, xt; t) =
(L− x0)(L− xt)

L2
+ f(x0, xt; t) (2.40)
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with

f(x0, xt; t) =
∑
k 6=0

1

k2π2
exp

(
−k

2π2v2t2

2L2

)
sin

(
kπx0

L

)
sin

(
kπxt
L

)
. (2.41)

Expanding around x = y = L/2 we get to leading order N(p++ + p−−) = N [1/2 +

2a(t)], N(p++− p−−) = −Nw+, N(p+−+ p−+) = N [1/2− 2a(t)], N(p+−+ p−+) = −Nw− ,

where w+ = (x+ y)/L− 1, w− = (x− y)/L and

a(t) = f(L/2, L/2; t) =
∑
k

1

π2(2k + 1)2
exp

[
−(2k + 1)2π2v2t2

2L2

]
. (2.42)

Using these and the expression of P− from Eq. (2.19) in Eqs. (2.28) and (2.29), we find the

following results upto O(1/N):

C(1)
vv (t) =N

∑
k

(
1− (2k + 1)2π2v2t2

L2

)
exp

(
−(2k + 1)2π2v2t2

2L2

)
× 1

(2π)2

w ∞
−∞

dw+

w ∞
−∞

dw−
w ∞
−∞

dφ
w ∞
−∞

dθ

× e−N [1/4+a(t)]φ2e−iNw+φe−N [1/4−a(t)]θ2e−iNw−θ , (2.43)

C(2)
vv (t) =−N2

(
v̄t

L

)2
[∑

k

exp

(
−(2k + 1)2π2v2t2

2L2

)]2

× 1

(2π)2

w ∞
−∞

dw+

w ∞
−∞

dw−
w ∞
−∞

dφ
w ∞
−∞

dθ

× e−N [1/4+a(t)]φ2e−iNw+φe−N [1/4−a(t)]θ2e−iNw−θ (θ2 − φ2) . (2.44)

Performing the Gaussian integrals we find that C
(2)
vv vanishes and hence to O(1/N) the velocity

autocorrelation is given by

Cvv(t) = C(1)
vv (t) =

2

N

∑
k=1,3,5...

(
1− k2π2v2t2

L2

)
exp

(
−k

2π2v2t2

2L2

)
. (2.45)

As seen from Fig. (2.7), the above expression describes the numerical simulation data very well.

The late time behaviour Cvv(t) ∼ exp(−π2v2t2/2L2) was earlier obtained in [66].

2.2.2 Simulation results for equal mass hard-particle gas

We now perform molecular dynamics simulation on this system of particles and show it to match

the analytic results just obtained. Apart from the VAF ≡ 〈v(0)v(t)〉, we also obtain MSD
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Figure 2.8: Various correlation functions for the equal mass hard particle gas with masses 1 (solid
lines) for N = 101 (blue) and N = 201 (red) particles; number density ρ = 1 and kBT = 1. The data
is obtained by averaging over 109 equilibrium initial conditions.

≡ 〈[∆x(t)]2〉 and D(t) ≡ 〈∆x(t)v(0)〉. The averaging 〈· · ·〉 is taken over initial configurations

chosen from the equilibrium distribution, where the particles are uniformly distributed in the box

with number density ρ = N/L, while the velocity of each particle is independently chosen from

the distribution (m/2πkBT )1/2 e−mv
2/2kBT . In the simulations for the equal mass hard particle

gas reported here we take all m = 1, kBT = 1 and and we take various N keeping ρ = 1.

Since the particles move freely between collisions, which are instantaneous in nature, we resort
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to the event-driven molecular dynamics scheme [93]. In this scheme instead of a regular, step-

by-step approach, as for continuous potentials, the program evolves on a collision-by-collision

basis. The general scheme of the simulation is as follows. The next collision time between

the different neighbouring pairs of particles is first evaluated. The program is then evolved to

the minimum of these pair collision times, called Tcoll, when one of the pairs collide. We then

implement the collision dynamics of Eq. (2.3) for the colliding pair. This collision now changes

three of the pair collision times. One for the colliding pair, which can be taken to be effectively

infinite, and the other two of the two colliding particles with their other neighbours. Calculating

these two collision times afresh, rest of the collision times being only reduced by Tcoll, we then

locate the next minimum of the collision times and repeat the process. It has to be noted that

the correlation functions, however, has to be obtained at fixed time intervals, independent of the

collision times which vary from one realization to the other.

As can be seen from Fig. (2.7), the simulation results for the velocity auto-correlation function

matches the analytic results, both for C
(1)
vv and C

(2)
vv . In Fig. (2.8) the other correlation functions

obtained from the simulations are also shown. In particular, one can see the expected short time

ballistic to diffusive crossover of the mean square displacement and 1/t3 decay of the velocity

auto-correlation function. The observation of normal-diffusion can also be made from the plot

of D(t), which saturates to the fixed value of ≈ 0.4, as can be obtained from Jepsen’s relation

2D =
√

2/mπβ. Moreover, the long time effect of the reflecting boundary can be seen as the

mean square displacement of the tagged particle saturates to a value given by Eq. (2.11), thereby

making D(t) → 0. The anti-correlation seen in the velocity auto-correlation function on the

onset of reflecting boundary effect is an interesting observation.

2.3 Alternate mass hard particle gas

For the alternate mass hard particle gas no exact result exist and we obtain the correlation

functions through event-driven MD simulations, described in the previous section, exclusively.

We choose all other parameters to be the same as the equal mass case apart from the mass of

the particles which are set at 1.5 and 0.5 alternately. Here the data is shown for the case where

the tagged particle has mass 1.5, and similar results are obtained for the case when the tagged
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Figure 2.9: Various correlation functions for alternate mass hard particle gas (solid lines) with
N = 101 (blue) and N = 201 (red) particles. The alternate particles have masses 1.5 and 0.5 and in
this simulation, the middle particle had mass 1.5. The data is obtained by averaging over 109 equilibrium
initial conditions. A better approach to the t−7/5 for the VAF can be seen in Fig. (5.5) for larger system
sizes, see also Fig. (2.10). For comparison, the correlation functions for an equal mass gas with masses
1 is also shown (dotted lines). In all the above simulations we have taken ρ = 1 and kBT = 1.

particle is the lighter one. On collision, the colliding particles emerge with modified velocities

given by Eq. (2.3).

In Fig. (2.9) we show the various correlation function of the alternate mass gas in comparison

to the equal mass case of Fig. (2.8). We see that the short time mean square displacement seems
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sizes. The solid line is the prediction of mode-coupling theory [92] and gives a slow power-law decay to
the asymptotic diffusion constant D = kBT/(2ρmc) = 0.2886 . . .. In these simulations we used periodic
boundary conditions since these give better statistics.

to be similar for the two cases; after the expected initial ballistic regime, it grows approximately

linearly with time, indicating roughly diffusive motion. It is easier to notice any deviations from

diffusive behavior in the plot of 〈∆x(t)v(0)〉, where diffusive or super/sub-diffusive behavior would

correspond to (after the ballistic regime) a horizontal or rising/declining straight line respectively.

Fig. (2.9) seems to show that 〈∆x(t)v(0)〉 decreases as t is increased beyond the ballistic regime,

implying sub-diffusive behavior. However, on simulations on larger system sizes [Fig. (2.10)], we

find deviation from this short time decay and convergence to a constant value. We also see

that these large system simulation results are consistent with the prediction from mode coupling
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theory [92] of

〈∆x(t)v(0)〉 = 0.2887 + 0.39t−2/5. (2.46)

This indicates that the system is diffusive, with diffusion constant given by D = kBT/(2ρmc) =

0.2887, where ρm is the mass density and c is the speed of sound (see chapter 4 and the paragraph

below). This power law is also demonstrated by the velocity auto-correlation function as can be

seen in the fouth subplot [see Fig. (5.5) for better convergence to this power law decay at longer

times, for larger system sizes].

In Fig. (2.9) we also see how the effect of finite size of the box sets in, with onset time

depending on the system size. The mean square displacement saturates to the the same value of

Eq. (2.11), independent of the particle masses in the gas. The main difference between the equal

mass and the alternate mass systems is that the MSD for the equal mass case approaches its

saturation value without oscillations, while for alternate mass case there are damped oscillations

as saturation is approached, while always remaining below the MSD for the equal mass case.

The oscillations in the alternate mass system also show up in the other two correlation functions.

The time at which these oscillations start showing up is given by tsat ∼ L/c, where c =
√

3P/ρm

is the adiabatic sound velocity in the alternate mass hard point particle gas with P being the

pressure. For our numerical simulations, P = ρkBT = 1 and ρm = 1, which gives c =
√

3.

The oscillations in the mean square displacement are seen more clearly in Fig. (2.11), where

the data is plotted differently. The period of oscillation is proportional to N, in agreement with

our ascribing them to sound waves reflecting from the boundary, which takes a time ∼ 2L/c.

However, the amplitude of the oscillations does not show a simple scaling with N ; it is clear

from the figure that they are damped out in fewer cycles for smaller N, making it impossible to

collapse the data onto a single curve by re-scaling the vertical axis.

2.4 Discussions and conclusions

In this chapter we studied two main cases of the hard particle gas, one in which all particles are of

same mass m and the other in which the particle masses alternate between m1 and m2. For the

case where the masses of all the particles are equal we obtained analytic results for the finite-size
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velocity auto-correlation function using an approach similar to that of Jepsen. However, our

calculation is simpler and we obtained closed form expressions for the velocity auto-correlation

function valid at both short times (including the ballistic and diffusive regimes) and long times

(when boundary effect shows up). While here we have presented results only for the velocity

auto-correlation function, it is straightforward to obtain other correlation functions using our

approach.

We then presented simulation results for the various correlation functions of the two cases.

We saw that the tagged particle eventually shows normal-diffusion in both the cases even though

the detailed correlation functions are different. This gives the first concrete example of non-

integrability not affecting the normal-diffusive behaviour of the tagged particle in one-dimensional
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systems. We saw the diffusion constant in the equal mass case is obtainable from Jepsen result

while the expression given for the alternate mass case will be obtained in chapter 4. It must

however be noticed that this normal-diffusion is very different from the normal-diffusion of a

tagged particle undergoing Langevin dynamics with white noise. In that case the velocity auto-

correlation function decays exponentially in contrast to the power laws observed here. As will be

seen in chapter 5, this exponential decay will be recovered for the case when the tagged particle

is much heavier than the rest of the particles, which are all of equal masses. In that chapter

we will also study the random mass case and mass ratio dependence in the alternate mass gas,

among other things.

We also saw how reflecting boundary effect manifests itself in the two cases with the onset time

of this boundary effect depending on the system size. We saw that the value to which the mean

square displacement saturates is independent of particle masses. However, the way it saturates is

very different for the two cases. We calculated the adiabatic sound velocity in the alternate mass

hard point particle gas and found it to describe the oscillations seen in the long-time correlation

functions of the alternate mass gas. The equal mass gas, as is known, doesn’t support sound

waves under continuous velocity distributions like the equilibrium distribution [64], and hence

doesn’t show such oscillations.





3
Oscillator Chain Systems

3.1 Introduction

In the previous chapter we saw how breaking the integrability in the alternate mass hard parti-

cle gas didn’t effect the asymptotic infinite system behaviour of normal-diffusion of the tagged

particle, even though the diffusion constant and the detailed form of the correlation functions

were very different. We also saw how the boundary effect sets in differently for the two systems.

The long-time oscillations obtained for alternate mass case were attributed to the system sup-

porting sound propagation. In this chapter we study some standard oscillator chain systems [see

Fig. (3.1)], to see if and how the infinite system diffusive behaviour and the boundary effect dif-

fers in these oscillator chains. The oscillator chains we study are the harmonic chain (Sec. 3.2),

the anharmonic Fermi-Pasta-Ulam (FPU) chain (Sec. 3.3) and the Lennard-Jones (LJ) chain

(Sec. 3.4).

39
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Figure 3.1: Schematic diagram of an oscillator chain with N = 6 particles and fixed boundary
conditions.

In Sec. 3.2 we study the harmonic chain. The problem has been studied for an infinite harmonic

chain by Montroll and Mazur [60] where they obtained the velocity auto-correlation function

(VAF) to be ∼ sin(ω0t)/
√
t at large times. This implies fast enough decay of the VAF to give

an asymptotic normal-diffusion. Finite size effects, however, have not been studied. Here we

present exact results for the various correlation functions, through normal mode analysis, valid

over the entire regime: both the diffusive t << N regime and t >> N regime when boundary

effect sets in. In particular, we re-obtain the functional form of VAF obtained in [60] for the short

time regime, while in the long time regime we again see size dependent oscillations. The speed of

sound in the system describes well the onset time and period of these oscillations as in the previous

chapter. However, as we will see, nature of these oscillations are different from those seen in the

previous chapter. We also see that, apart from the long time sound dependent oscillations, there

are short time size-independent oscillations too. These are due to the elastic nature of the system

in the microscopic scale, in contrast to the hard particle gas. Next, we perform velocity-verlet

molecular dynamics simulations on the system to obtain the various correlation functions and

confirm that they match the analytic results.

In Sec. 3.3 we study the anharmonic Fermi-Pasta-Ulam (FPU) chain. This paradigmatic and

the most basic example of an anharmonic chain has surprisingly been completely overlooked in

the context of tagged-particle diffusion. Note that in the context of heat conduction, studies

on these nonlinear systems gave lots of insights into the nature of 1-dimensional Hamiltonian

systems [88]. This system, being nonlinear, cannot be handled exactly. Hence, here we study

it through velocity-verlet molecular dynamics simulations and obtain the correlation functions

valid for both short and long time regime. We will see how the correlation functions for this

anharmonic system are qualitatively similar to those of harmonic chain, in the sense that they

also show normal-diffusion and that there are both short time and long time oscillations. The
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decay of these oscillations, however, will be found to be very different between these two cases.

We study both the β and the α − β FPU model to see whether the difference one observes

between these two models in the context of heat conduction, manifests itself in the context of

tagged-particle diffusion too.

In Sec. 3.4 we study the anharmonic Lennard-Jones (LJ) chain. For this system few studies

exist. Bishop et. al. and Bagchi et. al. studied the problem, for a LJ gas, through molecular

dynamics simulations and obtained the VAF ∼ −1/t3 [84–86], which seems like a hard particle

result. However, density dependence and finite size effects were not considered thoroughly in these

studies. In this section we study the LJ chain extensively for different densities through velocity-

verlet molecular dynamics simulations, and we obtain the correlation functions in both short

and long time regimes. We make the interesting observation that the nature of the correlation

functions for a LJ chain is highly density dependent. At high densities it looks like those of

an anharmonic chain while at low densities it looks like those of a hard particle gas, thereby

recovering the ∼ −1/t3 decay of the velocity auto-correlation function found in [86].

As in the previous chapter, we study the three correlation functions 〈[∆x(t)]2〉, 〈∆x(t)v(0)〉

and 〈v(0)v(t)〉 which are related to each other through Eq. (1.10). The dynamics of the oscillator

chain systems studied in this chapter is also completely deterministic and hence the averaging

〈· · ·〉 is done over the equilibrium initial distribution.

3.2 Harmonic chain

Analytic results for the harmonic chain

We consider a harmonic chain of N particles labeled l = 1, . . . , N in thermal equilibrium at

temperature T . The particles of equal masses m are connected by springs with stiffness constant

k. Let {q1, . . . , qN} denote the displacements of the particles about their equilibrium positions.

The equilibrium positions are assumed to be separated by a lattice spacing a so that the mass

density is ρm = m/a. We assume that the particles l = 0 and l = N + 1 are fixed so that

q0 = qN+1 = 0. The Hamiltonian of the system is

H =
N∑
l=1

m

2
q̇2
l +

N+1∑
l=1

k

2
(ql − ql−1)2 , (3.1)
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with corresponding equation of motion given as

mq̈l = −k(2ql − ql+1 − ql−1), ∀ l. (3.2)

Transforming to normal mode coordinates

ql(t) =
∑
p

ap(t)φp(l) , (3.3)

where φp(l) =
[

2
m(N+1)

]1/2

sin(lpa), p = nπ
(N+1)a

, n = 1, . . . , N, brings the Hamiltonian to the

form

H =
∑
p

ȧ2
p

2
+
ω2
pa

2
p

2
, (3.4)

with ω2
p = 2k/m(1 − cos pa) . The normal mode equations of motion äp = −ω2

pap are easily

solved and lead to the following expression:

ql(t) =
∑
p

φp(l)

[
ap(0) cosωpt+

sinωpt

ωp
ȧp(0)

]
. (3.5)

We consider a chain in thermal equilibrium at temperature T, i.e., 〈ȧ2
p(0)〉 = ω2

p〈a2
p(0)〉 = kBT

and 〈ȧp(0)ap(0)〉 = 0. For the middle particle, l = M = (N+1)/2 (assuming odd N), sin(lpa) =

sin(nπ/2) and hence φp(l) = 0 for even n. Defining ∆q(t) = qM(t)− qM(0),

〈[∆q(t)]2〉 =
8kBT

m(N + 1)

∑
n=1,3,...

sin2(ωpt/2)

ω2
p

. (3.6)

Here we have switched from p to n in the summation index, which are related to each other.

The correlations 〈∆q(t)v(0)〉 and 〈v(t)v(0)〉 can be found by differentiating this expression, as

in Eqs.(1.10).

Simulation results for the harmonic chain

Next we obtain the correlation functions from molecular dynamics simulations and show them to

match the analytic results obtained above. Since the inter-particle potential is continuous we can

perform velocity-verlet molecular dynamics simulation on it [93]. In this scheme the simulation

proceeds in fixed time steps δt and the positions (xi), velocities (vi) and the accelerations (ai),
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Figure 3.2: Harmonic chain: short time correlation functions of the central tagged particle in a
system of size N = 65 (red) and 129 (blue). Fixed boundary conditions were used and the parameters
were taken as k = 1, m = 1 and kBT = 1. The diffusion constant can be seen to saturate to the
expected value kBT/(2ρmc) = 0.5 (until boundary effect sets in). For the VAF, we have also plotted
the analytic result 〈v(0)v(t)〉 = J0(2t)

for i = 1, 2, ..., N , are evaluated at each time step as

xi(t+ δt) = xi(t) + δt vi(t) +
1

2
δt2 ai(t),

vi(t+ δt) = vi(t) +
1

2
δt [ai(t) + ai(t+ δt)] .

The system is initially prepared in equilibrium by connecting all particles to Langevin type heat
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Figure 3.3: Harmonic chain: long time MSD of the central tagged particle in systems of different
sizes, and with fixed boundary conditions. The parameters here are same as in Fig. (3.2). Note the near
recurrent behaviour of the MSD.

reservoirs. The various correlation functions are then obtained from these quantities, at required

time intervals, by averaging over a large number of initial conditions.

In Fig. (3.2) and Fig. (3.3) we plot the simulation results for the various correlation functions

for different system sizes and find them to match the exact analytic results [Eq.(3.6) and its

derivatives]. As seen in Fig. (3.2), an initial ∼ t2 growth in 〈∆q2(t)〉 crosses over to a linear

growth, indicating a diffusive regime that is also seen in 〈∆q(t)v(0)〉. After that, boundary ef-

fects set in and 〈(∆q)2〉/N is an almost periodic function of t/N [Fig. (3.3)]. This is somewhat

surprising for an harmonic chain since we are averaging over an initial equilibrium ensemble with

all normal modes, and ωp ≈ cp (where c = a
√
k/m is the wave speed) only for small p. Notice



3.2 Harmonic chain 45

that there are oscillations even before the wall effect sets in. These are indicative of the elastic

nature of the system in the microscopic scale.

Further analytic results for the different time regimes of the harmonic chain

The behaviour of 〈[∆q(t)]2〉 for the harmonic chain can be understood in detail analytically by

analyzing the different time regimes of Eq. (3.6) . There are three regimes of t to consider:

(i) When ωN t << 1, sin2(ωnt/2) ≈ ω2
nt

2/4, (we use ωn to denote the normal mode frequencies,

but with p = nπ/[(N + 1)a]), the right hand side of Eq. (3.6) is then equal to kBTt
2/m . This

approximation is valid as long as ωN t = 2ct/a is small.

(ii) In the second regime, ωN t >> 1 >> ω1t, and the sum can be replaced by an integral:

4kBT

m(N + 1)

w N

1
dn

sin2(ωnt/2)

ω2
n

≈ 2kBTat

πmc

w ∞
0
dy

sin2(y)

y2
√

1− (ay/ct)2
(3.7)

where we have changed variables from n to y = ωnt/2 and used ωN t >> 1 >> ω1t to change

the limits of the integral. Expanding [1− (ay/ct)2]−1/2 in a binomial series and keeping only the

first term of the expansion, we get the leading order behaviour in t as 〈[∆q(t)]2〉 ≈ (kBTt/ρmc).

The linear t-dependence implies diffusive behaviour with a diffusion constant D = kBT/(2ρmc).

The VAF in this regime can be obtained by differentiating the first expression in Eq.(3.7), as

in Eqs.(1.10):

〈v(t)v(0)〉 =
kBT

m(N + 1)

w N

1
dn cos(ωnt) . (3.8)

Substituting z = ωn/(2c/a) = sin(nπ/2(N + 1)), this is equivalent to

〈v(t)v(0)〉 =
2kBT

πm

w 1

0
dz

cos(2ctz/a)√
1− z2

=
kBT

m
J0(2ct/a) ∼ cos(2ct/a− π/4)√

t
for t→∞,

(3.9)

using the asymptotic properties of Bessel functions [60]. This is shown in the lower panels of

Fig. (3.2).

(iii) In the third regime, the results depend on boundary conditions and our analysis here is for

fixed boundary conditions. In this case ω1t is no longer small. As a first approximation, we set

ωn to be equal to cnπ/[(N + 1)a] ≈ cnπ/Na. Then Eq. (3.6) becomes

〈[∆q(t)]2〉 =
8kBTNa

ρmc2π2

∑
n=1,3,5...

1

n2
sin2

(
cnπt

2Na

)
. (3.10)
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This is a periodic function in t with a period of 2Na/c. Since the sum is dominated by n << N,

we see that our first approximation is a reasonable one. More accurately, we expand ωn to one

order higher:

ωn =
cnπ

Na
[1− n2π2/(24N2) + · · · ] (3.11)

and evaluate the sum at t = 2jNa/c. We have

〈[∆q(t)]2〉 =
8kBTNa

ρmc2π2

∑
n=1,3,...

1

n2[1−O(n/N)2]
sin2(jn3π3/(24N2)). (3.12)

Approximating the sum by an integral and changing variables to y = nj1/3/N2/3, we get

〈[∆q(t)]2〉 =
8kBT (Nj)1/3a

ρmc2π2

w O(N1/3)

O(N−2/3)

sin2(y3π3/24)

y2[1−O(y2/(jN)2/3)]
dy. (3.13)

As N →∞, the integral converges to an N -independent value of 0.8046 . . . , so that the function

is O(Nj)1/3. We note that this is small compared to the O(N) value of the function at its maxima,

but that it increases steadily with j, as expected in a dispersive system. In a more careful analysis,

the locations of the minima are taken to be 2jNa/c+ δj and the δj’s evaluated to leading order,

but this does not change the fact that the minima are O(Nj)1/3. A similar analysis shows that

the function at its maxima is equal to kBTNa/(ρmc
2)−O(jN)1/3.

3.3 Fermi-Pasta-Ulam chain

We now turn to simulation of tagged-particle motion in a chain of nonlinear oscillators. The

simulation techniques used are the same as described in the previous section. The Hamiltonian

of the Fermi-Pasta-Ulam (FPU) chain we study is taken to be:

H =
N∑
l=1

m

2
q̇2
l +

N+1∑
l=1

[
k

2
(ql − ql−1)2 +

α

3
(ql − ql−1)3 +

β

4
(ql − ql−1)4

]
, (3.14)

where the ql’s are the displacements from equilibrium positions. We fix the particles at the

boundaries by setting q0 = 0 and qN+1 = 0. The corresponding equations of motion are:

mq̈l = −k(2ql−ql+1−ql−1)−α(ql−ql−1)2 +α(ql−ql+1)2 −β(ql−ql−1)3−β(ql−ql+1)3. (3.15)

The simulation results are plotted in Fig. (3.4) and Fig. (3.6) for the β chain (where α = 0).

Comparing to the analogous figures for the harmonic chain, we see that the plots have some
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Figure 3.4: FPU β chain: short time correlation functions of the central tagged particle in systems
of sizes N = 129 (red) and 513 (blue) with periodic boundary conditions. The parameters here were
taken as k = 1, α = 0, β = 1,m = 1 and kBT = 1. We see that there is a fast convergence of
〈∆q(t)v(0)〉 to the expected diffusion constant D = kBT/2ρmc = 0.342. Note that, because of the
use of periodic boundaries, the curves go up (positive correlation) when the wall effect sets in, rather
than going down [anti-correlation, see Fig. (3.2)].

similarity, as well as significant differences. At short times [Fig. (3.4)], there is again a crossover

from ballistic (〈∆q2(t)〉 ∼ t2) to diffusive (〈∆q2(t)〉 ∼ t) behaviour. As will be discussed in the

next chapter, the diffusion constant is again given by the formula D = kBT/2ρmc, where the

speed of sound will be determined for a given microscopic model. Moreover, 〈v(0)v(t)〉 shows

oscillatory behavior as in the harmonic case. However, the damping is much faster (exponential)
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Figure 3.5: FPU β chain as compared to the harmonic chain : short time VAF of the central tagged
particle in systems of size N = 129 with periodic boundary conditions. The upper panel is a log-log
plot emphasizing the power-law decay of the VAF for harmonic chain (blue), while the bottom panel is
a log-linear plot emphasizing exponential decay for the FPU chain (red).

for the FPU chain than for the harmonic chain (power-law decay) [see Fig. (3.5)]. At long

times [Fig. (3.6)], we can see 〈∆q2(t)〉 converging to the expected equilibrium values, for small

system sizes, unlike the harmonic chain. Also notice that these long time damped oscillations are

different from the ones seen for the alternate mass hard particle case. Here these are about a

mean position while there it was increasing, while always staying below the asymptotic saturation

value.

Next, in Fig. (3.7) we compare the β chain with the α − β chain, for two values of α. We
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Figure 3.6: FPU β chain: long time MSD of the central tagged particle in FPU chains of different
sizes with fixed boundary conditions. The parameters here are the same as in Fig. (3.4).

see that the plots are qualitatively similar, with all of them showing fast convergence to normal-

diffusion and exponential decay of velocity auto-correlation function. Thus, there is no apparent

significant difference between the β chain and the α−β chain, unlike what is seen in recent heat

conduction literature [95–97]. However, a hint of difference between them will be seen in the

next chapter when we compare them with the linearized model.
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Figure 3.7: FPU α − β chain as compared to the FPU β chain : short time correlation functions
of the central tagged particle in systems of size N = 65 with periodic boundary conditions. The three
plots correspond to k = 1, α = 0, β = 1 (red solid line), k = 1, α = 1, β = 1 (blue dashed line) and
k = 1, α = 2, β = 1 (green dashed-dotted line). Other parameters are same for the three cases, i.e.,
m = 1 and kBT = 1. Same behaviour is seen even for larger system sizes.

3.4 Lennard-Jones chain

The mean-squared displacement 〈∆q2(t)〉 for the FPU (and harmonic) chain seems to have a

similar dependence on t as for a hard particle gas [90], with an initial ∼ t2 increase crossing

over to a ∼ t dependence. However, derivatives of this correlation function, 〈∆q(t)v(0)〉 and

〈v(0)v(t)〉 show differences. For the FPU chain, 〈∆q(t)v(0)〉 approaches a constant rapidly.
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Figure 3.8: LJ chain (high density): short time correlation functions of the central tagged particle
in systems of sizes N = 129 (red) and N = 513 (blue) with inter-particle separation 1.0. All the
particles are of mass 1.0. Periodic boundary conditions were used here.

Although this is less rapid for a harmonic chain, it is nevertheless clear that the large t limit is

a constant. On the other hand, for the alternate mass hard particle gas, 〈∆x(t)v(0)〉 decreases

slowly as t increases, with a levelling off at very long times [90] [see also Sec. (2.3)]. Turning to

the velocity auto-correlation function, for the FPU chain this has a damped oscillatory behaviour,

while there are no — or over-damped — oscillations in the hard particle velocity auto-correlation

function.

The hard particle gas may be considered as an extreme case of a non-linear oscillator chain,
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Figure 3.9: LJ chain (low density): short time correlation functions of the central tagged particle
in systems of sizes N = 129 (red) and N = 513 (blue) with inter-particle separation 3.0. The equal
mass case is represented by dotted lines, while solid lines represent the alternate mass case (with masses
1.5 and 0.5). Periodic boundary conditions were used here.

but it is a singular limit of this family. To see if the differences between the correlation functions

for the two cases are significant, we study the Lennard-Jones (LJ) chain. The Hamiltonian of the

LJ chain is taken to be

H =
N∑
l=1

m

2
ẋ2
l +

N+1∑
l=1

[
1

(xl − xl−1)12
− 1

(xl − xl−1)6

]
(3.16)

where x’s are the positions of the particles. At low densities, one would expect the particles to

behave approximately like free particles, with a repulsive force between neighbouring particles
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Figure 3.10: LJ chain (high density): long time MSD of the central tagged particle in systems of
different sizes N with inter-particle separation 1.0 and fixed boundary conditions.

when they come close to each other. Since the repulsion occurs over a distance that is small

compared to the mean inter-particle separation, the system is similar to a hard particle gas. On

the other hand, at high densities, the particles should remain close to their equilibrium positions

with small deviations, resulting in behaviour more like a α − β FPU chain, as can also be seen

by Taylor expanding the LJ potential about the equilibrium separation.

As in the FPU case we evaluate the correlation functions of the central particle from velocity-

verlet molecular dynamics simulations. The particles are inside a box of length L and we fix

particles at the boundaries by setting x0 = 0 and xN+1 = L. The mean inter-particle spacing is

thus a = L/(N + 1). The simulation results are given in Fig. (3.8) and Fig. (3.9) for short times

and Fig. (3.10) and Fig. (3.11) for long times. In these simulations we have taken kBT = 1.

As expected, we observe in Fig. (3.8) and Fig. (3.10) that at high density the behaviour is

similar to that of the FPU chain. At low densities, Fig. (3.9) and Fig. (3.11), the behaviour
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Figure 3.11: LJ chain (low density): long time MSD of the central tagged particle in systems of
different sizes N with inter-particle separation 3.0 and fixed boundary conditions. The equal mass case
is represented by dotted lines, while solid lines represent the alternate mass case (with masses 1.5 and
0.5).

resembles that of the hard particle gas, both for equal and alternate mass cases. The two sets

of figures correspond to a = 1.0 and a = 3.0 respectively. In the next chapter we will estimate

the diffusion constant for this case also through the linearized model. Notice that the long time

oscillations seen in Fig. (3.10) are also about the equilibrium value, similar to what was seen in

the FPU case, while in Fig. (3.11) they are below the saturation value, as was seen in the hard

particle case.
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3.5 Discussions and conclusions

In this chapter we obtained the tagged-particle correlation functions for various oscillator chains.

For the harmonic chain we obtained the correlation functions both analytically and through molec-

ular dynamics simulations. For the nonlinear chains of Fermi-Pasta-Ulam and Lennard-Jones, the

correlation functions were obtained through molecular dynamics simulations exclusively. In the

next chapter we will study an effective harmonic model and compare its results with the simulation

results of the anharmonic systems studied here. Importantly, we saw that here also the tagged

particle showed normal-diffusion in all the cases, linear as well as non-linear. As in the previ-

ous chapter, this normal-diffusion is very different from the normal-diffusion of a tagged particle

undergoing Langevin dynamics with white noise, with the velocity auto-correlation function not

being a plain exponential function. The envelop of the decay, though, is an exponential function

for the FPU chains.

We also saw how fixed boundary effect manifests itself as long-time oscillations in the various

cases, with the onset time being ∼ 2L/c. For the harmonic chain we saw the period of these

oscillations (2Na/c) to be determined by the sound speed c. In the next chapter we will obtain

the sound speed for various anharmonic chains and compare with the simulation results. We

further saw that these long time oscillations for the anharmonic chains were damped, while they

were undamped (or minimally damped) for the harmonic chain. Also, the form of these long-

time oscillation for the oscillator chain systems were quite different from the alternate mass hard

particle gas, except for the low density LJ case, in the sense that they were about a fixed mean

position rather than rising ones. We will get some idea behind this difference in the next chapter,

where we will also study the effect that periodic boundary condition has on the systems studied

here.





4
Effective Harmonic Model

4.1 Introduction

In the previous chapter, we obtained various correlation functions of the tagged particle for

different anharmonic chains, through molecular dynamics simulations exclusively. This was due

to the non-linearity of the equations of motion. In this chapter, as a simplified model of these

systems, we consider an effective harmonic description of the system. The nonlinear terms in

Eq. (3.15) normally couple the normal modes of the linear system, and we now assume that

they can be replaced by momentum conserving dissipation and noise terms — thus for any

mode, all the other modes act as a heat bath. It is important to add momentum conserving

noise and dissipation since these are generated internally from the systems dynamics and have

to preserve the conservation laws. Note that this is different from the effective harmonization

technique of [98], where the original dynamics is stochastic, and the noise and dissipation already
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exists. We then solve these linear stochastic equations of motion exactly and compare the results

obtained from these with the simulation results obtained in the previous chapter.

4.2 The model

Our effective harmonic model with noise and dissipation is described by the following equations

of motion:

mq̈l = −keff(2ql − ql+1 − ql−1)− γ(2q̇l − q̇l+1 − q̇l−1) + (2ξl − ξl+1 − ξl−1) , (4.1)

where keff is an effective spring constant, γ a damping constant and ξl are noise terms whose prop-

erties will be specified later. We consider fixed boundaries condition q0 = 0 and qN+1 = 0. As for

the harmonic oscillator, we transform to normal mode coordinates, φp(l) =
√

2/
√
m(N + 1) sin(lpa)

with pa = nπ/(N+1) , n = 1, . . . , N , with ξl(t) =
∑

p ξ̃p(t)φp(l). The normal mode coordinates

ap(t) now satisfy the equation of motion

äp(t) + ω2
pap(t) = − γ

keff

ω2
pȧp(t) +

ω2
p

keff

ξ̃p(t) ,

where ω2
p =

2keff

m
(1− cos pa).

To ensure equilibriation of the modes we choose Gaussian noise with zero mean and two point

correlations given by

〈ξ̃p(t) ξ̃p′(t′)〉 =
2keffγkBT

mω2
p

δ(t− t′) δp,p′ .

In steady state, ap(t) = ω2
p

r t
−∞G(t− t′)ξ̃p(t′)dt′, where G(t− t′) is the Green’s function for the

equation of motion. After some straightforward computations we finally get

〈ql(t)ql(0)〉 = kBT
∑
p

φ2
p(l)

ω2
p

e−αpt
[
cos(βpt) +

αp
βp

sin(βpt)

]
, (4.2a)

〈ql(t)vl(0)〉 = kBT
∑
p

φ2
p(l)

βp
e−αpt sin(βpt) , (4.2b)

〈vl(t)vl(0)〉 = kBT
∑
p

φ2
p(l)e

−αpt
[
cos(βpt)−

αp
βp

sin(βpt)

]
, (4.2c)

where αp =
γω2

p

2keff

, βp = (−α2
p + ω2

p)
1/2 .
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Taking N to be odd, we get for the middle particle l = (N + 1)/2

〈q(t)q(0)〉 =
2kBT

m(N + 1)

∑
n=1,3,...

e−αpt

ω2
p

[
cos(βpt) +

αp
βp

sin(βpt)

]
, (4.3a)

〈q(t)v(0)〉 =
2kBT

m(N + 1)

∑
n=1,3,...

e−αpt

βp
sin(βpt) , (4.3b)

〈v(t)v(0)〉 =
2kBT

m(N + 1)

∑
n=1,3,...

e−αpt
[
cos(βpt)−

αp
βp

sin(βpt)

]
, (4.3c)

If we take the t → ∞ limit first in the middle equation in Eq. 4.3 then we get D = 0. As

discussed earlier, we need to take the N → ∞ limit before t → ∞ limit, thereby exploring the

infinite system diffusive behaviour. In the limit N →∞, the above equations give:

〈q(t)q(0)〉 =
kBTa

mπ

w π/a

0
dp
e−αpt

ω2
p

[
cos(βpt) +

αp
βp

sin(βpt)

]
, (4.4a)

〈q(t)v(0)〉 =
kBTa

mπ

w π/a

0
dp
e−αpt

βp
sin(βpt) , (4.4b)

〈v(t)v(0)〉 =
kBTa

mπ

w π/a

0
dpe−αpt

[
cos(βpt)−

αp
βp

sin(βpt)

]
. (4.4c)

The diffusion constant is obtained as

lim
t→∞
〈q(t)v(0)〉 =

kBTa

mπc

w ∞
0
dx

sin(x)

x
=
kBT

2ρmc
(4.5)

where, as before, ρm is the mass per unit length and c is the speed of sound. Thus, we see that

our effective damped harmonic model predicts normal-diffusion for the tagged particle. The long

time infinite size behaviour of the VAF in Eq. (4.4 c) can be estimated and we find 〈v(t)v(0)〉 ∼

exp(−γt/m) sin(2ct/a).

Our effective damped harmonic theory in fact follows from the full hydrodynamic equations

discussed in Ref. [99]. Here we briefly outline such a derivation. In the hydrodynamic theory, one

starts with equations for the three coarse-grained conserved fields, corresponding to the extension

rl = ql+1 − ql, momentum pl and energy el. These are given by

∂r(x, t)

∂t
=
∂p(x, t)

∂x
,

∂p(x, t)

∂t
= −∂P (r, ê)

∂x
,

∂e(x, t)

∂t
= −∂P (r, ê)p(x, t)

∂x
, (4.6)
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where P (r, ê) is the local pressure and is a function of the local extension and energy ê = e−p2/2.

In the above equations we have made the identification l→ x and ∂/∂x can be thought of as a

discrete derivative. Next, one looks at fluctuations of the conserved fields about their equilibrium

value and define the fields u1 = δr = r − 〈r〉, u2 = p and u3 = δe = e− 〈e〉, where the angular

brackets denote equilibrium averages. Then, expanding the pressure around its equilibrium value,

Peq, we get from Eq. (4.6) the following linear equations

∂δr(x, t)

∂t
=
∂p(x, t)

∂x
,

∂p(x, t)

∂t
= −∂Peq(r, ê)

∂r

∂δr(x, t)

∂x
− ∂Peq(r, ê)

∂e

∂δe(x, t)

∂x
,

∂δe(x, t)

∂t
= −Peq

∂p(x, t)

∂x
. (4.7)

Substituting for ∂p(x, t)/∂x from the first line into the third line of Eq. (4.7), and operating

∂/∂x on both sides, we get ∂δe(x, t)/∂x = −Peq∂δr(x, t)/∂x. Substituting this in the second

line above, we obtain

∂p(x, t)

∂t
=

[
−∂Peq(r, ê)

∂r
+ Peq(r, ê)

∂Peq(r, ê)

∂e

]
∂δr(x, t)

∂x
. (4.8)

The terms within brackets is precisly the expression for c2 given in [99], where an expression for it

in the constant temperature/pressure ensemble has been given. We now observe that, on adding

the momentum conserving noise and damping terms, Eq. (4.8) is equivalent to our Eq. (4.1),

upon identifying c2 = keff/m.

In the next section, we compare the correlation functions given by Eq. (4.3), to the simulation

results for the various nonlinear systems studied. We use the expression for sound speed given

for a general anharmonic chain in Ref. [99] and use the parameters of our systems to evaluate

it. The effective spring constant keff is then obtained from this sound speed and the damping

constant γ is the only free parameter used for fitting.

4.3 Comparison with the nonlinear systems

The sound speed in an anharmonic chain is given, in canonical ensemble described by temperature

and pressure, as [99]

c2 =
1

Γ

(
1

2β2
+ 〈V + Py;V + Py〉

)
, (4.9)
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Figure 4.1: Comparison of FPU β chain with the linearized hydrodynamic model: short time
correlation functions of the central tagged particle in a chain of size N = 65 (solid line) compared with
the predictions of the hydrodynamic model (dashed line). The parameters of the chain here are same
as in Fig. (3.4). The only fitting parameter of the model is the damping constant γ which is taken to
be 0.1 here.

where V is the interparticle pair potential, β = 1/kBT , P is the pressure and 〈y〉 is the average

extension between neighbouring particles.

Γ = β
(
〈y; y〉 〈V ;V 〉 − 〈y;V 〉2

)
+

1

2β
〈y; y〉 , (4.10)
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Figure 4.2: Comparison of FPU β chain with hydrodynamic model: long time VAF of the central
tagged particle in a chain of size N = 65 (solid line) compared with the predictions of the hydrodynamic
model (dashed line). The parameters of the chain here are again same as in Fig. (3.4). The only fitting
parameter of the model is the damping constant γ which was taken to be 0.1.

with the definition 〈X;Y 〉 = 〈XY 〉 − 〈X〉 〈Y 〉 and the expectation value of any observable A

given as

〈A〉 =

r∞
−∞ dyAe

−β(V (y)+Py)

r∞
−∞ dye

−β(V (y)+Py)
.

In our simulations we have β = 1/kBT = 1. The pressure P is evaluated numerically by imposing

the condition that the equilibrium extension between neighbouring particles 〈y〉 is 0 for the FPU

chains and a for the LJ chains with inter-particle spacing a.
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Figure 4.3: Comparison of FPU β chain with hydrodynamic model: long time MSD and VAF of
the central tagged particle in a chain of sizes N = 65 (solid red line) and N = 129 (solid blue line)
compared with the predictions of the hydrodynamic model (dashed lines of corresponding colours). The
parameters of the chain here are again same as in Fig. (3.4). The only fitting parameter of the model
being γ = 0.1.

4.3.1 Comparison with the FPU β chain : V (y) = y2/2 + y4/4

For the symmetric (even potential) FPU β chain P = 0. This gives

c = a[kBT/(m〈y2〉)]1/2 = [1/(〈y2〉)]1/2,

kBT,m and the lattice spacing a being unity in our simulation. Further, we get

〈
y2
〉

=

r∞
−∞ y

2e−β(V (y)+Py)dy
r∞
−∞ e

−β(V (y)+Py)dy
=

r∞
−∞ y

2e−(y2/2+y4/4)dy
r∞
−∞ e

−(y2/2+y4/4)dy
≈ 0.4679 .
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and hence keff = c2 ≈ 2.137 .

With this keff Eq. (4.3) is evaluated and compared with the simulation result, in Fig. (4.1) for

short time and Fig. (4.2) for long time. In Fig. (4.3) it is plotted for two system sizes. We see

a good match between the two by tuning just one parameter γ. Notice that we get an excellent

agreement between the diffusion constant D obtained from Eq. (4.5) and the diffusion constant

D obtained from simulation.

4.3.2 Comparison with the FPU α− β chain :

V (y) = y2/2 + αy3/3 + βy4/4

Case 1 : α = 1, β = 1

In this case imposing the condition 〈y〉 = 0 gives P = −0.3904. Using this P in Eq. (4.9) we

get keff = c2 ≈ 2.119. With this keff Eq. (4.3) is evaluated and compared with the simulation

result in Fig. (4.4). We see that here also there is a good match between the two by tuning just

one parameter γ.

Case 2 : α = 2, β = 1

In this case imposing the condition 〈y〉 = 0 gives P = −0.86978. Using this P in Eq. (4.9)

we get keff = c2 ≈ 2.003. With this keff now, Eq. (4.3) is evaluated and compared with the

corresponding simulation result in Fig. (4.5). We now see slight deviations between the correlation

functions obtained from simulation and the linearized model. This deviation increases at higher

nonlinearities as will be seen next for the LJ system. We believe that this is possibly because of

the cubic non-linearity and may be seen as first indication of difference emerging between the

α− β and β FPU chains. This point will be discussed further later in this chapter.

4.3.3 Comparison with the LJ gas : V (y) = 1/y12 − 1/y6

We consider the LJ chain with mean inter-particle spacing taken as a = 1.0. Therefore, we

impose the condition 〈y〉 = 1.0 and get P = 12.98. Using this P we get from Eq. (4.9)

keff = c2 ≈ 169.767. We plot Eq. (4.3) evaluated using this keff in Fig. (4.6) and compare it with
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Figure 4.4: Comparison of FPU α − β chain with hydrodynamic model (Case 1): short time
correlation functions of the central tagged particle in a chain of size N = 65 (solid line) compared with
the predictions of the hydrodynamic model (dashed line). The parameters of the chain here are same
as in Fig. (3.7).

the simulation result of corresponding system. We see that the mismatch here increases further.

The effective damped harmonic model used for the FPU chains, though works qualitatively for

the correlation functions of the high density Lennard-Jones gas, the quantitative agreement, for

example with the predicted diffusion constant, is not very good. We believe that this is also

because of the cubic non-linearity (in an FPU description valid for small displacements) being
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Figure 4.5: Comparison of FPU α − β chain with hydrodynamic model (Case 2): short time
correlation functions of the central tagged particle in a chain of size N = 65 (solid line) compared with
the predictions of the hydrodynamic model (dashed line). The parameters of the chain here are same
as in Fig. (3.7).

significant.

For the low density LJ chain, i.e. the hard-particle like limit, however, this linearized equation

completely breaks down. It can neither reproduce the short time power laws of the velocity

auto-correlation function nor the long time rising oscillation of the mean square displacement

of the low density alternate mass LJ. This and the previous few examples demonstrate that
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Figure 4.6: Comparison of LJ chain with hydrodynamic model: short time correlation functions
of the central tagged particle in chain of size N = 65, with inter-particle separation 1.0 (solid line),
compared with the predictions of the hydrodynamic model (dashed line). The only fitting parameter of
the model is the dissipation constant γ. The parameters of the chain here are same as in Fig. (3.8).

the simple effective damped harmonic model, where we neglect the effect of heat mode, has

strong limitations and that the effect of heat mode may actually be important in describing these

systems. We believe that a complete description of these 1-dimensional Hamiltonian systems

require a calculation based on the full nonlinear hydrodynamic theory which is presumably what

Beijeren’s calculation (unpublished, [92]) is based on. The origin of the difference in the form

of the velocity auto-correlation function between the anharmonic (oscillatory exponential decay)
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and the alternate mass hard-particle gas (power law decay) requires further investigation of

the nonlinear fluctuating hydrodynamics and appears quite non-trivial to us. It is possible that

the effect of non-linearity and coupling between heat and sound modes on the tagged particle

correlations are quite different in different parameter regimes.

4.4 Discussions and conclusions

In this chapter we formulated an effective damped harmonic model for the nonlinear chains

studied in the previous chapter and solved it analytically for tagged-particle correlation functions.

This model, which can be seen as a special case of the full hydrodynamic equations studied

by Spohn [99], where the coupling with the heat mode has been neglected, is a first analytic

attempt to tackle the problem of tagged-particle diffusion in anharmonic chains. The idea behind

the linearization was that the effect of the nonlinearity of the interaction between neighbouring

particles may be modeled by an internal heat bath acting on a linear chain. This is done by

adding momentum conserving noise and damping, which satisfy Fluctuation-dissipation relation

among them thereby ensuring equilibriation, to a harmonic chain. This is different from the

harmonization technique of [98], where one approximates an anharmonic chain already having

noise and dissipation terms. The only fitting parameters of our model are the effective spring

constant keff and the effective damping constant γ, of which keff is fixed from Spohn’s work,

leaving only γ as the free fitting parameter. We see that it provides a good description of tagged-

particle diffusion in the symmetric FPU chain. We also studied the asymmetric FPU chain,

where, though the behaviour of the tagged particle is mostly the same, we find less quantitative

agreement with the effective model. This may be indicative of the importance of heat mode

that has been neglected in the model. The mismatch is seen to increase further for the LJ

chains, especially in the hard-particle like limit. This gives further reason to believe that including

coupling of heat mode is necessary. Importance of the heat mode is further appreciated by noting

the fact that the mode-coupling result of van-Beijeren presented in Chapter 2 was calculated

after inclusion of the heat mode. Therefore further study on tagged-particle diffusion should

investigate the full nonlinear fluctuating hydrodynamic equation, incorporating the coupling of

sound modes and heat modes and see if the power laws and rising oscillations are obtained.



5
Some special cases

5.1 Introduction

In previous chapters we studied tagged-particle diffusion in various 1-dimensional Hamiltonian

systems. We found that the tagged particle shows generic normal-diffusion in all the systems

studied, even if the detailed correlation functions are different for different systems. In this chapter

we study some more cases of those Hamiltonian systems, with the aim of further exploring the

robustness of this normal-diffusion.

In previous chapters we saw that the normal-diffusion persists till the boundary effect shows up

and is independent of the boundary conditions before that. In those studies we exclusively con-

centrated on the reflecting/fixed boundary conditions for studying the long time boundary effect

and observed sound speed dependent oscillations in the tagged-particle correlation functions. In

Sec. 5.2 we study in some detail, the effect periodic boundary condition has on the long time
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behaviour of the tagged-particle correlation functions. We concentrate on the hard particle gas

and the harmonic chain and see some expected and also some surprising results.

In Chapter 2 we studied the equal and alternate mass cases of the hard particle gas. In Sec. 5.3

we study the random mass case of the hard particle gas and the mass ratio dependence of the

alternate mass hard particle gas. In the subsequent section we study the case where the tagged

particle is much heavier than rest of the particles. This problem has some interesting features,

both at short and at long times. However, in this thesis we will concentrate on the short time

behaviour. In the short time it has been analytically tackled for the hard particle gas ([101])

and the harmonic chain ([102, 103]). Here we present molecular dynamics simulation results

demonstrating those findings. In particular, we re-obtain the Langevin exponential decay of the

velocity auto-correlation function for the tagged particle, which is characteristic of a Brownian

particle.

One interesting thing we saw in this thesis is the absence of the famous single-file diffusion

scaling of the tagged particle mean-squared displacement (〈∆x2(t)〉 ∼
√
t), observed in various

one-dimensional stochastic systems, in any of the one-dimensional Hamiltonian systems studied.

Since ultimately stochastic models are supposed to be coarse grained descriptions of deterministic

systems, a fundamental important question that remains is whether one can obtain this scaling,

in some way, in these deterministic systems. We address this question in Sec. 5.5, by studying a

particular configuration of the hard particle gas which may be expected to show the scaling.

5.2 Periodic Vs reflecting boundary conditions : Surprises

of the zero mode

In this section we study the effect of implementing periodic boundary condition on the long time

behaviour of the tagged particle, first for the hard particle gas and then for the harmonic chain.

For the hard particle gas we present results from event driven molecular dynamics simulations,

performed as described in Chapter 2. For the harmonic chain we perform velocity-verlet molecular

dynamics simulations (Chapter 3), as well as exact analytic calculations. The periodic boundary

condition is implemented by identifying the (N +1)th particle with the 1st particle in a N particle
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Figure 5.1: Hard particle gas of size N = L = 100 with masses of the alternate particles being
1.5 and 0.5. Here we plot the reflecting boundary case (blue) and the periodic boundary case (red) as
well as the CoM velocity subtracted periodic boundary case (green). In all the cases kBT = 1.

system. That is, the geometry is taken to be like that of a ring.

Even before beginning our analysis we can make some predictions based on our experience

with the reflecting boundary case. In that case we found the period of the long time oscillations,

determined by the sound speed, to be given by 2L/cs. This was the time it takes for the

perturbation generated by the tagged particle fluctuations to propagate to one end, reflect from

there, propagate to the other end, reflect back from there and reach the original position in

original direction. In this case of periodic boundary we expect the period to be L/cs, which is
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Figure 5.2: Harmonic chain of size N = 65 and density ρ = 1, all the particles are of mass 1.
Here also we plot the reflecting boundary case (blue) and the periodic boundary case (red) as well as
the CoM velocity subtracted periodic boundary case (green). In all the cases kBT = 1.

the time it takes for the perturbation to propagate to one end, appear at the other end and reach

the original position in original direction. Also, the trough of the oscillations in the reflecting

boundary case, which appears at L/cs, is caused by the backward propagating wave after being

reflected from one of the ends. Here there are no reflected wave and the troughs would come

only from the backaction of the other particles. Hence the amplitude of the oscillations may be

expected to be considerably smaller. We also expect any non-zero centre of mass velocity (Vcm)

in the initial distribution of velocity to persist for all times, in contrast to the reflecting boundary
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case where it will average out to zero on reflecting from the walls. Such non-zero centre of

mass velocity comes because even though we are choosing the velocities of the particles from a

Boltzmann distribution centred around zero, due to finite number of selections fluctuations will

always be there in Vcm. This non-zero centre of mass velocity is expected to impart an overall

drift to the system and give a t2 crossover for the tagged particle mean squared displacement in

the long time. This will be in contrast to saturation seen in reflecting boundary cases.

We see all these features in the simulation plots of Fig. (5.1) for the alternate mass hard particle

gas and of Fig. (5.2) for the harmonic chain. Here we plot the figures for reflecting and periodic

boundaries as well as for periodic case with centre of mass velocity subtracted from the initial

velocities of the particles in each of the realizations, i.e., a zero momentum ensemble. In these

simulations kBT is taken to be 1. Apart from the expected behaviour discussed above we see

some surprising results as well. The tagged particle dynamics for the zero momentum ensemble

doesn’t remain diffusive in the short time. In fact the diffusion constant seems to decrease linearly

with time. Such difference in the short time diffusive behaviour between a regular and a zero

momentum ensemble can also be seen in simulations of particles interacting through square-

shoulder potential [92] and also in study of heat conduction of hard particle gas [100]. Below

we investigate these features analytically for a harmonic chain with periodic boundary conditions.

Note that even though the equal mass hard particle gas does not support sound waves, it will

still show some of the general features of periodic boundary conditions.

We consider a harmonic chain of N particles labeled l = 1, . . . , N in thermal equilibrium at

temperature T , similar to the one studied in Chapter 3. The particles of equal masses m are

connected by springs with stiffness constant k. Let {q1, . . . , qN} denote the displacements of the

particles about their equilibrium positions. The equilibrium positions are assumed to be separated

by a lattice spacing a so that the mass density is ρ = m/a. The Hamiltonian of the system is

H =
N∑
l=1

m

2
q̇2
l +

N+1∑
l=1

k

2
(ql − ql−1)2 , (5.1)

with corresponding equation of motion given as

mq̈l = −k(2ql − ql+1 − ql−1), ∀ l. (5.2)

However, in contrast to fixed boundary case studied in Chapter 3, here we consider qN+1 = q1.
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We now transform to normal mode coordinates

ql(t) =
∑
p

ap(t)φp(l) . (5.3)

The normal modes for periodic boundary conditions are given by

φp(l) =

[
1

mN

]1/2

exp(ilpa) , (5.4)

with p = 2nπ
Na

, n = 0, . . . , N − 1. Normal mode transformation brings the Hamiltonian to the

form

H =
∑
p

ȧ2
p

2
+
∑
p

ω2
pa

2
p

2
, (5.5)

with ω2
p = 2k/m(1 − cos pa). The normal mode equations of motion are äp = −ω2

pap. These

equations are easily solved and lead to the following expression:

ql(t) =
∑
p 6=0

φp(l)

[
ap(0) cos(ωpt) +

sin(ωpt)

ωp
ȧp(0)

]
+ φ0(l) [ȧ0(0)t+ a0(0)] . (5.6)

Defining ∆ql(t) = ql(t)− ql(0),

∆ql(t) =
∑
p 6=0

φp(l)

[
ap(0)(cos(ωpt)− 1) +

sin(ωpt)

ωp
ȧp(0)

]
+ φ0(l) [ȧ0(0)t] . (5.7)

Since the chain is in thermal equilibrium at temperature T, 〈ȧ2
p(0)〉 = ω2

p〈a2
p(0)〉 = kBT and

〈ȧp(0)ap(0)〉 = 0.〈
∆q2

l (t)
〉

= 4kBT
∑
p6=0

φ2
p(l)

sin2(ωpt/2)

ω2
p

+ kBT φ2
0(l) t2 . (5.8)

For the middle tagged particle, we have

〈[∆q(t)]2〉 =
8kBT

mN

∑
n=1,...,N−1

2

sin2(ωpt/2)

ω2
p

+
kBT

mN
t2 . (5.9)

The CoM velocity can be obtained as,

Vcm =
1

N

∑
l=1...N

q̇l(0) =
1

N

∑
l=1...N

[∑
p 6=0

φp(l) ȧp(0) + φ0(l)ȧ0(0)

]
=

ȧ0(0)√
mN

⇒ 〈V 2
cm〉 =

kBT

mN
. (5.10)
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Thus, we see that the zeroeth mode contributes for the centre of mass velocity and that the

mean squared displacement of the tagged particle can be written as

〈[∆q(t)]2〉 =
8kBT

mN

∑
n=1,...,N−1

2

sin2(ωpt/2)

ω2
p

+ 〈V 2
cm〉 t2. (5.11)

The correlations 〈∆q(t)v(0)〉 and 〈v(t)v(0)〉 can be found by differentiating this expression, as

in Eqs.(1.10). Evaluating the above equation numerically, we see that plotting just the first term

produces the curve corresponding to centre of mass velocity subtracted periodic boundary case

(green), while plotting the complete expression produces the curve corresponding to the periodic

boundary case (red) of Fig. (5.2). Notice that in the limit N →∞, Eq. (5.11) goes to Eq. (3.6);

the 1/N term in this centre of mass velocity makes it go to zero as N → ∞. However, for

a general N , both the first term, which corresponds to the mean squared displacement of the

tagged particle in the zero momentum ensemble, and the second centre of mass velocity term

remains. This is interesting because this not only shows that the expected and observed long

time diffusive to ballistic crossover is caused by the centre of mass velocity (zero mode) but also

that it is important for the short time normal diffusion. It is also surprising because it implies that

the tagged particle’s dynamics in the zero momentum ensemble depends on the system size even

at short times, which is contrary to the other two cases where the tagged particle correlations

are independent of the system size till boundary effect is seen.

5.3 Special cases of the hard particle gas

In Chapter 2 we studied the equal and alternate mass cases of the hard particle gas exclusively. To

check for the robustness of our results as a function of mass configurations, here we study some

more cases. In particular, we study the random mass case and also the mass ratio dependence

of the alternate mass gas, with emphasis on mass ratio → 1.

5.3.1 Random mass hard particle gas

We simulate a gas of hard point particles with random distribution of masses. Each particle is

assigned a mass from a uniform distribution between 0.5 and 1.5. We look at tagged-particle
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Figure 5.3: Various correlation functions (in the short-time regime) for random mass hard particle
gas with N = 101 (blue) and N = 201 (red) particles and density ρ = 1. The mass of the middle
particle is always 0.5 and the results are an average over 32 different random mass realizations. In all
the cases kBT = 1 and reflecting boundary conditions are used.

correlations of the central particle whose mass is fixed at 0.5. The correlations fluctuate between

different mass realizations and we take an average over 32 realizations. The results are plotted

in Fig. (5.3) where we see the same qualitative features as for the alternate mass case. Thus we

conclude that the random mass hard particle gas shows normal-diffusion for the tagged particle.
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5.3.2 Mass ratio dependence of the alternate mass hard particle gas

0.1

0.2

0.3

0.4

0.5

<
∆

x
(t

)v
(0

)>

1.0 & 1.0
1.01 & 0.99
1.02 & 0.98
1.05 & 0.95
1.5 & 0.5

0.1 1 10
t

0.0

0.0

0.0

0.0

0.0

0.1

1.0

|<
v
(0

)v
(t

)>
|

1.0 & 1.0
1.01 & 0.99
1.02 & 0.98
1.05 & 0.95
1.5 & 0.5

Figure 5.4: Mass ratio dependence (in the short-time regime) in alternate mass hard particle gas.
The figure is for small mass ratios in the gas of size N=L=200. In all the cases kBT = 1 and periodic
boundary conditions are used.

Next, we perform simulations for various mass ratios of the alternate masses in the hard particle

gas. In particular, we are interested in the transition from 1/t3 → 1/t7/5 as the mass ratio is

increased from 1. It was demonstrated in [81] that any mass ratio 6= 1 is ergodic, in the sense

that, starting with an arbitrary distribution for the velocities, it reaches a Maxwellian distribution.

However they could not study the transition due to limited statistics [82]. In Fig. (5.4) we

plot the results for various mass ratios and observe the transition. Note that even though the

transition seems gradual, we expect to see a ∼ 1/t7/5 decay in the long time regime, for any
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periodic boundary conditions are used.

mass ratio 6= 1. This expectation is borne out in Fig. (5.5) where we see plots of three different

mass ratios converging to ∼ 1/t7/5 in the long time.

5.4 Dynamics of a heavy particle in a 1-dimensional gas of

light equal mass particles

The problem of one heavy hard particle in the middle of a large number of lighter hard particles

of equal masses, separating the system into two halves, is a long studied problem and has been

studied extensively in 3−, 2− and 1−dimensions [104–120]. It goes by the name of Rayleigh

piston or the adiabatic piston problem and has evoked lots of interests and controversies.

Another interesting feature of this system is that, in equilibrium, the velocity of the heavy

tagged particle has been shown to follow an Ornstein-Uhlenbeck process at short times [101],
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m = 1, as compared to the equal mass hard particle gas (blue). Here γ = 3.19 (see main text).
N = L = 400, kBT = 1 and periodic boundary conditions are used.

i.e., the tagged particle dynamics at short times is not only normal-diffusive, but its velocity

auto-correlation function is also exponentially decaying. It was shown that, the diffusion constant

of the tagged particle of mass M in an ideal gas of hard particles of mass m = 1 and density

unity, is bound between (π/32)1/2 < D < (1/2π)1/2 [121, 122], where the upper bound of

(1/2π)1/2 ≈ 0.399 is for M = 1 and the lower bound of (π/32)1/2 ≈ 0.313 is for M = ∞. In

Fig. (5.6) we demonstrate this through simulations, for the hard particle system described above.

Note that in the figure γ = kBT/D ≈ 1/0.313 ≈ 3.19. Also note the convergence of D to the
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as compared to that of the regular equal mass harmonic chain (blue). Here γ = 2 (see main text).
N = L = 129, kBT = 1 and periodic boundary conditions are used.

expected lower bound as M increases.

In fact such a result of velocity of the tagged particle being Ornstein-Uhlenbeck process exists

even for a heavy particle in a harmonic chain of light equal mass particles [102, 103]. It was

shown that, in the heavy mass limit, the velocity auto-correlation function decays as C(t) ≈

exp(−mt/Mt0), where 1/t0 =
√

4K/m. In our simulations, where K = 1 and m = 1, we have

1/t0 = 2 ⇒ γ = m/t0 = 2. We demonstrate this in Fig. (5.7) through simulations on such a

harmonic system. Here also, we see convergence to the expected behaviour as M increases.
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It is interesting, that none of the other Hamiltonian systems we studied till this point in the

thesis showed the Langevin diffusion, but the case of one heavy particle seems to generically

show it. In fact, we have tested this to be true in all other anharmonic chains as well (figures

not shown). This points to the fact that the Langevin description assumes separation of time

scales between the tagged and the fluid molecules, for which their masses need to be significantly

different. This can be seen as the difference between self and Brownian diffusion.

5.5 Widely separated heavy particles : Transition to

single-file diffusion ?

Tagged (M)

lighter mass (m)

Figure 5.8: Schematic diagram of an arrangement where many heavy particles of mass M are
placed in a sea of lighter particles of equal masses m.

In all the Hamiltonian systems studied throughout this thesis we saw that the tagged-particle

diffusion is generically normal-diffusive. This is in striking contrast to the stochastic systems like

interacting Brownian walkers or the symmetric exclusion process, where the tagged particle mean

squared displacement is shown to demonstrate single-file diffusion scaling, i.e. 〈∆x2(t)〉 ∼
√
t.

However, stochastic systems are supposed to be coarse grained description of real classical systems

which are ultimately deterministic. This suggests that we should get the single-file diffusion scaling

even from deterministic systems. In this section we study this problem for the hard particle gas.

In the previous section we saw that the motion of a heavy particle in the middle of a system

of light equal mass particles shows normal-diffusion and its velocity is well approximated by an
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Ornstein-Uhlenbeck process. What happens when we have many such heavy particles in a sea

of smaller particles [Fig. (5.8)]? This should be equivalent to the picture of Brownian walkers

interacting with each other and should give the transition to single-file diffusion. In Fig. (5.9)

we present the simulation results for such a hard particle gas. Note that the heavy particles

are placed far enough so that it reaches the normal-diffusive regime before seeing other heavy

particles. We study various values of the heavy mass and various separations between the heavy

masses but don’t find the single-file diffusion scaling. In fact, as can be seen from the plot of

〈∆x(t)v(0)〉, it has the functional form of the alternate mass hard particle gas; i.e., we still find

normal-diffusion for the tagged particle.

Our failure to see single-file diffusion scaling even in this set-up lends itself to some important

questions. Firstly, what is the requirement for obtaining the sub-diffusive scaling? Is it momentum

conservation, will breaking it lead to SFD scaling? Another important question is whether such

normal-diffusion can be seen in experimental setup. We note that historically there have been

reports of normal-diffusion in 1-dimensional atomistic and zeolitic systems [43, 45]. These findings

were however rejected citing particle crossings, which are difficult to avoid in such systems, to be

the reason. Success of various stochastic models encouraged even experimentalists to concentrate

on demonstrating single-file diffusion scaling. Our work may motivate experimentalists to design

experiments which may observe these findings.

5.6 Discussions and conclusions

In this chapter we studied some special cases of the various Hamiltonian systems that we stud-

ied in the preceding chapters. Our main aim has been to further explore the robustness of

normal-diffusion in classical Hamiltonian systems. We found that it persisted under various mass

configurations. It also persisted for different boundary conditions. However, we also found the

surprising deviation from this normal-diffusion for the zero momentum ensemble, which seems to

be a generic feature. Further, we made the interesting observation about the generic nature of

the Ornstein-Uhlenbeck diffusive behaviour for a heavy particle in the bath of lighter particles.

We also explored the possibility of observing the single-file diffusion scaling in Hamiltonian

system. However, we failed to obtain it even in a system where one would naively expect it to be
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Figure 5.9: Search for Single-File Diffusion : Short time behaviour of a 1-D hard particle gas
with heavy particles of mass M = 3 (blue) and M = 10 (red) respectively, placed among light equal
mass particles of mass m = 1. The heavy particles are placed equidistant, with a spacing of 100 light
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seen. We saw that the tagged particle diffusion still remains normal. The problem of finding the

diffusion constant in this case, however, remains an open theoretical problem. We then suggested

further ways of exploring it, to see the transition from normal to sub-diffusion in these systems,

both through computer and laboratory experiments.

Our studies indicate that one will get normal diffusion as long as the conservation laws (of
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energy, momentum) are maintained, irrespective of whether the dynamics is Hamiltonian or

stochastic. Indeed our results in Sec. 4.2 for the effective harmonic model shows that stochastic

dynamics with the correct conservation laws leads to normal diffusion. On the other hand we know

that for interacting Brownian particles (where momentum is not conserved) one gets subdiffusive

tagged particle motion.



6
Conclusions

The main results of this thesis are summarised in the following table:

Equal mass hard particle gas Short times: Normal-diffusion, D =

a
√
kBT/2mπ, 〈v(0)v(t)〉 ∼ −1/t3 ; Long

times: 〈∆x2(t)〉 saturates, no oscillations.

Alternate mass hard particle gas Short times: Normal-diffusion, D =

kBT/2ρmc, 〈v(0)v(t)〉 ∼ −1/t7/5 ; Long

times: 〈∆x2(t)〉 saturates after oscillations,

starting time and period of oscillations ∼ L/c.

85
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Harmonic chain Short times: Normal-diffusion, D =

kBT/2ρmc, 〈v(0)v(t)〉 ∼ sin(ω0t)/
√
t; Long

times: 〈∆x2(t)〉 keeps oscillating, starting

time and period of oscillations ∼ L/c.

Fermi-Pasta-Ulam chain Short times: Normal-diffusion,

D = kBT/2ρmc, 〈v(0)v(t)〉 ∼

sin(2ct/a) exp(−γt/m); Long times:

〈∆x2(t)〉 shows damped oscillations, starting

time and period of oscillations ∼ L/c.

Lennard-Jones chain Short times: Normal-diffusion,

D = kBT/2ρmc, 〈v(0)v(t)〉 ∼

sin(2ct/a) exp(−γt/m); Long times:

〈∆x2(t)〉 shows damped oscillations, starting

time and period of oscillations ∼ L/c.

Heavy tagged particle in hard particle gas Short times: Normal-diffusion, (π/32)1/2 <

D < (1/2π)1/2 , Langevin decay of

〈v(0)v(t)〉 ∼ exp(−γt/M).

Heavy tagged particle in harmonic chain Short times: Normal-diffusion, D =

kBT/γ, Langevin decay of 〈v(0)v(t)〉 ∼

exp(−γt/M).

Widely separated heavy hard particles Short times: Normal-diffusion, D =

kBT/2ρmc ?, 〈v(0)v(t)〉 ∼ −1/t7/5.
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