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Abstract:  The Aharon-Vaidman (AV) game exemplifies the advantage of using simple
quantum systems to outperform classical strategies. We present an experimental test of this
quantum advantage by using a three-state quantum system (qutrit) encoded in a spatial mode
of a single photon passing through a system of three slits. The preparation of a particular
state is controlled as the photon propagates through the slits by varying the number of open
slits and their respective phases. The measurements are achieved by placing detectors in the
specific positions in the near and far-field after the slits. This set of tools allowed us to perform
tomographic reconstructions of generalized qutrit states, and implement the quantum version
of the AV game with compelling evidence of the quantum advantage.
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1. Introduction

We present here for the first time the experimental realization of the AV quantum game using single photon as the
incident particle and a system of three slits in lieu of the boxes. The setup comprising of a single photon source (SPS),
triple slit [1] and single photon detectors allowed us to perform optimized quantum tomography to characterize the
qutrit states and to play the game correctly in the next step.

1.1.  Aharon-Vaidman game

The Aharon-Vaidman game [2] is a conceptually simple example of how quantum mechanics can be both beneficial
and counter-intuitive. In the classical analogue, Alice puts a particle in one of three boxes such that when Bob, who
in next turn is allowed to check only two of them, is most likely to find it. Alice wins whenever Bob discovers the
particle. Hence, it is obvious that Alice will not use the box that Bob does not have access to and therefore her
chance to win is 50%. On the other hand, when she uses quantum particles her chance rises above this limit and
ideally reaches 100%, when she chooses her particle to be in the state |yy) = % (|0) + |1} 4 |2)) in the first turn of
the game. In second turn, assuming Bob has access to slits (boxes) 0 and 2, if he decides to check if the photon is

passing though slit number 0, he does a projective measurement on the state |0). If he finds the particle, then his state
becomes |l//ép )> = |0), otherwise |1//l(3")> = \% (|1) +]2)). The photon detection results in losing the photon from the
system, otherwise the photon goes through opened slits. Next, in the third turn of the game Alice makes a projective
measurement on |Yy,,) = % (|0) —|1) 4 |2)). If Alice detects a particle, she accepts the game trial, and if she does
not, she cancels it. Now it is clear that Alice cannot lose as whenever Bob does not detect a photon, the state after the

second turn is |l//1<9")> and Alice’s detector never clicks as | <‘/’t(3n) |Wam) |> = 0. If Bob found the particle in a slit 0 and

tried to leave no trace of that, Alice has | (l//l(;7 ) |Wam) |? = 1/3 chance to detect it after that. The same reasoning holds

if Bob chooses the slit number 2.
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Fig. 1. (a)Experimental setup. The AL-SPS comprises of HeNe laser (A = 632 nm), laser power
controller (LPC) and neutral filter (NF). The PDC-SPS (A = 810 nm) is based on PPKTP crystal
pumped by blue continuous wave laser. Heralding photon is detected by detector D3. The single
photons from both sources are coupled to single mode fibers (SMF). A qutrit is prepared using
the blocking mask and three slits. Next the measurement part of the setup comprises of a 2 inch
diameter f = 150mm lens (L.3), 2 inch diameter pellicle beamsplitter (BS), colour filters (F) and two
detection systems (D1, D2), each comprised of multimode fiber mounted on a precise motorized
stage (Thorlabs ZST13) and a Perkin Elemer avalanche photodiode.

(b) Experimental and theoretical, best classical and best quantum winning trials in the quantum
game. The simulation shows the quantum advantage over classical limit of 50% as Alice wins in
82% (87%) of accepted game trials when using AL-SPS (PDC-SPS).

(c) Table shows the number of photon counts measured by Alice for each of possible actions by
Bob and his measurement outcome. For AL-SPS (PDC-SPS) photons were collected for 2 s ( 1 min,
coincidence window 1 ns).

1.2.  Encoding and measuring a qutrit

Let us move now to the implementation. The Young type qutrit is realized using triple slits and a single photon source.
The spatial wave function of the photon passing through the nth slit can be written as [3,4]:

In) = /dkx, /%sinc (";“) e~k |y, (1)

where a is the slit width, d is the distance between the slits and k, represents the transverse component of wave vector.
These definition allow one to write the state of the transmitted photon as:

|w=§anm+nm+%m» @)
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which accounts for the basic definition of a Young type qutrit. Here amplitudes sy, s» and s3 depend on the transmission
amplitude though the slit.

The projective measurements are determined by the laws of propagation and the geometry of the setup. For simplic-
ity, we chose to detect in the positions corresponding to near and far field. This can be done using a lens and placing
a detector in the focal plane (far field) and in the plane where the image of the slits is formed (near field). In near filed
there are three positions which can be associated with the measurement operator defined as:

Myt(n) = tnt|n) (n|, &)

where Uy is the normalization factor to be specified later and subscript nf stands for near field. Similarly, one can
define the measurement operator in the far field as:

Mie(0) = ue(0)[9(0)) (9(0)], “4)

where we introduced |¢(0)) = |0) +exp(i0) |1) +exp(i20) |2), ug(6) is the normalization factor, the phase parameter
reads 6 = 27xd/ f and the subscript ff stands for far field. Next, by taking three near field measurements My¢(n), n =
0,1,2 and six far field operators Mg(6) corresponding to 8 = {0,n,2n/3,—2n/3,5n/3,—57m/3} one can construct
POVM set allowing one for reconstruction of arbitrary pure state.

2. Experiment

The experimental setup is depicted in Fig. 1(a). For the quantum game the qutrit was prepared in |yy), which was
characterized before by quantum tomographic method. We simulated all possible scenarios of Bob’s measurement
using PDC-SPS and AL-SPS. The measured photon counts are presented in table 1(c). In the perfect case one expects
no counts when two slits are open. Here, it is attributed to finite size of the multimode fiber core, dark counts and
background noise. We estimate that the former two contribute approximately 3 coincidence counts. Despite the prac-
tical limitations of our experimental setup, Alice had a 87% chance to win using PDC-SPS and 82% using AL-SPS,
see Fig. 1(b). This is much better than classical strategy and close to the ideal quantum limit.

In conclusion, we experimentally presented a simple way to implement a qutrit system into a single photon’s spatial
degree of freedom, which allowed us to perform state tomography and simulate the AV quantum game. The encoding
part resorted to the Young type experiment, where a photon passes through 3 slits, which defined its state. Controlling
an initial propagation direction of a photon and configuration of the slits it was possible to encode certain class of
states. Our state reconstruction technique was based on a small number of measurements over a short period of time
that makes our method stable and time efficient in contrast to Ref. [3],
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