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The separation of the faint cosmological background signal from bright astrophysical foregrounds
remains one of the most daunting challenges of mapping the high-redshift intergalactic medium with
the redshifted 21 cm line of neutral hydrogen. Advances in mapping and modeling of diffuse and point
source foregrounds have improved subtraction accuracy, but no subtraction scheme is perfect.
Precisely quantifying the errors and error correlations due to missubtracted foregrounds allows for
both the rigorous analysis of the 21 cm power spectrum and for the maximal isolation of the “EoR
window” from foreground contamination. We present a method to infer the covariance of foreground
residuals from the data itself in contrast to previous attempts at a priori modeling. We demonstrate our
method by setting limits on the power spectrum using a 3 h integration from the 128-tile Murchison
Widefield Array. Observing between 167 and 198 MHz, we find at 95% confidence a best limit of
Δ2ðkÞ < 3.7 × 104 mK2 at comoving scale k ¼ 0.18 hMpc−1 and at z ¼ 6.8, consistent with existing
limits.
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I. INTRODUCTION

Tomographic mapping of neutral hydrogen using its
21 cm hyperfine transition has the potential to directly
probe the density, temperature, and ionization of the
intergalactic medium (IGM), from redshift 50 (and possibly
earlier) through the end of reionization at z ∼ 6. This
unprecedented view of the so-called “cosmic dawn” can
tightly constrain models of the first stars and galaxies [1–4]
and eventually yield an order of magnitude more precise
test of the standard cosmological model ΛCDM than
current probes [5].
Over the past few years, first generation instruments have

made considerable progress toward the detection of the
power spectrum of the 21 cm emission during the epoch of
reionization (EoR). Telescopes such as the Low Frequency
Array [6], the Donald C. Backer Precision Array for
Probing the Epoch of Reionization (PAPER [7]), the
Giant Metrewave Radio Telescope (GMRT [8]), and the
Murchison Widefield Array (MWA [9–11]) are now oper-
ating, and have begun to set limits on the power spectrum.
GMRT set some of the earliest limits [8], and both PAPER
[12] and the MWA [13] have presented upper limits across
multiple redshifts using small prototype arrays. PAPER
has translated its results into a constraint on the heating of
the IGM by the first generation of x-ray binaries and
miniquasars [14] and has placed the tightest constraints so
far on the power spectrum [15] and the thermal history of
the IGM [16].
Despite recent advances, considerable analysis challenges

remain. Extracting the subtle cosmological signal from the
noise is expected to require thousand hour observations
across a range of redshifts [17–22]. Even more daunting is
the fact that the 21 cm signal is probably at least 4 orders of
magnitude dimmer than the astrophysical foregrounds—due
to synchrotron radiation both from our Galaxy and from
other galaxies [23–28].
Recently, simulations and analytical calculations have

established the existence of a region in cylindrical Fourier
space—in which three-dimensional (3D) Fourier modes ~k
are binned into k∥ modes along the line of sight and k⊥
modes perpendicular to it—called the “EoR window”
that should be fairly free of foreground contamination
[22,29–36]. Observations of the EoR window confirm that
it is largely foreground-free [13,26] up to the sensitivity
limits of current experiments. The boundary of the EoR
window is determined by the volume and resolution of
the observation, the intrinsic spectral structure of the
foregrounds, and the so-called “wedge.”
Physically, the wedge arises from the frequency depend-

ence of the point spread function (PSF) of any interfer-
ometer, which can create spectral structure from spectrally
smooth foregrounds in our 3D maps (see [35] for a rigorous
derivation). Fortunately, in k∥ − k⊥ space, instrumental
chromaticity from flat-spectrum sources is restricted to
the region below

k∥ ¼ θ0
DMðzÞEðzÞ
DHð1þ zÞ k⊥; ð1Þ

where DH ≡ c=H0, EðzÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

p
, and

DmðzÞ≡
R
z
0 dz

0=Eðz0Þ with cosmological parameters from
[37]. The size of the region is determined by θ0, the angle from
zenith beyondwhich foregrounds do not significantly contrib-
ute.Whilemost of the foreground emissionweobserve should
appear inside the main lobe of the primary beam, foreground
contaminationfromsources in thesidelobesarealsosignificant
compared to the signal [38,39]. A conservative choice of θ0 is
therefore π=2, which reflects the fact that the maximum
possible delay a baseline can measure corresponds to a source
at the horizon [30]. Still, this foreground isolation is not
foolproof and can be easily corrupted by miscalibration and
imperfect data reduction. Further, slowly varying spectral
modes just outside the wedge are also affected when the
foreground residuals have spectral structure beyond that
imprinted by the chromaticity of the interferometer.
To confidently detect the 21 cm EoR power spectrum, we

need rigorous statistical techniques that incorporate models
of the cosmological signal, the foregrounds, the instrument,
the instrumental noise, and the exact mapmaking pro-
cedure. With this information, one may use estimators that
preserve as much cosmological information as possible and
thoroughly propagate errors due to noise and foregrounds
through the analysis pipeline.
The development of such statistical techniques has pro-

gressed rapidly over the past few years. The quadratic
estimator formalism was adapted [40] from previous work
on the cosmic microwave background [41] and galaxy
surveys [42]. It was accelerated to meet the data volume
challenges of 21 cm tomography [43] and refined to over-
come some of the difficulties of working with real data [13].
Further, recent work has shown how to rigorously incorpo-
rate the interferometric effects that create the wedge
[35,36,44], though they rely on precision instrument model-
ing, including exact per-frequency and per-antenna primary
beams and complex gains. A similar technique designed for
drift-scanning telescopes using spherical harmonic modes
was developed in [45,46], which also demonstrated the need
for a precise understanding of one’s instrument.
However, at this early stage in the development of 21 cm

cosmology, precision instrument characterization remains
an active area of research [47–50]. We thus pursue a more
cautious approach to foreground modeling that reflects our
incomplete knowledge of the instrument by modeling the
residual foreground covariance from the data itself. As we
will show, this mitigates systematics such as calibration
errors thatwould otherwise impart spectral structure onto the
foregrounds, corrupting the EoR window. While not a fully
Bayesian approach like those of [51] and [52], our technique
discovers both the statistics of the foregrounds and the power
spectrum from the data. Our foreground models are subject
to certain prior assumptions but are allowed to be data
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motivated in a restricted space. However, by working in the
context of the quadratic estimator formalism, we can benefit
from the computational speedups of [43]. This work is
meant to build on those techniques and make them more
easily applied to real and imperfect data.
This paper is organized into two main parts. In Sec. II we

discuss the problem of covariance modeling in the context
of power spectrum estimation and present a method for the
empirical estimation of that foreground model, using MWA
data to illustrate the procedure. Then, in Sec. III, we explain
how these data were taken and reduced into maps and
present the results of our power spectrum estimation
procedure on a few hours of MWA observation, including
limits on the 21 cm power spectrum.

II. EMPIRICAL COVARIANCE MODELING

Before presenting our method of empirically modeling
the statistics of residual foregrounds in our maps, we need
to review the importance of these covariances to power
spectrum estimation. We begin in Sec. II A with a brief
review of the quadratic estimator formalism for optimal
power spectrum estimation and rigorous error quantifica-
tion. We then discuss in Sec. II B the problem of covariance
modeling in greater detail, highlighting exactly which
unknowns we are trying to model with the data. Next
we present in Sec. II C our empirical method of estimating
the covariance of foreground residuals, illustrated with an
application to MWA data. Lastly, we review in Sec. II D the
assumptions and caveats that we make or inherit from
previous power spectrum estimation work.

A. Quadratic power spectrum estimator review

The fundamental goal of power spectrum estimation is to
reduce the volume of data by exploiting statistical sym-
metries while retaining as much information as possible
about the cosmological power spectrum [41]. We seek to
estimate a set of band powersp using the approximation that

PðkÞ ≈
X

α

pαχαðkÞ; ð2Þ

where PðkÞ is the power spectrum as a function of wave
vectork and χα is an indicator function that equals 1wherever
we are approximating PðkÞ by pα and vanishes elsewhere.
Following [13,40,43], we estimate power spectra from a

“data cube”—a set of sky maps of brightness temperature at
many closely spaced frequencies—which we represent as a
single vector x̂ whose index iterates over both position and
frequency. From x̂, we estimate each band power as

p̂α ¼
1

2
Mαβðx̂1 − μÞTC−1C;βC−1ðx̂2 − μÞ − bα: ð3Þ

Here μ ¼ hx̂i, the ensemble average of our map over many
different realizations of the observation, and C is the
covariance of our map,

C ¼ hx̂x̂Ti − hx̂ihx̂iT: ð4Þ
C;β is a matrix that encodes the response of the covariance to
changes in the true, underlying band powers; roughly
speaking, it performs the Fourier transforming, squaring,
and binning steps one normally associates with computing
power spectra.1 Additionally, M is an invertible normali-
zation matrix and bα is the power spectrum bias from
nonsignal contaminants in x̂. In this work, we follow [13]
and choose a form ofM such that Σ≡ Covðp̂Þ is diagonal,
decorrelating errors in the power spectrumand thus reducing
foreground leakage into the EoR window. In order to
calculate M and Σ quickly, we use the fast method of
[43] which uses fast Fourier transforms and Monte Carlo
simulations to approximate these matrices.
Finally, temporally interleaving the input data into two

cubes x̂1 and x̂2 with the same sky signal but independent
noise avoids a noise contribution to the bias bα as in [13].
Again following [13], we abstain from subtracting a fore-
ground residual bias in order to avoid any signal loss (as
discussed in Sec. II C 3).

B. What does our covariance model represent?

Our brightness temperature data cubes are made up of
contributions from three statistically independent sources:
the cosmological signal, x̂S; the astrophysical foregrounds,
x̂FG; and the instrumental noise x̂N . It follows that the
covariance matrix is equal to the sum of their separate
covariances:

C ¼ CS þ CFG þCN: ð5Þ
Hidden in the statistical description of the different

contributions to our measurement is an important subtlety.
Each of these components is taken to be a particular
instantiation of a random process, described by a mean
and covariance. In the case of the cosmological signal, it is
the underlying statistics—the mean and covariance—
which encode information about the cosmology and
astrophysics. However, we can only learn about those
statistics by assuming statistical isotropy and homo-
geneity and by assuming that spatial averages can stand
in for ensemble averages in large volumes. In the case of
the instrumental noise, we usually think of the particular
instantiation of the noise that we see as the result of a
random trial.
The foregrounds are different. There is only one set of

foregrounds, and they are not random. If we knew exactly
how the foregrounds appear in our observations, we would
subtract them from our maps and then ignore them in this
analysis. We know that we do not know the foregrounds
exactly, and so we choose to model them with our best
guess, μFG. If we define the cosmological signal to consist

1For a derivation of an explicit form of C;β, see [40] or [43].

EMPIRICAL COVARIANCE MODELING FOR 21 CM POWER … PHYSICAL REVIEW D 91, 123011 (2015)

123011-3



only of fluctuations from the brightness temperature of the
global 21 cm signal, then the signal and the noise both have
μS ¼ μN ¼ 0. Therefore, we start our power spectrum
estimation using Eq. (3) by subtracting off our best guess
as to the foreground contamination in our map. But how
wrong are we?
The short answer is that we do not really know that

either. But, if we want to take advantage of the quadratic
estimator formalism to give the highest weight to the modes
we are most confident in, then we must model the statistics
of our foreground residuals. If we assume that our error is
drawn from some correlated Gaussian distribution, then we
should use that foreground uncertainty covariance as the
proper CFG in Eq. (3).
So what do we know about the residual foregrounds in

our maps? In theory, our dirty maps are related to the true
sky by a set of point spread functions that depend on both
position and frequency [44]. This is the result of both the
way our interferometer turns the sky into measured
visibilities and the way we make maps to turn those
visibilities into x̂. In other words, there exists some matrix
of PSFs, P such that

hx̂i ¼ Pxtrue: ð6Þ

The spectral structure in our maps that creates the wedge
feature in the power spectrum is a result of P.
We can describe our uncertainty about the true sky—

about the positions, fluxes, and spectral indices of both
diffuse foregrounds and points sources—with a covariance
matrix CFG;true [40,43], so that

CFG ¼ PCFG;truePT: ð7Þ

This equation presents us with two ways of modeling the
foregrounds. If we feel that we know the relationship
between our dirty maps and the true sky precisely, then we
can propagate our uncertainty about a relatively small
number of foreground parameters, as discussed by [40]
and [43], through the P matrix to get CFG. This technique,
suggested by [44], relies on precise knowledge of P. Of
course, the relationship between the true sky and our
visibility data depends both on the design of our instrument
and on its calibration. If our calibration is very good—if we
really understand our antenna gains and phases, our
primary beams, and our bandpasses—then we can
accurately model P.
If we are worried about systematics (and at this early

stage of 21 cm tomography with low frequency radio
interferometers, we certainly are), then we need a comple-
mentary approach to modeling CFG directly, one that we
can use both for power spectrum estimation and for
comparison to the results of a more theoretically motivated
technique. This is the main goal of this work.

C. Empirical covariance modeling technique

The idea of using empirically motivated covariance
matrices in the quadratic estimator formalism has some
history in the field. Previous MWA power spectrum
analysis [13] used the difference between time-interleaved
data cubes to estimate the overall level of noise, empirically
calibrating Tsys, the system temperature of the elements.
PAPER’s power spectrum analysis relies on using observed
covariances to suppress systematic errors [14] and on boot-
strapped error bars [12,14]. A similar technique was
developed contemporaneously with this work and was
used by [15] to estimate covariances.
CFG has far more elements than we have measured

voxels—our cubes have about 2 × 105 voxels, meaning that
CFG has up to 2 × 1010 unique elements. Therefore, any
estimate of CFG from the data needs to make some
assumptions about the structure of the covariance. Since
foregrounds have intrinsically smooth spectra, and since
one generally attempts to model and subtract smooth
spectrum foregrounds, it follows that foreground residuals
will be highly correlated along the line of sight. After all, if
we are undersubtracting foregrounds at one frequency, we
are probably undersubtracting at nearby frequencies too.
We therefore choose to focus on empirically constructing
the part of CFG that corresponds to the frequency-fre-
quency covariance—the covariance along the line of sight.
If there are nf frequency channels, then that covariance
matrix is only nf × nf elements and is likely dominated by
a relatively small number of modes.
In this section, we will present an approach to solving

this problem in a way that faithfully reflects the complex
spectral structure introduced by an (imperfectly calibrated)
interferometer on the bright astrophysical foregrounds. As
a worked example, we use data from a short observation
with the MWAwhich we will describe in detail in Sec. III.
We begin with a uniformly weighted map of the sky at each
frequency, a model for both point sources and diffuse
emission imaged from simulated visibilities, and a model
for the noise in each uv cell as a function of frequency.
The idea to model CFG empirically was put forward

by [53]. He attempted to model each line of sight as
statistically independent and made no effort to separate
CFG from CN or to reduce the residual noisiness of the
frequency-frequency covariance.
Our approach centers on the idea that the covariance

matrix can be approximated as block diagonal in the uv
basis of Fourier modes perpendicular to the line of sight. In
other words, we are looking to express CFG as

CFG
uu0vv0ff0 ≈ δuu0δvv0Ĉff0 ðk⊥Þ; ð8Þ

where k⊥ is a function of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
. This is the tensor

product of our best guess of the frequency-frequency
covariance Ĉ and the identity in both Fourier coordinates
perpendicular to the line of sight. In this way, we can model
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different frequency-frequency covariances as a function of
juj or equivalently, k⊥, reflecting that fact that the wedge
results from greater leakage of power up from low k∥ as one
goes to higher k⊥. This method also has the advantage that
C becomes efficient to both write down and invert directly,
removing the need for the preconditioned conjugate
gradient algorithm employed by [43].
This approximation is equivalent to the assumption that

the residuals in every line of sight are statistically inde-
pendent of position. This is generally a pretty accurate
assumption as long as the primary beam does not change
very much over the map from which we estimate the power
spectrum. However, because Ĉff0 ðk⊥Þ depends on the
angular scale, we are still modeling correlations that depend
only on the distance between points in the map.
While we might expect that the largest residual voxels

correspond to errors in subtracting the brightest sources, the
voxels in the residual data cube (the map minus the model)
are only weakly correlated with the best-guess model of the
foregrounds (we find a correlation coefficient ρ ¼ 0.116,
which suggests that sources are removed to roughly the
10% level, assuming that undersubtraction dominates). As
we improve our best guess of the model foregrounds
through better deconvolution, we expect ρ to go down,
improving the assumption that foregrounds are block
diagonal in the uv basis. We will now present the technique
we have devised in four steps, employing MWA data as a
method demonstration.

1. Compute sample covariances in uv annuli

We begin our empirical covariance calculation by taking
the residual data cubes, defined as

x̂res ≡ x̂1=2þ x̂2=2 − μ; ð9Þ

and performing a discrete Fourier transform2 at each
frequency independently to get ~xres. This yields nx × ny
sample “lines of sight” (uv cells for all frequencies), as
many as we have pixels in the map. As a first step toward
estimating Ĉ, we use the unbiased sample covariance
estimator from these residual lines of sight. However,
instead of calculating a single frequency-frequency covari-
ance, we want to calculate many different Ĉres matrices to
reflect the evolution of the spectral structure with k⊥ along
the wedge. We therefore break the uv plane into concentric
annuli of equal width and calculate Ĉres

uv for each uv cell as
the sample covariance of the NLOS − 2 lines of sight in that
annulus, excluding the cell considered and its complex
conjugate. Since the covariance is assumed to be block
diagonal, this eliminates a potential bias that comes from

downweighting a uv cell using information about that
cell. Thus,

Ĉres
uv;ff0 ¼

X

other u0 ;v0
in annulus

ð~xresu0v0f − h~xresf iÞð~xresu0v0f0 − h~xresf0 iÞ�
NLOS − 2 − 1

; ð10Þ

where h~xresf i is an average over all u0 and v0 in the annulus.
We expect this procedure to be particularly effective in our
case because the uv coverage of the MWA after rotation
synthesis is relatively symmetric.
As a sense check on these covariances, we plot their

largest 30 eigenvalues in Fig. 1. We see that as juj (and thus
k⊥) increases, the eigenspectra become shallower. At high
k⊥, the effect of the wedge is to leak power to a range of k∥
values. The eigenspectrum of intrinsically smooth fore-
grounds should be declining exponentially [54]. The wedge
softens that decline. These trends are in line with our
expectations and further motivate our strategy of forming
covariance matrices for each annulus independently.
Because we seek only to estimate the foreground portion

of the covariance, the formal rank deficiency of Ĉres
uv is not a

problem.3 All we require is that the largest (and thus more
foreground-dominated) modes be well measured. In this
analysis, we used six concentric annuli to create six
different frequency-frequency foreground covariances.
Using more annuli allows for better modeling of the
evolution of the wedge with k⊥ at the expense of each
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FIG. 1 (color online). The evolution of the wedge with k⊥
motivates us to model foregrounds separately for discrete values
of k⊥. In this plot of the 30 largest eigenvalues of the observed
residual covariance (which should include both noise and fore-
grounds) sampled in six concentric annuli, we see steeper
declines toward a noise floor for the inner annuli than the outer
annuli. This is consistent with the expected effect of the wedge—
higher k⊥ modes should be foreground contaminated at higher k∥.

2For simplicity, we used the unitary discrete Fourier transform
for these calculations and ignore any factors of length or inverse
length that might come into these calculations only to be canceled
out at a later step. 3In fact, the rank of Ĉres

uv is NLOS − 3 if NLOS − 2 ≤ nf .
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estimate being more susceptible to noise and rank
deficiency.

2. Subtract the properly projected noise covariance

The covariances computed from these uv lines of
sight include contributions from the 21 cm signal and
instrumental noise as well as foregrounds. We can safely
ignore the signal covariance for now as we are far from
the regime where sample variance is significant. We
already have a theoretically motivated model for the noise
(based on the uv sampling) that has been empirically
rescaled to the observed noise in the difference of time-
interleaved data (the same basic procedure as in [13]).
We would like an empirical estimate of the residual
foreground covariance alone to use in CFG and thus must
subtract off the part of our measurement we think is due to
noise variance.
To get to ĈFG

uv from Ĉres
uv , we subtract our best guess of the

portion of Ĉres
uv that is due to noise, which we approximate

by averaging the noise model variances in all the other uv
cells in the annulus at that given frequency, yielding

ĈN
uv;ff0 ¼

1

NLOS

X

other u0 ;v0
in annulus

δuu0δvv0δff0CN
uu0vv0ff0 : ð11Þ

Note, however, that ĈN
uv is full rank while Ĉres

uv is typically
rank deficient. Thus a naive subtraction would oversubtract
the noise variance in the part of the subspace of ĈN

uv where

Ĉres
uv is identically zero. Instead, the proper procedure is to

find the projection matricesΠuv that discard all eigenmodes
outside the subspace where Ĉres

uv is full rank. Each should
have eigenvalues equal to zero or one only and have the
property that

ΠuvĈ
res
uvΠT

uv ¼ Ĉres
uv : ð12Þ

Only after projecting out the part of ĈN
uv inside the

unsampled subspace can we self-consistently subtract our
best guess of the noise contribution to the subspace in
which we seek to estimate foregrounds. In other words, we
estimate ĈFG

uv as

ĈFG
uv ¼ Ĉres

uv − ΠuvĈ
N
uvΠT

uv: ð13Þ
We demonstrate the effectiveness of this technique in

Fig. 2 by plotting the diagonal elements of the Fourier
transform of Ĉres

uv and ĈFG
uv along the line of sight.

Subtracting the noise covariance indeed eliminates the
majority of the power in the noise dominated modes at
high k∥; thus we expect it also to fare well in the transition
region near the edge of the wedge where foreground and
noise contributions are comparable.

3. Perform a k∥ filter on the covariance

Despite the relatively clean separation of foreground and
noise eigenvalues, inspection of some of the foreground-
dominated modes in the top panel of Fig. 3 reveals residual

k
||
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V
ar

ia
nc

e 
(K

2
)

10-4

10-2

100

102

104
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Observed Noise Covariance
Noise Model Subtracted Foreground Covariance
Absolute Value of Negative Entries in the Above Matrix

FIG. 2 (color online). Examining the diagonal elements of the observed residual and inferred foreground covariance matrices in
Fourier space reveals the effectiveness of subtracting model for the noise covariance. In red, we plot the observed residual covariance,
which contains both foregrounds and noise. As a function of k∥, the two separate relatively cleanly—there is a steeply declining
foreground portion on the left followed by a relatively flat noise floor on the right. The theory that the right-hand portion is dominated by
noise is borne out by the fact that it so closely matches the observed noise covariance, inferred lines of sight of x1 − x2, which should
have only noise and no sky signal at all. The regions where they differ significantly, for example at k∥ ∼ 0.45 hMpc−1, are attributable to
systematic effects like the MWA’s coarse band structure that have not been perfectly calibrated out. For the example covariances shown
here (which correspond to a mode in the annulus at k⊥ ≈ 0.010 hMpc−1), we can see that subtracting a properly projected noise
covariance removes most of the power from the noise-dominated region, leaving only residual noise that appears both as negative power
(open blue circle) and as positive power (closed blue circles) at considerably lower magnitude.
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noise. Using a foreground covariance constructed from
these noisy foreground eigenmodes to downweight the data
during power spectrum estimation would errantly down-
weight some high k∥ modes in addition to the low k∥
foreground-dominated modes. To avoid this double count-
ing of the noise, we allow the foreground covariance to
include only certain k∥ modes by filtering ĈFG

uv in Fourier
space to get ĈFG;filtered

uv . Put another way, we are imposing a
prior on which Fourier modes we think have foreground
power in them. The resulting noise filtered eigenmodes are
shown in the bottom panel of Fig. 3.
In practice, implementing this filter is subtle. We

interpolate ĈFG over the flagged frequency channels using
a cubic spline, then symmetrically pad the covariance

matrix, forcing its boundary condition to be periodic.
We then Fourier transform, filter, inverse Fourier transform,
remove the padding, and then rezero the flagged channels.
Selecting a filter to use is also a subtle choice. We first

keep modes inside the horizon wedge with an added buffer.
For each annulus, we calculate a mean value of k⊥, and then
use Eq. (1) to calculate the k∥ value of the horizon wedge,
using θ0 ¼ π=2. Although the literature suggests a 0.1 to
0.15 hMpc−1 buffer for “suprahorizon emission” due to
some combination of intrinsic spectral structure of fore-
grounds, primary beam chromaticity, and finite bandwidth
[26,55], we pick a conservative 0.5 hMpc−1. Then we
examine the diagonal of ĈFG (Fig. 2) to identify additional
foreground modes, this time in the EoR window, due to
imperfect bandpass calibration appearing as spikes. One
example is the peak at k∥ ∼ 0.45 hMpc−1. Such modes
contribute errant power to the EoR window at constant k∥.
Since these modes result from the convolution of the
foregrounds with our instrument, they also should be
modeled in CFG in order to minimize their leakage into
the rest of the EoR window.
One might be concerned that cosmological signal and

foregrounds theoretically both appear in the estimate of
CFG that we have constructed, especially with our
conservative 0.5 hMpc−1 buffer that allows foregrounds
to be discovered well into the EoR window. For the
purposes of calculating C−1ðx̂ − μÞ in the quadratic esti-
mator in Eq. (3), that is fine since its effect is to partially
relax the assumption that sample variance can be ignored.
However, the calculation of the bias depends on being able
to differentiate signal from contaminants [40,41,43].
The noise contribution to the bias can be eliminated by

cross-correlating maps made from interleaved time steps
[13]. However, we cannot use our inferredCFG to subtract a
foreground bias without signal loss. That said, we can still
set an upper limit on the 21 cm signal. By following the
data and allowing the foreground covariance to have power
inside the EoR window, we are minimizing the leakage of
foregrounds into uncontaminated regions and we are
accurately marking those regions as having high variance.
As calibration and the control of systematic effects
improves, we should be able to isolate foregrounds to
outside the EoR window, impose a more aggressive Fourier
filter on CFG, and make a detection of the 21 cm signal by
employing foreground avoidance.

4. Cut out modes attributable to noise

After suppressing the noisiest modes with our Fourier
filter, we must select a cutoff beyond which the foreground
modes are irrecoverably buried under noise. We do this by
inspecting the eigenspectrum of ĈFG;filtered

uv . The true CFG,
by definition, admits only positive eigenvalues (though
some of them should be vanishingly small).
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FIG. 3 (color online). The foreground covariance we estimate
from our limited data set is still very noisy, and we run the risk of
overfitting the noise in our measurements if we take it at face
value. In the top panel, we plot the eigenvectors corresponding to
the five largest eigenvalues of ĈFG for a mode in the annulus
centered on k⊥ ≈ 0.010 hMpc−1. In the bottom panel, we show
dominant eigenvectors of the Fourier-filtered covariance. As
expected, they resemble the first five Fourier modes. The missing
data every 1.28 MHz are due to channels flagged at the edge of
the coarse bandpass of the MWA’s polyphase filter bank—the
most difficult part of the band to calibrate.

EMPIRICAL COVARIANCE MODELING FOR 21 CM POWER … PHYSICAL REVIEW D 91, 123011 (2015)

123011-7



By limiting the number of eigenvalues and eigenvectors
we ultimately associate with foregrounds, we also limit the
potential for signal loss by allowing a large portion of the
free parameters to get absorbed into the contaminant model
[15,56]. When measuring the power spectrum inside the
EoR window, we can be confident that signal loss is
minimal compared to foreground bias and other errors.
We plot in Fig. 4 the eigenspectra of Ĉres

uv , Ĉ
FG
uv , and

ĈFG;filtered
uv , sorted by absolute value. There are two distinct

regions—the sharply declining foreground-dominated
region and a flatter region with many negative eigenvalues.
We excise eigenvectors whose eigenvalues are smaller in
absolute value than the most negative eigenvalue. This
incurs a slight risk of retaining a few noise dominated
modes, albeit strongly suppressed by our noise variance
subtraction and our Fourier filtering. Finally we are able to
construct the full covariance Ĉ using Eq. (8).

D. Review of assumptions and caveats

Before proceeding to demonstrate the effectiveness of
our empirical covariance modeling method, it is useful to
review and summarize the assumptions made about map-
making and covariance modeling. Some are inherited from
the previous application of quadratic power spectrum

estimation to the MWA [13], while others are necessitated
by our new, more faithful foreground covariance. Relaxing
these assumptions in a computationally efficient manner
remains a challenge we leave for future work.

(i) We adopt the flat sky approximation as in [13,43],
allowing us to use the fast Fourier transform to
quickly compute power spectra. The error incurred
from this approximation on the power spectrum is
expected to be smaller than 1% [13].

(ii) We assume the expectation value of our uniformly
weighted map is the true sky (i.e., hx̂i ¼ xtrue) when
calculating C;β in Eq. (3), again following [13]. In
general hx̂i is related to xtrue by P, the matrix of
point spread functions [44]. Here we effectively
approximate the PSF as position independent.
Relaxing this approximation necessitates the full
mapmaking theory presented in [44] which has yet
to be integrated into a power spectrum estimation
pipeline.

(iii) We approximate the foreground covariance as un-
correlated between different uv cells (and thus block
diagonal). At some level there likely are correlations
in uv, though those along the line of sight are far
stronger. It may be possible to attempt to calculate
these correlations empirically, but it would be very
difficult considering relative strength of line-of-sight
correlations. It may also be possible to use a
nonempirical model, though that has the potential
to make the computational speedups of [43] more
difficult to attain.

(iv) We approximate the frequency-frequency fore-
ground covariance as constant within each annulus,
estimating our covariance for each uv cell only from
other cells in the same annulus. In principle, even if
the foreground residuals were isotropic, there should
be radial evolution within each annulus which we
ignore for this analysis.

(v) The Fourier filter is a nontrivial data analysis choice
balancing risk of noise double counting against that
of insufficiently aggressive foreground down-
weighting.

(vi) In order to detect the 21 cm signal, we assume that
foregrounds can be avoided by working within the
EoR window. Out of fear of losing signal, we make
no effort to subtract a residual foreground bias from
the window. This makes a detection inside the wedge
impossible, and it risks confusing foreground con-
tamination in the window for a signal. Only analysis
of the dependence of the measurement on z, k, k∥,
and k⊥ can distinguish between systematics and the
true signal.

III. RESULTS

We can now demonstrate the statistical techniques we
have motivated and developed in Sec. II on the problem of
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FIG. 4 (color online). The evolution of the eigenvalues of our
estimated foreground covariance matrix for a mode in the annulus
corresponding to k⊥ ≈ 0.010 hMpc−1 at each of the first three
stages of covariance estimation. First we calculate a sample
covariance matrix from the residual data cubes (shown in red).
Next we subtract our best guess as to the part of the diagonal of
that matrix that originates from instrumental noise, leaving the
blue dots (open circles are absolute values of negative eigenval-
ues). Then we filter out modes in Fourier space along the line of
sight that we think should be noise dominated, leaving the black
dots. Finally, we project out the eigenvectors associated with
eigenvalues whose magnitude is smaller than the largest negative
eigenvalue, since those are likely due to residual noise. What
remains is our best guess at the foreground covariance in an
annulus and incorporates as well as possible our prior beliefs
about its structure.
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estimating power spectra from a 3 h observation with the
128-antenna MWA. We begin with a discussion of the
instrument and the observations in Sec. III A. In Sec. III B
we detail the data processing from raw visibilities to
calibrated maps from which we estimate both the fore-
ground residual covariance matrix and the power spectrum.
Finally, in Sec. III we present our results and discuss
lessons learned looking toward a detection of the 21 cm
signal.

A. Observation summary

The 128-antenna Murchison Widefield Array began
deep EoR observations in mid-2013. We describe here
the salient features of the array and refer to [10] for a more
detailed description. The antennas are laid out over a region
of radius 1.5 km in a quasirandom, centrally concentrated
distribution which achieves approximately complete uv
coverage at each frequency over several hours of rotation
synthesis [57]. Each antenna element is a phased array of
16 wideband dipole antennas whose phased sum forms a
discretely steerable 25° beams (full width at half maximum)
at 150 MHz with frequency-dependent, percent level
sidelobes [48]. We repoint the beam to our field center
on a 30 min cadence to correct for earth rotation, effectively
acquiring a series of drift scans over this field.
We observe the MWA “EOR0” deep integration field,

centered at R:A:ðJ2000Þ ¼ 0h0m0s and decl:ðJ200Þ ¼
−30°00000. It features a near-zenith position, a high
Galactic latitude, minimal Galactic emission [58], and an
absence of bright extended sources. This last property
greatly facilitates calibration in comparison to the “EOR2”
field—a field dominated by the slightly resolved radio
galaxy Hydra A at its center—which was used by [59] and
[13]. A nominal 3 h set of EOR0 observations was selected
during the first weeks of observing to use for refining and
comparing data processing, imaging, and power spectra
pipelines [60]. In this work, we use the “high band,” near-
zenith subset of these observations with 30.72 MHz of
bandwidth and center frequency of 182 MHz, recorded on
Aug 23, 2013, between 16:47:28 and 19:56:32 UTC
(22.712 and 1.872 h LST).

B. Calibration and mapmaking summary

Preliminary processing, including radio frequency inter-
ference (RFI) agging followed by time and frequency averag-
ing, was performed with the COTTER package [61] on raw
correlator data. These datawere collected at 40kHz resolution
with an integration time of 0.5 s, and averaged to 80 kHz
resolution with a 2 s integration time to reduce the data
volume. Additionally, 80 kHz at the upper and lower edges of
each of 24 coarse channels (each of width 1.28 MHz) of the
polyphase filter bank is flagged due to known aliasing.
As in [13], we undertake snapshot-based processing in

which each minute-scale integration is calibrated and
imaged independently. Snapshots are combined only at

the last step in forming a Stokes I image cube, allowing us
to properly align and weight them despite different primary
beams due to sky rotation and periodic repointing. While
sources are forward modeled for calibration and foreground
subtraction using the full position dependent PSF (i.e., the
synthesized beam), we continue to approximate it as
position independent (and equal to that of a point source
at the field center) during application of uniform weighting
and computation of the noise covariance.
We use the calibration, foreground modeling, and first

stage image products produced by the Fast Holographic
Deconvolution4 (FHD) pipeline as described by [60]. The
calibration implemented in the FHD package is an adapta-
tion of the fast algorithm presented by [63] with a baseline
cutoff of b > 50λ. In this data reduction, the point source
catalogs discussed below are taken as the sky model for
calibration. Solutions are first obtained per antenna and per
frequency before being constrained to linear phase slopes
and quadratic amplitude functions after correcting for a
median antenna-independent amplitude bandpass. The
foreground model used for subtraction includes models
both of diffuse radio emission [64] and point sources. In
detail, the point source catalog is the union of a deep MWA
point source survey within 20° of the field center [65], the
shallower but wider MWA commissioning point source
survey [66], and the Culgoora catalog [67]. Note that
calibration and foreground subtraction of off-zenith obser-
vations are complicated by Galactic emission picked up by
primary beam sidelobes, and are active topics of inves-
tigation [38,39,68]. During these observations a single
antenna was flagged due to known hardware problems,
and 1–5 more were flagged for any given snapshot due to
poor calibration solutions.
These calibration, foreground modeling, and imaging

steps constitute notable improvements over [13]. In that
work, the presence of the slightly resolved Hydra A in their
EOR2 field likely limited calibration and subtraction
fidelity as only a point source sky model was used. In
contrast, the EOR0 field analyzed here lacks any such
nearby radio sources. Our foreground model contains
∼2500 point sources within the main lobe and several
thousand more in the primary beam sidelobes in addition to
the aforementioned diffuse map. A last improvement in the
imaging is the more frequent interleaving of time steps for
the cross power spectrum, which we performed at the
integration scale (2 s) as opposed to the snapshot scale
(a few minutes). This ensures that both x̂1 and x̂2 have
identical sky responses and thus allows us to accurately
estimate the noise in the array from difference cubes.
Assuming that the system temperature contains both an
instrumental noise temperature and a frequency dependent
sky noise temperature that scales as ν−2.55, the observed

4For a theoretical discussion of the algorithm see [62]. The
code is available at https://github.com/miguelfmorales/FHD.
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residual root-mean-square brightness temperature is con-
sistent with Tsys ranging from 450 K at 167 MHz to 310 K
at 198 MHz, in line with expectations [57].
As discussed in [60] and [69], FHD produces naturally

weighted sky, foreground model, “weights,” and “varian-
ces” cubes, as well as beam-squared cubes. All are saved in
image space using the HEALPix format [70] with
Nside ¼ 1024. Note that these image cubes are crops of
full-sky image cubes to a 16° × 16° square field of view, as
discussed below. The sky, foreground model, and weights
cubes are image space representations of the measured
visibilities, model visibilities, and sampling function,
respectively, all originally gridded in uv space using the
primary beam as the gridding kernel. The variances cube is
similar to the weights cube, except the gridding kernel is the
square of the uv space primary beam. It represents the
proper quadrature summation of independent noise in
different visibilities when they contribute to the same uv
cell, and will ultimately become our diagonal noise
covariance model. The FHD cubes from all ninety-four
112 s snapshots are optimally combined in this
“holographic” frame in which the true sky is weighted
by two factors of the primary beam, as in [13].
We perform a series of steps to convert the image cube

output of FHD into uniformly weighted Stokes I cubes
accompanied by appropriate uv coverage information for
our noise model. We first map these data cubes onto a
rectilinear grid, invoking the flat sky approximation. We do
this by rotating the (RA, Dec) HEALPix coordinates of the
EOR0 field to the north pole (0°, 90°), and then projecting
and gridding onto the xy plane with 0.2° × 0.2° resolution
over a 16° × 16° square field of view. To reduce the data
volume while maintaining cosmological sensitivity, we
coarse grid to approximately 0.5° resolution by Fourier
transforming and cropping these cubes in the uv plane at
each frequency. We form a uniformly weighted Stokes I

cube Iunið~θÞ by first summing the XX and YY data cubes,
resulting in a naturally weighted, holographic Stokes I cube

Inat;hð~θÞ ¼ IXX;hð~θÞ þ IYY;hð~θÞ. Then we divide out the

holographic weights cube Whð~θÞ in uv space, which
applies uniform weighting and removes one image space
factor of the beam, and lastly divide out the second beam

factor Bð~θÞ: Iunið~θÞ ¼ F−1½F Inat;hð~θÞ=FWhð~θÞ�=Bð~θÞ,
where F represents a Fourier transform and Bð~θÞ ¼
½B2

XXð~θÞ þ B2
YYð~θÞ�1=2. Consistent treatment of the varian-

ces cube requires uv space division of two factors of the
weights cube followed by image space division of two
factors of the beam.
Lastly, we frequency average from 80 kHz to 160 kHz,

flagging a single 160 kHz channel the edge of each
1.28 MHz coarse channel due to polyphase filter bank
attenuation and aliasing, which make these channels
difficult to reliably calibrate. Following [13], we also flag
poorly observed uv cells and uv cells whose observation

times vary widely between frequencies. In all cases, we
formally set the variance in flagged channels and uv cells in
CN to infinity and use the pseudoinverse to project out
flagged modes [13].

C. Power spectrum results

We can now present the results of our method applied to
3 h of MWA-128T data. We first study cylindrically
averaged, two-dimensional (2D) power spectra and their
statistics, since they are useful for seeing the effects of
foregrounds and systematic errors on the power spectrum.
We form these power spectra with the full 30.72 MHz
instrument bandwidth to achieve maximal k∥ resolution.
We begin with the 2D power spectrum itself (Fig. 5) in

which several important features can be observed. First, the

FIG. 5 (color online). Our power spectrum clearly exhibits the
typical EoR window structure with orders-of-magnitude suppres-
sion of foregrounds in the EoR window. Here we plot our
estimates for jPðk⊥; k∥Þj for the full instrumental bandwidth,
equivalent to the range z ¼ 6.2 to z ¼ 7.5. Overplotted is the
wedge from Eq. (1) corresponding to the first null in the primary
beam (dash-dotted line), the horizon (dashed line), and the
horizon with a relatively aggressive 0.02 hMpc−1 buffer (solid
curve). In addition to typical foreground structure, we also see the
effect of noise at high and very low k⊥ where baseline coverage is
poor. We also clearly see a line of power at constant
k∥ ≈ 0.45 hMpc−1, attributable to miscalibration of the instru-
ment’s bandpass and cable reflections [69].
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wedge and EoR window are clearly distinguishable, with
foregrounds suppressed by at least 5 orders of magnitude
across most of the EoR window. At high k⊥, the edge of the
wedge is set by the horizon while at low k⊥ the cutoff is less
clear. There appears to be some level of suprahorizon
emission, which was also observed with PAPER in [26] and
further explained by [35]. Consistent with Fig. 1 we see the
strongest foreground residual power at low k⊥, meaning
that there still remains a very large contribution from
diffuse emission from our Galaxy—potentially from side-
lobes of the primary beam affecting the shortest base-
lines [39,68].
We also see evidence for less-than-ideal behavior.

Through we identified spectral structure appearing at k∥ ∼
0.45 hMpc−1 in Fig. 2 and included it in our foreground
residual covariance, that contamination still appears here as
a horizontal line. By including it in the foreground residual
model, we increase the variance we associate with those
modes and we decrease the leakage out of those modes,
isolating the effect to only a few k∥ bins.
While Fig. 5 shows the magnitude of the 2D power

spectrum, Fig. 6 shows its sign using a split color scale,
providing another way to assess foreground contamination
in the EoR window. Because we are taking the cross power
spectrum between two cubes with identical sky signal but
independent noise realizations, the noise dominated regions
should be positive or negative with equal probability. This
is made possible by our use of a power spectrum estimator
normalized such that Σ≡ Covðp̂Þ is a diagonal matrix [43].
This choice limits leakage of foreground residuals from the
wedge into the EoR window [13].
By this metric, the EoR window is observed to be noise

dominated with only two notable exceptions. The first is
the region just outside the wedge at low k⊥ attributable
to suprahorizon emission due to some combination of
intrinsic foreground spectral structure, beam chromaticity,
and finite bandwidth. This suggests our aggressive
0.02 hMpc−1 cut beyond the horizon will leave in some
foreground contamination when we bin to form one-
dimensional (1D) power spectra. As long as we are only
claiming an upper limit on the power spectrum, this is fine.
A detection of foregrounds is also an upper limit on the
cosmological signal. More subtle is the line of positive
power at k∥ ∼ 0.45 hMpc−1, confirming our hypothesis
that the spike observed in Fig. 5 is indeed an instrumental
systematic since it behaves the same way in both time-
interleaved data cubes. There is also a hint of a similar
effect at k∥ ∼ 0.75 hMpc−1, possibly visible in Fig. 2 as
well. We attribute both to bandpass miscalibration due to
cable reflections, complicated at these frequency scales by
the imperfect channelization of the MWA’s two-stage
polyphase filter, as well as slight antenna dependence of
the bandpass due to cable length variation [69].
Additionally, the quadratic estimator formalism relates

our covariance models of residual foregrounds and noise to

the expected variance in each band power [13,40,43],
which we plot in Fig. 7. As we have chosen our power
spectrum normalization M such that Σ≡ Covðp̂Þ is diago-
nal, it is sufficient to plot the diagonal of Σ1=2, the standard
deviation of each band power. The EoR window is seen
clearly here as well. There is high variance at low and high
k⊥ where the uv coverage is poor, and also in the wedge
due to foreground residuals. It is particularly pronounced in
the bottom left corner, which is dominated by residual
diffuse foregrounds.
As our error covariance represents the error due to both

noise and foregrounds we expect to make in an estimate of
the 21 cm signal, it is interesting to examine the “signal to
error ratio” in Fig. 8—the ratio of Fig. 5 to Fig. 7. The ratio

FIG. 6 (color online). By using an estimator of the power
spectrum with uncorrelated errors between bins, we can see that
most of the EoR window is noise dominated in our power
spectum measurement. Here we show the inverse hyperbolic sine
of the power spectum, which behaves linearly near zero and
logarithmically at large magnitudes. Because we are taking a
cross power spectrum between two data cubes with uncorrelated
noise, noise dominated regions are equally likely to have positive
power as negative power. Since we do not attempt to subtract a
foreground bias, foreground contaminated regions show up as
strongly positive. That includes the wedge, the bandpass line at
k∥ ≈ 0.45 hMpc−1 (see Fig. 5), and some of the EoR window at
low k⊥ and relatively low k∥, consistent with the suprahorizon
emission seen in [26].
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is of order unity in noise dominated regions—though it is
slightly lower than what we might naively expect due to our
conservative estimate of Σ [13]. That explains the number
of modes with very small values in Fig. 7. In the wedge and
just above it, however, the missubtracted foreground bias is
clear, appearing as a high significance “detection” of the
foreground wedge in the residual foregrounds. The band-
pass miscalibration line at k∥ ∼ 0.45 hMpc−1 also appears
clearly due to both foreground bias and possibly an
underestimation of the errors. Hedging against this con-
cern, we simply project out this line from our estimator that

bins 2D power spectra into 1D power spectra by setting the
variance of those bins to infinity.
Though useful for the careful evaluation of our tech-

niques and of the instrument, the large bandwidth data
cubes used to make Figs. 5 and 6 encompass long periods
of cosmic time over which the 21 cm power spectrum is
expected to evolve. The cutoff is usually taken to be Δz≲
0.5 [5]. These large data cubes also violate the assumption
in [43] that channels of equal width in frequency corre-
spond to equal comoving distances, justifying the use of the
fast Fourier transform. Therefore, we break the full band-
width into three 10.24 MHz segments before forming
spherically averaged power spectra, and estimate the fore-
ground residual covariance and power spectrum independ-
ently from each. We bin our 2D power spectra into 1D
power spectra using the optimal estimator formalism of
[13]. In our case, since we have chosen M such that Σ is

FIG. 7 (color online). By including both residual foregrounds
and noise inC, our model for the covariance, we can calculate the
expected variance on each band power in p̂, which we show here.
We see more variance at high (and also very low) k⊥ where we
have few baselines. We also see high variance at low k∥ consistent
with foregrounds. We see the strongest foregrounds at low k⊥,
which implies that the residual foregrounds have a very strong
diffuse component that we have much to gain from better diffuse
models to subtract. We also see that foreground-associated
variance extends to higher k∥ at high k⊥, which is exactly the
expected effect from the wedge. Both these observations are
consistent with the structure of the eigenmodes we saw in Fig. 1.
Because we have chosen a normalization of p̂ such that the
Covðp̂Þ is diagonal, this is a complete description of our errors.
Furthermore, it means that the band powers form a mutually
exclusive and collectively exhaustive set of measurements.

FIG. 8 (color online). The foregrounds’ wedge structure is
particularly clear when looking at the ratio of our measured
power spectrum to the modeled variance, shown here. Though the
variance in foreground residual dominated parts of the k⊥-k∥
plane are elevated (see Fig. 7), we still expect regions with signal
to error ratios greater than one. This is largely due to the fact that
we choose not to subtract a foreground bias for fear of signal loss.
This figure shows us most clearly where the foregrounds are
important and, as with Fig. 6, it shows where we can hope to do
better with more integration time and where we need better
calibration and foreground modeling to further integrate down.
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diagonal, this reduces to simple inverse variance weighting
with the variance on modes outside the EoR window or in
the k∥ ∼ 0.45 hMpc−1 line set to infinity.
In Fig. 9 we show the result of that calculation as a

“dimensionless” power spectra Δ2ðkÞ≡ k3PðkÞ=2π2. We
choose our binning such that the window functions
(calculated as in [13] from our covariance model) were
slightly overlapping.
Our results are largely consistent with noise. Since noise

is independent of k∥ and k ≈ k∥ for most modes we
measure, the noise in Δ2ðkÞ scales as k3. We see deviations
from that trend at low k where modes are dominated by
residual foreground emission beyond the horizon wedge
and thus show elevated variance and bias in comparison to
modes at higher k. Since we do not subtract a bias, even
these “detections” are upper limits on the cosmological
signal.
A number of barely significant detections are observed at

higher k. Though we excise bins associated with the k∥ ∼
0.45 hMpc−1 line, the slight detections may be due to
leakage from that line. At higher z, the feature may be due

to reflections from cables of a different length, though some
may be plausibly attributable to noise. Deeper integration is
required to investigate further.
Our best upper limit at 95% confidence is Δ2ðkÞ <

3.7 × 104 mK2 at k ¼ 0.18 hMpc−1 around z ¼ 6.8. Our
absolute lowest limit is about 2 times lower than the best
limit in [13], though the latter was obtained at substantially
higher redshift and lower k, making the two somewhat
incomparable. Our best limit is roughly 3 orders of
magnitude better than the best limit of [13] over the same
redshift range, and the overall noise level (as measured by
the part of the power spectrum that scales as k3) is more
than 2 orders of magnitude smaller. This cannot be
explained by more antenna tiles alone; it is likely that
the noise level was overestimated in [13] due to insuffi-
ciently rapid time interleaving of the data cubes used to
infer the overall noise level.
Although one cannot directly compare limits at different

values of k and z, our limit is similar to the GMRT limit [8],
6.2 × 104 mK2 at k ¼ 0.50 hMpc−1 and z ¼ 8.6 with 40 h
of observation, and remains higher than the best PAPER
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FIG. 9 (color online). Finally, we can set confident limits on the 21 cm power spectrum at three redshifts by splitting our simultaneous
bandwidth into three 10.24 MHz data cubes. The lowest k bins show the strongest “detections,” though they are attributable to
suprahorizon emission [26] that we expect to appear because we only cut out the wedge and a small buffer (0.02 hMpc−1) past it. We
also see marginal “detections” at higher k which are likely due to subtle bandpass calibration effects like cable reflections. The largest
such error, which occurs at bins around k∥ ∼ 0.45 hMpc−1 and can be seen most clearly in Fig. 8, has been flagged and removed from all
three of these plots. Our absolute lowest limit requiresΔ2ðkÞ < 3.7 × 104 mK2 at 95% confidence at comoving scale k ¼ 0.18 hMpc−1
and z ¼ 6.8, which is consistent with published limits [8,12–15]. We also include a simplistic thermal noise calculation (dashed line),
based on our observed system temperature. Though it is not directly comparable to our measurements, since it has different window
functions, it does show that most of our measurements are consistent with thermal noise. For comparison, we also show the theoretical
model of [71] (which predicts that reionization ends before z ¼ 6.4) at the central redshift of each bin. While we are still orders of
magnitude away from the fiducial model, recall that the noise in the power spectrum scales inversely with the integration time, not the
square root.
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limit [15] of 502 mK2 between k ¼ 0.15 hMpc−1 and k ¼
0.50 hMpc−1 and z ¼ 8.4 with 4.5 months of observation.
In Fig. 9 we also plot a theoretical model from [71]

predicting that reionization has ended by the lowest redshift
bin we measure. We remain more than 3 orders of
magnitude (in mK2) from being able to detect that
particular reionization model, naively indicating that
roughly 3000 h of data are required for its detection.
This appears much larger than what previous sensitivity
estimates have predicted for the MWA (e.g. [57]) in the
case of idealized foreground subtraction.
However, much of this variance is due to the residual

foregrounds and systematics in the EoR window identified
by our empirical covariance modeling method, not thermal
noise (see Fig. 7). More integration will not improve those
modes unless it allows for a better understanding of our
instrument, better calibration, and better foreground
models—especially of diffuse emission which might
contaminate the highly sensitive bottom left corner of the
EoR window. Eliminating this apparent “suprahorizon”
emission, seen most clearly as detections in Fig. 8 below
k ≈ 0.2 hMpc−1, is essential to achieving the forecast
sensitivity of the MWA [57]. If we can do so, we may still
be able to detect the EoR with 1000 h or fewer. This
is especially true if we can improve the subtraction of
foregrounds to the point where we can work within the
wedge, which can vastly increase the sensitivity of the
instrument [55,57]. On the other hand, more data may
reveal more systematics lurking beneath the noise which
could further diminish our sensitivity.

IV. SUMMARY AND FUTURE DIRECTIONS

In this work, we developed and demonstrated a method
for empirically deriving the covariance of residual fore-
ground contamination, CFG, in observations designed to
measure the 21 cm cosmological signal. Understanding the
statistics of residual foregrounds allows us to use the
quadratic estimator formalism to quantify the error asso-
ciated with missubtracted foregrounds and their leakage
into the rest of the EoR window. Because of the compli-
cated interaction between the instrument and the fore-
grounds, we know that the residual foregrounds will have
complicated spectral structure, especially if the instrument
is not perfectly calibrated. By deriving our model for CFG

empirically, we could capture those effects faithfully and
thus mitigate the effects of foregrounds in our measurement
(subject to certain caveats which we recounted in Sec. II D).
Our strategy originated from the assumption that the

frequency-frequency covariance, modeled as a function of
juj, is the most important component of the foreground
residual covariance. We therefore used sample covariances
taken in annuli in Fourier space as the starting point of our
covariance model. These models were adjusted to avoid
double counting the noise variance and filtered in Fourier
space to minimize the effect of noise in the empirically

estimated covariances. Put another way, we combined
our prior beliefs about the structure of the residual
foregrounds with their observed statistics in order to build
our models.
We demonstrated this strategy through the power spec-

trum analysis of a 3 h preliminary MWA data set. We saw
the expected wedge structure in both our power spectra and
our variances. We saw that most of the EoR window was
consistent with noise, and we understand why residual
foregrounds and systematics affect the regions that they do.
We were also able to set new MWA limits on the 21 cm
power spectrum from z ¼ 6.2 to 7.5, with an absolute best
95% confidence limit of Δ2ðkÞ < 3.7 × 104 mK2 at k ¼
0.18 hMpc−1 and z ¼ 6.8, consistent with published
limits [12,14].
This work suggests a number of avenues for future

research. Of course, improved calibration and mapmaking
fidelity—especially better maps of diffuse Galactic struc-
ture—will improve power spectrum estimates and allow
deeper integrations without running up against foregrounds
or systematics. Relaxing some of the mapmaking and
power spectrum assumptions discussed in Sec. II D may
further mitigate these effects. A starting point is to integrate
the mapmaking and statistical techniques of [44] with the
fast algorithms of [43]. The present work is based on the
idea that it is simpler to estimate CFG from the data than
from models of the instrument and the foregrounds. But if
we can eliminate systematics to the point where we really
understand P, the relationship between the true sky and our
dirty maps, then perhaps we can refocus our residual
foreground covariance modeling effort on the statistics
of the true sky residuals using the fact that
CFG ¼ PCFG;truePT. Obtaining such a complete under-
standing of the instrument will be challenging, but it
may be the most rigorous way to quantify the errors
introduced by missubtracted foregrounds and thus to
confidently detect the 21 cm power spectrum from the
epoch of reionization.
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