TWO AXES MICRO POSYTIONING CONTROLLER

CARRIED OUT AT

RADIO ASTRONOMY LAB

 RAMAN RESEARCII INSTITUTE BANGAYGREUNDER THE ESTEEMED GUIDANCE OF Mr. ANANTMASUBRAMANIAN ENGINEER, R.R.I.

BY

PRADEEPS. M.R.NAVEEN NAVIN RAJENDRAN P.C.

SUBMITTED TO BANGALORE UNIVERSITY IN PARTIAL FULFILLMENT FOR THE AWARD OF DEGREE OF

BACIELOR OF ENGINEERING IN ELECTRONICS AND COMMUNICATIOR.

LECTURER INCHARGE
Mr. K.V.MURALIDMAR
B.I.T. BANGALORE

1996-97

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

BANGALORE INSTITUTE OF TECHNOLOGY
K.R.ROAD, BANGALORE-560004

BANGALORE UNIVERSITY

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

BANGALORE INSTITUTE OF TECHNOLOGY

Certificate

7 his is to certify that the project titled Two Axes Micro-positioning Controller has been successfully completed by the following students of final year
Pradeep S. M.R.Naveen Navin Rajendran P.C. in partial fuffillment of reguirements for the amard of Bachelor Of Engineering dequree in Electronices and Communication from Bamgalore Iniwersity during the academic year 1996-97.

The project emord was carried out at Raman Research Institute,Bangalore.

Mr.K.V.Muratidhar anow
Lecturer,
Dept. of E \& C.
B.I.T.

Prof.M.J.ShantiPrasad, H.O.D., E \& C, B.I.T.

RAMAN RESEARCH INSTITUTE

C.V.Raman Avenue, Sadashivanagar, Bangalore - 560080 India

15 July 1997.

Certificate

This is to certify that the project work entitled "Two axes Micropositioning Controller" was carried out by Pradeep S., M.R.Naveen and Navin Rajendran P.C. in the Radio Astronomy Laboratory of the Raman Research Institute, Bangalore under my guidance for the partial fulfilment of the requirements for the award of Bachelor of Engineering degree in Electronics and Communication of the Bangalore University, Bangalore.

(P.G. ANANTHASUBRAMANIAN)
ENGINEER.

TWO AXES MICRO-POSITIONING CONITROLLER

ACKNOWLEDGEMENTS

Firstly, we wish to express our sincere thanks to Prof. NARAYANAPPA, former Head of department of Electronics, B.I.T. , Bangalore, for guiding us to this institute for a project.

We thank the Director of Raman Research Institute Prof. N.KUMAR and Dr.D.K.RAVINDRA, Head, Radio Astronomy Lab in R.R.I. for providing us the facilities to carry out this project work successfully.

We thank our guide Mr. P.G.ANANTHASUBRAMANIAN, Engineer, at RRI, for motivating and leading us successfully through the twists and turns of the project.

We also thank Prof . SHANTI PRASAD, the H.O.D., for his guidance during the course of the project. Mr. K.V. MURALIDHAR, lecturer, B.I.T. is worthy of our deepest gratitude for his kind help throughout the course of the project work.

A project of this nature could not have been possible without the help of many people in R.R.I.

Mr. H. Nagaraj, for careful design of the PCB layout and helping in getting the fabricated board in time for assembly and testing.

Mr.Girish and Mrs.Seetha at the M.M.W. Lab
Mr.Muthu and Mr.Suresh at the Workshop
Mr.Raju Varghese, the photographer
Mr. K. Ramesh and Mr.Gurukiran for helping us with the installation of the EPROM programmer and guiding us in certain aspects of serial communication.

Finally, we thank Mr. K.B.Raghavendra Rao for helping us in the laboratory and also in getting this report done.

Our stay att the R.R.I. was a very enlightening one. We gained insight into the practical aspects of designing electronic circuits of a varied nature, and learnt a lot from the mistakes we had commited inadvertently. We spent so much time at the R.R.I. that it almost became our second home.

CONTENTS

1. Introduction
1.1 Existing system 1
1.2 Requirements 1
1.3 Description 2
2. Hardware
2.12.22.32.4
2.52.72.83. Software
3.1 Program Description 33
3.2 Flowcharts 36
3. Conclusion 42
4. Appendix
Photographs i
Schematics iii
PCB layout x
Listing of Components xvi
Data Sheets
Bibliography

Introduction

INTRODUCTION

1.1 Existing system :

The mm . wave receiver used with the $\mathbf{1 0 . 4 m} \mathbf{m m}$-wave Telescope in the R.R.I. uses a mechanically tunable Wide-Band Gunn Oscillator for the 1st down conversion of the R.F. signals in the frequency range $80-115 \mathrm{GHz}$.

The present system of setting the o / p frequency and power of the Gunn oscillator involves manual adjustment of the two micro-meters as per special charts that give the required readings of the μ-meters for specific values of frequency and the corresponding values for peak power. A person who wishes to set a particular frequency of the Gunn oscillator has to manually turn the tuning the respective μ-meter to the values in the chart.

1.2 Requirements:

In general, each frequency setting on the Gunn oscillator has a corresponding position for peak power o / p. Eight such L.O.frequencies are commonly employed for the mm. wave observations using the radio telescope.

A control panel has to be provided such that an operator can
\rightarrow choose any of the 8 frequency and corresponding power settings.
\rightarrow start/stop the μ-meters as and when required.
\rightarrow select any of the μ-meters, change its direction and move it in discrete steps for minor adjustments.

When changing from one frequency setting to another in the pre-decided eight settings, the μ-meters should automatically be set to the desired value of the frequency \& power.

A facility should be provided such that a P.C. can control the frequency \& power settings from a remote location.

The power supply will be external to the modules made. The modules will be provided with the required on-board regulators.

The design aim is to build a prototype module with minimum hardware and a micro-controller as the heart of the system.

1.3 Brief Description of the project:

A brief description of the project is provided with the help of four simple block diagrams.

The micro-controller 8031 is the main control unit in this closed loop system which controls the position of the motors. The μ-meters of the Gunn oscillator are coupled to the shaft of stepper motors which move in a direction determined by the micro-controller. Feedback potentiometers are also coupled to the shaft of the motor. The basic set up of the project is as shown in Block Diagram 1. For a position of the μ-meter there exists a unique voltage on the feedback potentiometer. Therefore there will be eight different voltages corresponding to eight commonly used frequencies. These voltages are set on the reference potentiometers which when compared with the feedback potentiometer determines the direction of rotation required.

For example, from the plot of H 206 oscillator, it can be seen that variation of the μ-meter position is monotonous with regard to frequency but not with power. Hence, it is deduced that reference voltage settings represented by the codes are monotonic for frequency but not for power. So the codes themselves can determine the direction for the frequency motor but not for the power motor. The frequency μ meter(operated between 80 and 115 GHz) has lesser number of turns than the power μ-meter.

The set up consists of two modules. The first module with a front panel has the facility to set reference voltages for frequency and power. The second has the following controls on the front panel.

- A switch labeled $\overline{\text { LOCAL }} /$ REMOTE indicates the mode of operation. When the switch is in the position LOCAL, settings can be done from the front panel. If REMOTE mode is selected, all settings are done from a remote location, and the front panel has no effect on the movement of the μ-meters.
- Three switches labeled S_{2}, S_{1} and S_{0} are used to set the frequency to one of eight commonly used values. The required code may be set referring to a chart which specifies the code for the chosen frequency. The indication of the code is given by three LEDs placed above the switches.
- The START / STOP switch is to start or stop the motor.
- The \bar{F} / P switch which decides the motor to be used in case of fine movement.
- The DIR switch which specifies the direction of rotation, again used only for fine movement.
- Two independent switches to turn the motors ON/OFF.

The information regarding the switches is read into the controller. The controller checks the code and decides to perform either fine or coarse movement. In the case of coarse movement, i.e., when the code has changed, both μ-meters are moved to the desired position. The fine movement is done if the code is the same, and decisions are made on the basis of the control switches.

Basically, a stepper motor is operated in full steps by providing digital signals to the windings, but by providing a sinusoidal signal to one phase and a 90 degree phase shifted signal to the other phase, micro-stepping is achieved. This increases the number of steps per revolution i.e., the resolution of the motor. In this application a 200 full step per revolution stepper motor is used in micro-stepping mode to provide a minimum of 3600 steps/revolution.

The sinusoidal signals are stored in look up tables and given sequentially to Digital-to-Analog Converters (DAC), the output of which is given to digitally controllable
drivers through Pulse Width Modulators. A set of control signals from the controller also decides the phase and direction of currents.

The two modules as described above are briefly described.
The three block diagrams shows the basic elements of the two modules.
Block diagram 2 shows the various devices connected to the controller. The memory (EPROM 27C64) is enabled using a decode logic based on the o/p of pins A13 and $\overline{\text { PSEN }}$ of the controller. The same pins are used to enable a buffer which reads the control data as shown. The control data includes the following :
$\rightarrow \quad$ Information regarding Front panel switches
STA / STO (start /stop the motor)
DIR (change direction of rotation of the motor)
$\overline{\mathrm{L}} / \mathrm{R} \quad$ (Local or Remote mode of operation)
$\rightarrow \quad$ Status of Limit Switches
L1 (indicates if the freq. μ meter has reached an extreme)

L
(indicates if the power μ meter has reached an extreme)
$\rightarrow \quad$ Status of Comparators.
CMP1 (status of freq. f / b pot compared with chosen reference)

CMP2 (status of power f / b pot compared with chosen reference)
$\rightarrow \mathrm{L} 0, \mathrm{~L} 1$ and L 2 which are the code levels given to MUX to choose one of the eight reference voltages.
$\rightarrow \mathrm{Tx}$ and Rx for serial transmission and reception through ICL 232.
$\rightarrow \mathrm{D} 0-\mathrm{D} 4$ are digital signals given to the DAC
\rightarrow SQ,LA,MO are signals to decide the motor, phase and direction of current.
\rightarrow ENM1 and ENM2 are separate controls to enable/disable the two drivers.

Block diagram 3 shows a decode logic which decides the DAC based on SQ,LA and MO. The DAC output voltage is fed to a Pulse Width Modulator (PWM) which provides stable currents through the windings. The PWM o/p is fed to the stepper motor driver which consequently sends appropriate currents (M1A,M1B,M2A and M 2 B) to the motor windings to make the motor move in the proper direction. A precision rectification is used for feedback from the driver to the PWM ensures that the currents are stable.

Block diagram 4 shows regulators, the reference pots(explained earlier), comparator and multiplexer. The supply to feedback pots are provided from here. The compared outputs CMP1 and CMP2 are given to the controller. A level shifter is provided to convert TTL logic to CMOS logic for the multiplexer.

A detailed description of the hardware and their design and the software are provided in subsequent chapters.(The schematics are provided in the appendix)

Block diagram 1

Block diagram 3

Hardeware

HARDWARE

2.1 MICROCONTROLLER 80C31BH

The INTEL $\mathbf{8 0 C 3 1 B H}$ is a stand-alone high-performance single-chip computer fabricated with INTEL's highly reliable +5 V , depletion mode N -channel silicon gate HMOS technology and packaged in a 40-pin DIP. It provides the hardware features, architectural enhancements and new instructions that make it a powerful and costeffective controller for applications requiring upto 64 K bytes of program memory and up to 64 K bytes of data storage. The controller also has direct bit-programmable features.

Features:

- 128x8 RAM
- Four 8-bit ports, 32 I/O lines
- Two 16-bit timer/event counters
- High performance full-duplex serial channel with unique addressing modes.
- External memory expandable to 128 K
- Five source-two priority level nested interrupt structure
- On chip oscillator and clock circuits.

Internal memory address space is further divided into 256 byte internal data RAM and 128 byte Special Function Register(SFR) address spaces, 4 register banks, 128 addressable bits and stack residing in the internal data RAM. All registers except the program counter and the four 8-register banks reside in the Special Function Register space.

These memory-mapped registers include the arithmetic register, pointers, I/O ports, interrupt system register, timers and serial port and special function registers. 128 bit locations in the SFR address space are bit-addressable.

I/O facilities:

Each of the 32 pins are treated as 32 individually addressable bits and also as four parallel 8-bit ports addressable as ports $\mathbf{0 , 1 , 2}$ and 3 .

Port 0 : It is an 8 bit open drain bi-directional I/O port. It is also the multiplexed low order address and data bus when using external memory.

Port 1 : It is an 8 bit quasi bi-directional I/O port. It is used for low order address byte during programming and verification.

Port 2 : It is an 8 bit quasi bi-directional I/O port. It also emits the high order 8 bit address when accessing external memory. It is used for the high order address and control signals during programming and verification.

Port 3 : It is an 8 bit quasi bi-directional I/O port. It also contains the interrupt, timer, serial port and $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$. The secondary functions assigned to the pins of port 3.

Ports 1,2 and 3 can be configured as i / p by writing a 1 into the corresponding bit latch in the port SFR. The bit latch clocks in a value from the internal bus in response to a write to latch signal from the CPU.

The level of the port pin itself is placed on the internal bus in response to a read pin signal.

Ports $1,2,3$ when configured as i / p they pull high and will source current when pulled low.

Hardware

The following table gives the secondary functions of the pins of port 3 and the assigned configuration as per our application.

| SECONDARY
 PIN | | FUNCTION |
:---	:---	:---		ASSIGNED	
CONFIGURATION	$	$	P3.1	Txd/clock	Txd-Serial port's transmitter data output(asynchronous)
:---	:---	:---			
P3.2	$\overline{\text { Int0 }}$	Used as interrupt			
P3.3	Int1	Bi-directional I/O pin for selection bit S0			
P3.4	T0	Enabling of driver 1 ENA			
P3.5	T1	Enabling of driver 2 ENB			
P3.6	$\overline{\mathrm{WR}}$	Bi-directional I/O pin for selection bit S2			
P3.7	$\overline{\mathrm{RD}}$	Bi-directional I/O pin for selection bit S1			

Table-1
A 12 MHz crystal is connected across XTAL1 and XTAL2 which are the input and output of the oscillator high-gain amplifier respectively. The crystal circuit is given as per the micro-controller specifications. On power-ON, a RESET of 10 msec is provided.

2.1.a CONTROL WORD:

CONTROL WORD is the data byte which gives certain information to the controller(shown in the table). This is the main data byte based on which the controller performs various operations. The CONTROL WORD is accessed as a external program memory via a buffer(74HCT244) by setting pin A13. In order to differentiate between memory and buffer a decode logic is provided. The instruction to access external Program memory(MOVC) is used here.

A13	$\overline{\text { PSEN }}$	Control provided
0	1	Memory is enabled
1	1	Control word buffer is enabled

Table-2

Control Word Description :

CW.0	START/STOP	To start/stop the motor
CW.1	$\overline{\mathbf{F} / \mathbf{P}}$	To select frequency/power motor
CW.2	DIR	To select direction of motor movement in FINE mode
CW.3	$\overline{\mathbf{L}} / \mathbf{R}$	To select LOCAL/REMOTE mode of operation
CW.4	LS1	Status of limit switch of motor1
CW.5	LS2	Status of limit switch of motor2
CW.6	CMP1	Output of comparator 1 (Frequency)
CW.7	CMP2	Output of comparator 2 (Power)

Table-3

2.1.b FRONT PANEL

The front panel is as shown in the picture(Appendix). It consists of the three codes S_{0}, S_{1} and S_{2} which are configured as shown from table 1, and the four bits of the Control word(START/STOP, $\overline{\mathrm{F}} / \mathrm{P}$, DIR and $\overline{\mathrm{L}} / \mathrm{R}$) as shown in table 2 . The wiring of the switches is as shown in the schematic diagram 2 of 5 . The code switches are read only in the LOCAL mode and the controller sets the codes in the REMOTE mode. The switches are hence enabled only in the LOCAL position of \bar{L} / R switch. These switches should not affect the input to the level shifter and should not interfere with the each other when switched to REMOTE. In order to prevent any such interference, diodes are used for isolation between themselves, i.e., they are disabled when the $\overline{\mathrm{L}} / \mathrm{R}$ is in REMOTE position.

Hardware

2.2 MEMORY

EPROM 27C64:

27 C 64 is a single 5 V , 64 K ultra-violet erasable and electrically programmable memory[EPROM]. It has an access time of 250 ns which is compatible to high performance microprocessor and micro-controller applications. HMOS-E technology is used, which is a high speed N-channel MOS Silicon Gate technology.

An important feature is that it has a separate output control $\overline{\mathbf{O E}}$ and chip enable $\overline{\mathbf{C E}}$. The output enable eliminates bus contention in multiple bus micro processor systems. It has a stand-by mode which reduces power dissipation without increasing access time. This is done by applying a TTL high signal to the $\overline{\mathrm{CE}}$ input.

The five modes of operation of the memory are Read, Standby, Program, Program Verify and Program Inhibit.

Read mode: It has two control functions both of which must be logically satisfied to obtain data at the outputs. $\overline{\mathrm{CE}}$ is the power control and should be used for device selection Data is available at the outputs after the falling edge of $\overline{\mathrm{OE}}$.

It is accessed using address pin13(A13) which is connected to $\overline{\mathbf{O E}}$ and $\overline{\text { PSEN }}$ which enables the chip $(\overline{\mathbf{C E}})$.

The lower address byte is latched by 74HCT573, enabled by ALE from the microcontroller.

The total memory space utilized by the program is around $\mathbf{2 K B}$. Since it is less than 4 Kbytes , a controller of the same family with in-built memory $\mathbf{8 7 C 5 1}$ (with a 4 K internal program memory) may be used. But the advantage here is that the memory may be removed when it is required to re-program repeatedly, rather than removing the controller itself. It also provides an expansion facility.

2.3 DIGITAL TO ANALOG CONVERTER

Digital to Analog Conversion is done by DAC-0800 which is a monolithic 8bit high speed current-output DAC with a settling time of 100 ns . Power dissipation is very low $(33 \mathrm{~mW})$ with $+/-12 \mathrm{~V}$ supplies and is independent of the logic states. An important feature of the DAC0800 is that it can be interfaced directly with TTL, CMOS, PMOS and others. Complementary current outputs are available.

DATA BYTE:

The control \& data signals from micro-controller is a byte where 3 bits are for selection of the latches for the respective motors and the other 5-bit digital data represents the Reference current to be converted to analog signals with a digital to analog converter (DAC). Since 5 bits are used, 32 levels (2^{32}) may be obtained. For micro-stepping, the currents in the windings are sinusoidal, i.e., as current increases sinusoidally in one winding, it decreases sinusoidally in the other. The sine waveform ($0-90 \mathrm{deg}$) is converted to 5-bit digital data using the relationship given below. given below

$$
\sin \left[\frac{k \times 90}{31}\right] \times 31=C O D E
$$

where k varies from 0 to 31 and CODE is the nearest Hexadecimal value of the decimal value obtained from the L.H.S. Since there are 32 levels it corresponds to 6400 steps/revolution which is greater than the requirement of 3600 steps/rev. These values are then ORed with the 3 bits SQ, LA, MO and stored in different look-up tables. There will be 64 bytes each for A, (2 for sine w/f and 2 for cosine w/f)resulting in a total of 512 bytes of data in the look-up tables for the two motors. The motor can thus be moved by just giving out these data to the DAC at a predetermined rate. For coarse movement, a speed of 40 Hz is employed.

Hardware

Here, the motor stops depending on the code or using the stop switch. It is also operated in fine mode at 1 Hz where manual stopping is required.

Description:

DB. 5 SQ Determines direction of current flow in the motor winding.
DB. 6 LA Chooses the latch (phase A / B)
DB. 7 MO Selects the motor (freq. / power)

Five bit Data is latched by decoding these 3 bits to hold the motor in position till next data is given.

LOGIC FOR SELECTION OF LATCHES AND SEOUENCE:

The sequence in which the various latches are to be selected is determined by the 3 most significant bits in the data byte. The MSB (MO) signifies the motor to be enabled. The next bit (LA) in combination with MO determines the latch to be selected by the decoder 74HCT238. The combination of bits for selecting latch and sequence is as shown in Table 4. The data is sent to the two latches (one corresponding to sine w/f other corresponding to cosine w / f as shown in diagram below) one after the other . Since the latch holds the data which was at its i / p at the time of it being disabled, the data for one latch may go into the other resulting in glitches of about $1 \mu \mathrm{sec}$ duration. To overcome this, a delay is introduced at the o/p of the controller by using a RC FILTER. Further this problem is also taken care in software by disabling the 1st latch before the 2nd latch is enabled.

Figure 2.31

Hardware

Direction of flow of current through the windings of the motors is determined by the sequence bit (SQ) (as shown by the thick line)

MO	LA	SQ	LATCH ENABLED	MOTOR	SEQUENCE
0	0	0	LATCH 1	1	A
0	0	1	LATCH 1	1	$\overline{\mathrm{~A}}$
0	1	0	LATCH 2	1	B
0	1	1	LATCH 2	1	$\overline{\mathrm{~B}}$
1	0	0	LATCH 3	2	A
1	0	1	LATCH 3	2	$\overline{\mathrm{~A}}$
1	1	0	LATCH 4	2	B
1	1	1	LATCH 4	2	$\overline{\mathrm{~B}}$

Table 4

Design:

The reference voltage for the DAC is +10 V .
The supply voltages are $+/-12 \mathrm{~V}$.
The full-scale analog o / p voltage for 5 bits is 1 V (which is the maximum reference voltage to the PWM).

Design equations

$I=I_{0}+\overline{I_{0}}$
$I=\frac{V_{r e f}}{R_{r e f}} \times \frac{31}{256}=\frac{1 V}{R_{L}}$ where $R_{L}=4.13 \mathrm{~K} \Omega$ and $R_{r e f}=5 K \Omega$

The o/p current is converted to a proportional voltage using LM324(as current-to-voltage converter).

An offset-correction circuit is provided to the + ve terminal of the LM324 as shown in the schematic diagram 3 of 5 . LM324 has a maximum offset of +/7 mV (max).

The correction is provided by varying the $20 \mathrm{~K} \Omega$ pot which provides adjustment up to 24 mV . The correction is made by maintaining the data to the DAC as 0 and varying the pot to obtain a zero output at the PWM. This can be easily done by operating the motor in fine movement mode. The gain of the PWM also affects this, as a very high gain provides a non-zero output due to extremely small changes at the input.

Hardware

2.4 PULSE WIDTH MODULATOR

The IC TL494 is used to control the current through motor windings.

Features:

- fixed frequency PWM control circuit designed for switch mode power supply control
- on chip oscillator
- on chip error amplifier
- output transistors rated at 500 mA source or sink

The TL494 is used to provide a stable current in the windings of the motor as small changes in the current changes the position of the motor. The current stability is better in a linear regulator, but in a chopper, the power efficiency is better, with a good current stability. The output of the PWM is compatible to the TTL logic levels, making it easy to control the driver. Four such modulators are used, one for each winding of the two motors.

The output of the DAC is given as the reference voltage to the error amplifier. The current in the driver is sensed(by a sense resistor) and fed to the error amplifier to generate the PWM o/p in the proper sense.

When the f / b voltage from the sense resistor is greater than the reference voltage (from DAC) to the error amplifier of the PWM duty cycle of the PWM decreases. Similarly when the f / b voltage is lesser, duty cycle increases. When the motor has been latched to a particular position, the PWM helps in maintaining a constant average output voltage by correcting errors and varying the duty cycle at the output depending on the feedback.

The response of the PWM also depends on the gain of the error amplifiers. Very high gain makes it to respond to small changes at the reference of the feedback making the putput unstable. So an optimum gain is to be designed. Further a suitable series RC element is added to the F / B of the error amplifier to reduce the noise in the motor.

Hardware

Design:

- One of the error amplifiers is disabled.
- The output transistors of TL494 are used in parallel to provide current to the driver.
- Dead time control and output control pins are disabled.
- The modulator is operated at 25 KHz . The R_{T} and C_{T} are suitably selected by using the formula -

$$
\text { Fosc } \approx \frac{1.1}{\mathrm{R}_{\mathrm{T}} \cdot \mathrm{C}_{\mathrm{T}}}
$$

Assuming $\mathrm{C}_{\mathrm{T}}=10 \mathrm{KpF}$, we get $\mathrm{R}_{\mathrm{T}}=4.7 \mathrm{~K} \Omega$

Error Amplifier Design:

Figure 2.4.1

The output along with SQ (as shown below) is fed to the driver through a digital circuit which decides the direction of current.

Hardware

2.5 DRIVER

A digitally controllable driver is used to control the direction and the magnitude of the current in the windings. The driver used in this application is the Dual FullBridge Driver L298. It is a power integrated circuit usable for driving resistive and inductive loads. This device has four push-pull drivers with separate logic inputs and two enable inputs. Each driver is capable of driving loads up to 2 A continuously. The maximum operating voltage for the driver is 50 V .

The emitters of the low-side power drivers are separately available for current sensing. Feedback from the emitters can be used to control load current in a switching mode or to detect load faults.

Separate logic and load supply lines are provided to reduce total IC power consumption. It is further reduced when enable inputs are low.

Two such drivers are employed, one for each motor. Each full bridge has one phase winding(inductive load) of the motor as the load i.e., A or B . The drivers are enabled by ENA and ENB for frequency and power motors respectively.

Design:

Power supply given $=20 \mathrm{~V}$
As mentioned earlier the full scale voltage to a winding is 1 V . If a full scale current of 330 mA is desired in each winding, high wattage sensing resistors of 3.3Ω each is used.

A single heat sink is provided for both the drivers.
The current is passed through the windings by turning on a pair of diagonally opposite transistors. As mentioned before, the PWM o/p along with SQ signal is used to turn ON the appropriate pair of transistors(Q1,Q4 or Q2,Q3) to change the direction of the current, as shown in the fig. 2.5.1(shows the circuit for one of the 2 windings). Flywheel diodes provided across the transistors are required to maintain the direction of the current in the inductive load when the transistors are switched at a high speed by the control from the PWM.

The voltage across the sensing resistance connected to the drivers changes polarity. It has to be rectified before feeding it to the PWM error amplifier. Since the amplitude of
the sensed voltages are very low, high precision rectification is required. LF347, a quad high-speed JFET operational amplifier.

This is done by the rectifier as shown in fig. 2.5.2

$$
\text { Figure 2.5.1 Internal structure of L298(1 of } 2 \text {) }
$$

Figure 2.5.2

Hardware

2.6 STEPPER MOTOR:

Stepper motors are used to vary the position of the μ-meters. This is done by coupling the motor shaft to the μ-meter. The available stepper motor is HY200-1713033BC from SGST which is a 2-phase motor with 200 full steps.

This particular motor will require a driver with voltage and current rating of about 15 V and 330 mA per phase. Also to be noted is the fact that $200 \mathrm{steps} / \mathrm{rev}$ stepper motors are commonly available in the market.

From the frequency and power position charts for three Gunn oscillators, we find that for a 1 GHz change in frequency, a minimum rotation of 0.7 mils is required at the highest frequency. In our application, a resolution of 10 MHz is required, which corresponds to a rotation of 0.007 mils.

1 rotation corresponds to 25 mils $\rightarrow 200$ full steps
0.007 mils $\rightarrow 1 / 18$ of a full step

Therefore the stepper motor has to be used in μ-stepping mode resulting in a minimum of 3600 steps per revolution. Five bits are used provide signals to the driver. So a total of 32 microsteps may be obtained in one full step. A total of 6400 micro steps per revolution is obtained which is greater than the requirement.

This motor has six leads and two phases(as shown in data sheet). Each phase has two windings in series. Either of the windings may be used with the common lead, or both the windings in series. In this application only one winding has been used in order to reduce the current drawn. If both were to be used, the supply voltage has to be increased from 16 V to a greater value.

A DC motor with gears would have served the purpose but since it had to be imported, a stepper motor is suitably used.

2.7 ANALOG MULTIPLEXER

MC 14051 BCP is a 8-to-1 analog multiplexer (MUX) and works on a supply between 3 V to 18 V , with I / P voltage any where between -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$.

14051 has better isolation between switches (typically 80 dB), with a quiescent current of 5 nA and O / P voltage ratio(high on/off) of 65 dB (typical).

It is used to select the appropriate voltage settings corresponding to different frequency/power positions. Two MUXs are used with a common control i.e., one of the eight analog voltages are selected using S0, S1 and S2. The MUXs are kept permanently enabled(the inhibit pin is permanently disabled by grounding it).

The input to the MUX should be less than the supply voltages. Since inputs from the potentiometers range up to $10 \mathrm{~V}, \mathrm{a}+12 \mathrm{~V}$ supply is provided. $\mathrm{S} 0, \mathrm{~S} 1$ and S 2 are level- shifted from TTL to CMOS using transistors to make it compatible with the supply voltage of the MUX . (A CMOS HIGH $>2 / 3 \mathrm{~V}_{\mathrm{CC}}$ and CMOS LOW $<1 / 3 \mathrm{~V}_{\mathrm{CC}}$).

2.7.a LEVEL SHIFTER

Transistor $\mathbf{2 N} \mathbf{2 2 2 2}$ is used to shift the level of the code provided to the MUX from the switches as well as from the micro-controller. Supply to the transistor is +12 V . The MUX requires a minimum voltage of 8 V to recognize a logic HIGH. The LED used to denote the position of the code switch requires a current of 5 mA to turn on, and hence the resistor used at the collector of the transistor is $1.5 \mathrm{~K} \Omega$ i.e. $R=\frac{12 \mathrm{~V}-8 \mathrm{~V}}{5 m A} \cong 1.5 K \Omega$. The transistor used has a h_{fe} of 100 to provide a current of 5 mA at the collector. For the LED to turn on, the base current should be $50 \mu \mathrm{~A}$.

The base of the transistor is connected to the micro-controller, the minimum logic HIGH voltage from the controller is 2.5 V . Hence, for the base current to be $50 \mu \mathrm{~A}$, a $33 \mathrm{~K} \Omega$ resistor is used, taking into account the 0.7 V drop at the transistor, i.e.

$$
R=\frac{2.5 V-0.7 V}{50 \mu A}=33 \mathrm{~K} \Omega
$$

The code switches are connected to the controller through a $3 \mathrm{~K} \Omega$ resistor. This is to provide appropriate voltages (logic HIGH (\min) $=2.5 \mathrm{~V}$, logic LOW (max) $=0.7 \mathrm{~V}$) at the controller pins and also to provide appropriate current ($50 \mu \mathrm{~A}$) to the base of the transistor to turn on the LED at the collector when the switch is in the ON position (logic HIGH). A HIGH at the i / p of the level shifter appears as a LOW at the o / p, and vice-versa, because the transistor acts as an inverter. Due to this, the order of selection of the reference pots is inter-changed.

Figure 2.7.1

The output of the MUX is given to the comparator(inverting terminal). LM339 is the comparator used. These are high-precision comparators which eliminates the need for dual supplies and are compatible with all logics. The selected voltage is compared with the voltage from the feedback potentiometers coupled to the motors. This voltage represents the instantaneous position of the motor. The comparator output (to be more precise, the transition from one logic level to another) is given to the micro-controller(CW. 6 and CW.7) through pull-up resistors.

There are eight reference pots for motor 1 . The voltage on each pot corresponds to one of eight frequently used values of frequency in the Gunn oscillator.

A similar set of voltage levels are adjusted for the eight pots corresponding to motor 2. Each voltage selects a particular power for the oscillator. The signals of each frequency have to have a pre-determined power, and so the frequency and power of the signals have to be simultaneously set to the desired value.

The values of S_{0}, S_{1} and S_{2} determine the reference pot selected as the output of the MUX. This o / p is continuously compared with the varying voltage from the feedback potentiometer, and when the feedback voltage equals the reference voltage, there is a transition of logic level ($\mathrm{H} \rightarrow \mathrm{L}$ or $\mathrm{L} \rightarrow \mathrm{H}$) at the comparator o / p which is being monitored by the micro-controller. When such a transition is detected, the controller freezes all data to the DACs and as a result, the motor currents are stabilized (remains constant) . The motor is then fixed at the present position, setting the oscillator to the required frequency / power.

2.7.b INDICATORS :

There are five LEDs on the main board. Three of them indicate the status of the code pins S_{2}, S_{1} and S_{0}. The other two indicate whether the two motors are on or off. A special feature included in the software is to indicate when the motor has stopped moving, either after being set to the desired position (after doing coarse movement) or after the motor has been manually stopped (while doing fine movement, and the START/STOP bit is made LOW). The indication is given by making the code LEDs blink for a short duration (10 seconds).

NOTE: Since the blinking is generated by toggling the inputs to the transistors used for level-shifting, if the code happens to be $(0,0,0)$, the i / ps are permanently LOW as seen from figure 2.7.1 and hence the LEDs do not blink.

2.8 POWER SUPPLY REOUIREMENTS:

The unregulated supply given is $+/-16 \mathrm{~V}$. These voltages are regulated by ICs 7812 and 7912 to provide $+/-12 \mathrm{~V}$. A 5 V regulated supply is obtained in the second PCB using IC 7805. On the $1^{\text {st }} \mathrm{PCB}$, a reference voltage generator AD581 is used, to get a stable reference voltage of 10 V .

The current drawn by the PCBs from the +12 V supply is around 175 mA , and from the -12 V supply it is around 50 mA

The current drawn by the +5 V regulator (7805) alone, on the $2^{\text {nd }} \mathrm{PCB}$ is around 75 mA . The power dissipation in the regulator is reduced by connecting a resistor in series, the value of which is chosen to be 82Ω (1 W)such that 8 V appears at the i / p of the regulator. Suitable heat sinks are provided for all the regulators.

Since the entire system is powered ON always, to reduce the power consumption, HCT ICs are used.

2.9 REFERENCE DESIGN:

The maximum current that can be drawn from the reference AD581 is 10 mA . This current is not sufficient for the various references required. Suitable buffers (LM324) limit the current to 5 mA and also provide appropriate voltages to various devices as mentioned below.

DAC : 4 DACs are used. These require a current of 2 mA and a voltage between 0 and 10 V . Hence a $5 \mathrm{~K} \Omega$ pot is used at the i / p of the LM324.
 1 mA each, to provide good resolution to sense the voltage change with each microstep. Hence, $10 \mathrm{~K} \Omega$ pots are used.
16 REFERENCE VOLTAGE POTS (8 -FREO, 8-POWER): Each of the POTS used for setting reference voltages for selecting different frequencies require a current of 1.6 mA and a voltage between $0-10 \mathrm{~V}$. Hence, a pot of $5 \mathrm{~K} \Omega$ is used at the i / p of the LM324.

The pots used for setting voltages for selecting different power values corresponding to each frequency setting require a current of 1.6 mA and a voltage of 10 V each.

The power μ-meter has more number of turns than the frequency μ-meter. So the range of reference voltages is greater. Hence higher value potentiometers of $50 \mathrm{~K} \Omega$ are used.

2.10 INTERRUPT CONTROL:

Limit switches are provided to indicate if the μ-meters have reached their extreme position. The configuration for this is as shown in the schematic diagram. Here, when the μ-meter reaches its limit, the limit switch will be hit. The controller will be interrupted when the limit switch is hit, OR when the fuse blows after an excess current flow due to a fault. This in turn results in an interrupt subroutine being executed to disable the drivers. The status of the two limit switches (freq. motor / power motor) is also available to the controller through the control word , based on which appropriate action can be taken i.e., two bits are assigned to indicate the status of each μ-meter. These bits are cleared when the corresponding motor has reached its limit.

Interrupt circuit design:

To provide a voltage of 3 V at the i / p of the NAND gate, a voltage divider circuit is provided, as shown by the figure. To provide a current of 5 mA to the LED, a resistor of value $2.7 \mathrm{~K} \Omega$ is connected in series with the LED.

Figure 2.10.1

2.11 SERIAL COMMUNICATION:

When the two motors are to be operated from a distant location, say from a P.C. , the L / R pin is maintained at HIGH . A separate program is run from the P.C. side to do the following:
a) Set up the required baud rate
b) Send data serially to the μ-controller to set frequency or power
c) Send or receive acknowledgement to/from the controller

Similarly, at the controller side, when the L/R pin is HIGH, a routine monitors the data at the serial pin Rx of the controller, and suitably processes it to make the necessary changes, i.e. set frequency/ power as desired, or send an acknowledgement signal back to the P.C.

The baud rate to be used for transmission is to be specified by setting up a counter (timer 1) in auto-reload mode with a specific count corresponding to the baud rate required. The baud rate used in our application is 9600 baud (bits per sec). For this purpose, all timer interrupts have to be disabled.

If the control system is running in the LOCAL mode, with \bar{L} / R pin at LOW, and if a remote P.C. tries to access the μ-controller, the serial interrupt of the 8031 is activated, and the controller then performs an interrupt service routine which sends a message to the P.C. that the controller is currently being used in the LOCAL mode and cannot be accessed by the P.C.

2.11. a SERIAL INTERFACE:

Serial communication with a PC for remote mode of operation is performed using the in-built UART. Rxd and Txd levels are shifted to RS-232 interface standard with the help of a chip ICL 232.

Chip details:

ICL 232 is a dual RS-232 transmitter/receiver interface circuit that meets EIA RS-232 specifications with TTL / CMOS compatibility and low power consumption.

The logic levels may be shifted between
logic $1 \rightarrow-12 \mathrm{~V}$
logic $0 \rightarrow+12 \mathrm{~V}$

The serial interface may be schematically represented as shown.

Serial port of P.C.(COM1/COM2) may be used. This may also be implemented in Daisy Chain mode where the master accesses several slaves each with a different address, where the controller may be one of them. Suitable settings are made in the system BIOS for communication.

The UART in the μ-controller can be operated in different modes:
Mode 0: 8 data bits at fixed baud rate
Mode 1: 10 bits (8 data +1 start +1 stop) at variable baud rate
Mode 2: 11 bits(8 data +1 start +1 stop +1 programmable bit) at fixed baud rate.

Mode 3: 11 bits (8 data +1 start +1 stop +1 programmable bit) at variable baud rate.

Mode 1 and Mode 3 is used in this application so as to use the variable baud rate. Mode 3 has a programmable $9^{\text {th }}$ bit. The $9^{\text {th }}$ bit may be used to indicate whether the byte is an address byte or a data byte. The $9^{\text {th }}$ bit is set to ' 1 ' by setting the bit TB8 in the SCON register. RB8 corresponds to ninth received bit.

$$
\begin{aligned}
& 9^{\text {th }} \text { bit is ' } 1 \text { ' } \rightarrow \text { Address byte } \\
& 9^{\text {th }} \text { bit is ' } 0 \text { ' } \rightarrow \text { Data byte }
\end{aligned}
$$

2.12 HARDWARE CORRECTIONS:

1. In the PCB, the bit positions had been reversed by mistake. Since the lower 3 bits of the DAC were shorted to ground, the data byte provided to the DAC from the controller was changed (by modifications in the software) in such a way as to keep the byte unaltered as seen from the DAC .

The full-scale voltage at the output of the DAC had to be scaled down to the design value of 1 V , for which the value of the resistor R_{L} was re-designed as shown below.
$I=\frac{5 \mathrm{~V}}{2.2 k \Omega} \times \frac{255}{256}=\frac{1 V}{470 \Omega} \quad \begin{aligned} & \text { Where } \boldsymbol{R}_{\text {rf }}=2.2 \mathrm{~K} \Omega \\ & \boldsymbol{R}_{L}=470 \Omega\end{aligned}$
2. One of the error amplifiers of the PWM had to be disabled by giving the reference o/p (pin 14) of PWM to it's inverting terminal (pin 15). Instead, it was connected to non-inverting terminal (pin 16). This was corrected on the board as desired.
3. The path AD 0 was missing on the PCB . An external link is provided .

Softeware

SOFTWARE:

The software includes writing an assembly language program for the 8031 micro controller and C++ programming at the PC end for serial communication. The Assembly Language Program (A.L.P.) is explained with flow charts.

3.1 Program Description:

In the main program, the control word along with the code settings is read and stored in the beginning and depending on the position of the LOCAL / REMOTE switch (LOW / HIGH), the program jumps to local or remote routines. In the LOCAL routine, no action is taken till the START / STOP switch is set .On start, the code settings are compared with the previous value; if they are the same, control is passed on to the fine movement routine of the motor (Frequency or power motor depending on the position of the FREQ / POWER switch). If the code settings are different, control is passed to the coarse routine. Here the power motor is moved after the frequency motor. In the course of movement of the frequency motor, if the START / STOP switch is cleared, control is passed back to the main program without doing the power routine. Otherwise, the motor is rotated till there is a transition in the comparator o/p (i.e., the motor reaches the desired position) and the control is passed to the power routine in which the same procedure is followed. After the power motor has reached the desired position, or the START / STOP switch is cleared, control is transferred to the main program .

In the coarse routine, to indicate the stopping of the motor, a blink routine is called, which toggles the code LEDs for a duration of 10 sec .

In the remote mode of operation, the controller continuously polls for the data to be received. A link is established between the P.C. and the controller by sending an address to the controller. If the address from the P.C. is valid, the controller acknowledges by sending an acknowledge signal to the P.C. along which information regarding the latest code set in LOCAL, the status of \bar{L} / R and limit switches are sent. If the controller is in LOCAL mode, then no further information is sent to it from the P.C. side. Else, a second byte is transmitted. The P.C. polls for the acknowledgement only for a certain interval of time after which the address has to be re-transmitted if
required. Once the link is established, the second byte is transmitted This carries information about the code set from REMOTE, the motor to be operated, the direction of operation(if it is fine movement another byte indicating the number of steps may be sent). The controller processes the data and moves the motor accordingly. After completion of operation, another acknowledgement is sent to the P.C.

The data transmission is mainly in polling mode at both the ends. Eleven bit operation is employed for the transmission of the address byte. Apart from the start, stop and 8 address bits, a ninth bit is set which identifies the byte as an address, to the controller. (mode 3 operation). The P.C. employs 11 bit operation by using 2 stop bits for transmission. One of the stop bits is interpreted as the ninth data bit by the controller. After the address is acknowledged and the link is set up, both the P.C. and controller change to 10 bit operation.(mode 1 operation).

REGISTER INITIALIZATIONS:

The pointers for the look-up tables are stored into registers at the beginning of the program. Some special function registers have to be initialized at the beginning of the program. They are described as follows:

TCON: Timer / Counter Control Register
TCON is set to $\mathbf{4 0 H}$, thereby turning timer 1 on to generate the required baud rate for serial communication. Level triggering mode is used for interrupt INT0.

TMOD: Timer / Counter Mode Control Register

TMOD is used to enable either timer or counter operation and to set their mode of operation. Among the 8 bits, 4 bits each are used to set parameters for each timer (Timer 0, Timer 1). Timer mode is enabled, and the timer (Timer 1) is operated in mode 2 , which is an 8 -bit auto reload mode. This is done to generate the required baud rate. TMOD is set to $\mathbf{2 0 H}$. The 8 -bit reload value to set the baud rate is stored in TH1 and TL1.

Baud rate is generated(Mode 1 and 3) using the relation

$$
\frac{2^{\text {SMOD }}}{32} \times \frac{\text { Osc. freq }}{12 \times(256-T H 1)}
$$

where oscillator frequency is $11.059 \mathrm{MHz}, \mathrm{SMOD}=0$ and $\mathrm{TH} 1=\mathrm{FDH}$ which is the reload value. A value of FDH is used for a baud rate of 9600bps.

PCON: Power control Register: This register is set to 00 H and is redundant in this application.

SCON: Serial Port Control and Status Register.
This register contains not only the mode selection bits, but also the 9th data bit for transmit and receive (TB8 and RB8) and the serial port interrupt bits (TI and RI).

SCON is set to $\mathbf{5 8 H}$ for Mode 1 and D8H for Mode 3 respectively. Both have variable baud rate. TI and RI are polled for transmission and reception of data.

IE (Interrupt Enable Register):

IE is set to $\mathbf{9 1 H}$ in LOCAL mode to enable interrupt INT0 and serial interrupt and $\mathbf{8 1 H}$ in REMOTE . Serial interrupt is used only in LOCAL mode to deny the remote access since the controller cannot poll serial reception in this mode.

On the P.C. side, a built-in function of C++, BIOSCOM is used to define settings for baud rate and to read the status register after each transmission and reception. It also defines the port to be accessed (COM1/COM2). Functions inportb and outportb are used to receive and send data respectively. Details of setting serial port configuration from BIOS is given in the data sheets.

The ALP is converted to object code using assembler X8051. The OBJ file is converted to HEX file using LINK51 which is further converted to a binary file by HEXBIN converter. This binary file is programmed on to the EPROM using CHIPMASTER 3000.

INTERRUPTS

Conclusion

CONCLUSION

The present work has presented a study in the electronics of a stepper motor, using a μ-controller (8031) as the Central Processing Unit. The main aim of the project is to control a 200 -step stepper motor in μ-stepping mode to get 3600 steps per revolution, each step corresponding to a change of 0.3 mV on the coupled f / b pot.

The system operates the motor in both coarse and fine movement.

- Coarse movement by setting a code ($\mathrm{S}_{2}, \mathrm{~S}_{1}, \mathrm{~S}_{0}$) on the front panel. The motor moves only if the code sent varies from the previously stored value, and in a direction determined by the code and the comparator o/p.

The direction of rotation may be changed by either making alterations in the software, or by reversing the polarities of the f / b pots.

- Fine movement by setting the direction switch on the front panel, and turning the motor ON and OFF by using the START /STOP switch on the front panel.

DIRECTION SWITCH:
$\mathrm{L} \rightarrow$ Clockwise movement
$\mathrm{H} \rightarrow$ Anti-clockwise movement

For the purpose of testing, 8 different voltages were set at the reference pots, one for each freq/power. On setting a particular code, the motor moved to the specified postion wherein the f / b voltage equalled the reference i / p. All the codes were set one by one, and in each case, after the motor stopped moving, the readings corresponding to the f / b voltages and reference voltages were measured using a 5 -digit multimeter (to observe changes of the order of mV).

A plot of the code $\mathrm{v} / \mathrm{s} \mathrm{f} / \mathrm{b}$ voltage indicated that the readings coincided for both forward and reverse direction of motor movement.

The differences b / w the reference and f / b voltages were tabulated, and a plot of the differences v / s code revealed that the deviation for all codes was fairly constant for $\mathrm{L} \rightarrow \mathrm{H}$ transitions, i.e., clockwise movement of the motor, at a value of 0.5 mV . This corresponds to an error of 3μ-steps. This problem can be solved by providing a suitable off-set in the reference voltages corresponding to each code, or by moving the motor in fine movement after the motor has stopped.

In remote operation, the motor movements can be controlled from a distant location, by a P.C.

- The P.C. can set the required freq/power and transmit the code to the controller.
- The P.C. first sends an address byte to the controller, and sends the code as a data byte only on receiving an acknowledgement.
- The controller gives an indication to the P.C. when the motor has reached the desired position, and also gives information regarding the status of the controller.
- When the P.C. tries to access the system when it is operating in LOCAL mode, the controller gives an indication to it, denying permission to change settings.
- A facility can be provided to operate the motor in fine movement. For this purpose, the software at the P.C. side can be modified to send a $2_{\text {nd }}$ data byte containing the no. of steps to be moved, and in what direction.
- A hot-key can be provided at the PC to stop motor movements immediately, if the key is pressed.

Appendix

PHOTOGRAPHS:

FRONT VIEW OF THE MODULES

VIEW OF PCB I

--

VIEW OF PCB 2

(

$P[Q: 1$ COMPONENT LAYOUT

LIST OF COMPONENTS OF PCB-1

Reference Settings and Regulators

Item	Quantity	y Reference	Part
1	4	C1,C2, C3, C4	
2	6	C5,C6,C9,C10,C11,C14	3T CAP
3	1	C7	.33uf
4	1	C8	33uf
5	2	C12,C13	.01uf/16V
6	2	D2,D1	LED
7	2	F1,F2	FUSE/250mA
8	2	JP3,JP1	HEADER 3
9	2	JP4,JP2	HEADER 2
10	1	JP5	HEADER 4
11	2	R1,R2	1.8 K
12	1	U1	LM339
13	2	U2,U3	MC14051
14	1	U6	UA7812UC
15	1	U7	UA7912UC
16	2	JP9,JP6	HEADER 10
17	2	JP7,JP8	HEADER 3
18	8	R11,R13,R14,R15,R16,R17, R18,R	10K
19	8	R3,R4,R5,R6,R7,R8,R9,R10	50K
20	3	R19,R20,R21	5K
21	1	U5	LM324
22	1	U8	AD581
Connectors/Headers			
JP1 Codes from PCB 2			
JP2 Comparator o/p to PCB 2			
JP3 Supply			
JP4 Unregulated supply to PCB 2			
JP5 Regulated supply to PCB 2			
JP6 Monitoring power reference values			
JP7 To power feedback pot			
JP8 To frequency feedback pot			
JP9 Monitoring frequency reference values			

LIST OF COMPONENTS OF PCB-2

Controller

Item	Quantity	Reference	Part
1	16	$\begin{aligned} & \mathrm{C} 1, \mathrm{C} 7, \mathrm{C} 8, \mathrm{C} 14, \mathrm{C} 15, \mathrm{C} 17, \mathrm{C} 18, \\ & \mathrm{C} 20, \mathrm{C} 21, \mathrm{C} 23, \mathrm{C} 24, \mathrm{C} 25, \mathrm{C} 33, \\ & \mathrm{C} 34, \mathrm{C} 40, \mathrm{C} 43 \end{aligned}$	
2	5	C2,C3, C4, C5, C6	6800pf
3	8	$\begin{aligned} & \text { C9,C16,C19,C22,C35,C36, } \\ & \text { C41,C42 } \end{aligned}$.01uf
4	42	C10,C11;C12,C13,C29,C32, C39,C57,C58,C59,C60,C61, C62,C63,C64,C65,C66,C67, C68,C69,C70,C71,C72,C73, C74,C75,C76,C87,C88,C89, C90,C91,C92,C93,C94,C95, C96,C97,C98,C99,C100, C101	.1uf
5	1	C26	10uf
6	2	C27,C28	33pf
7	2	C30,C37	100uf/63v
8	8	$\begin{aligned} & \mathrm{C} 31, \mathrm{C} 38, \mathrm{C} 45, \mathrm{C} 46, \mathrm{C} 53, \mathrm{C} 54, \\ & \text { C55,C56 } \end{aligned}$	
9	1	C47	.01uf/ 16 V
10	4	C49,C50,C51,C52	$22 \mathrm{uf} / 25 \mathrm{~V}$
11	6	D1,D2,D3,D4,D5,D6	DIODE/switch
12	2	D1,D2	DIODE ZENER
13	6	D3,D4,D5,D6,D7,D28	LED
14	16	D8,D9,D10,D11,D12,D13, D14,D15,D18,D19,D20,D21, D22,D23,D24,D25	DIODE/FR102
15	4	D16,D17,D26,D27	DIODE
16	2	F1,F2	FUSE/500mA
17	1	J1	CON9
18	4	J2,J3,J7,J8	HEADER 2
19	1	J4	HEADER 4 .
20	1	J5	HEADER 10
21	2	J6,J11	HEADER 3
22	2	J9,J10	HEADER 6
23	3	Q1,Q2,Q3	2N2222
24	4	R1,R25,R33,R37	470
25	17	R2,R4,R5,R6,R7,R8,R13, R14,R24,R29,R31,R46,R52, R58,R60,R62,R64	4.7K
26	11	R3,R59,R61,R63,R67,R68, R71,R79,R81,R82,R84	2.7K

27	11	R9,R10,R11,R75,R76,R77, R78,R110,R111,R112,R113	5.6K
28	21	$\begin{aligned} & \text { R12,R15,R30,R32,R89,R90, } \\ & \text { R91,R92,R94,R95,R96,R97, } \\ & \text { R99,R100,R101,R102,R105, } \\ & \text { R106,R107,R108,R114 } \end{aligned}$	2.2K
29	4	R16,R26,R34,R40	110K
30	4	R17,R27,R35,R39	20K
31	4	R18,R28,R36,R38	220
32	8	$\begin{aligned} & \text { R19,R22,R41,R44,R47,R50, } \\ & \text { R53,R56 } \end{aligned}$	330K
33	8	$\begin{aligned} & \text { R20,R21,R42,R43,R48,R49, } \\ & \text { R54,R55 } \end{aligned}$	1.2K
34	4	R23,R45,R51,R57	
35	1	R65	8.2K
36	3	R66,R69,R70	33K
37	3	R72,R73,R74	1.8K
38	2	R83,R80	12K
39	4	R85,R86,R87,R88	3.3/1W
40	4	R93,R98,R103,R104	1.5 K
41	1	R109	82/1W
42	1	S1	SW DPDT
43	6	S2,S3,S4,S5,S6,S7	SW SPDT
44	1	U1	ICL232
45	1	U2	UA7805UC
46	4	U3,U6,U7,U8	TL494RRI
47	2	U4,U5	LF347RRI
48	1	U9	7404
49	1	U10	74HCT238
50	5	U11,U12,U13, U14,U20	74HCT573
51	1	U15	80C31 BH
52	4	U16,U17,U18,U19	DAC0800
53	1	U21	AM27C64
54	1	U22	74HCT244
55	1	U23	LM324
56	1	U24	7400
57	2	U25,U26	7408
58	2	U27,U28	L298
59	1	Y1	CRYSTAL(11.059

Coṇnectors/headers

J1 RS 232 Connector
J2 Supply to Driver 1
J3 Supply to Driver 2
J4 Regulated supply from PCB1
J5 Front panel switches

J6 Codes to PCB 1
J7 Comparator o/p fromPCB1
J8 Unregulated supply from PCB 1
J9 To motor 1
J10 To motor 2

Bibliography:

Intel Component Data Catalog
Intel 8-bit Embedded Controller

RCA High-speed CMOS Logic ICs (Harris Semiconductor)
Linear Data Book (National Semiconductor Corporation)
Data Conversion Products Data Book (Analog Devices)
Operational Amplifiers - Design and Applications (Burr - Brown)
PC Systems Programming (Abacus)

8031/8051/8751 SINGLE COMPONENT 8-BIT MICROCOMPUTER

\author{

- 8031 - Control Oriented CPU With RAM and I/O
 - 8051 - An 8031 With Factory Mask-Programmable ROM
 - 8751-An 8031 With User Programmable/Erasable EPROM
}
- $4 \mathrm{~K} \times 8$ ROM/EPROM
- 128×8 RAM
- Four 8-Bit Ports, 32 I/O Lines
- Two 16-Bit Timer/Event Counters
- High-Performance Full-Duplex

Serial Channel

- External Memory Expandable to 128 K
- Compatible with MCS-89 ${ }^{\circledR} / \mathrm{MCS}-85{ }^{\circledR}$

Peripherals

- Boolean Processor
- MCS-48 ${ }^{\circledR}$ Architecture Enhanced with:
- Non-Paged Jumps
- Direct Addressing
- Four 8-Register Banks
- Stack Depth Up to 128-Bytes
- Multiply, Divide, Subtract, Compare
- Most Instructions Execute in $1 \mu \mathrm{~s}$ $4 \mu \mathrm{~s}$ Multiply and Divide

The Intel ${ }^{\circ} 8031 / 8051 / 8751$ is a stand-alone, high-performance single-chip computer fabricated with Intel's highly-reliable +5 Volt, depletion-load, N -Channel, silicon-gate HMOS technology and packaged in a 40-pin DIP. It provides the hardware features, architectural enhancements and new instructions that are necessary to make it a powerful and cost effective controller for applications requiring up to 64 K bytes of program memory and/or up to 64 K bytes of data storage.
The $8051 / 8751$ contains a non-volatile $4 \mathrm{~K} \times 8$ read only program memory; a volatile $128 \times 8 \mathrm{read} / \mathrm{write}$ data memory; 32 I/O lines; two 16-bit timer/counters; a five-source, two-priority-level, nested interrupt structure; a serial I/O port for either multi-processor communications, I/O expansion, or full duplex UART; and on-chip oscillator and clock circuits. The 8031 is identical, except that it lacks the program memory. For systems that require extra capability, the 8051 can be expanded using standard TTL compatible memories and the byte oriented MCS-80 and MCS-85 peripherals.
The 8051 microcomputer, like its 8048 predecessor, is efficient both as a controller and as an arithmetic processor. The 8051 has extensive facilities for binary and BCD arithmetic and excels in bit-handling capabilities. Efficient use of program memory results from an instruction set consisting of 44% of one-byte, 41% two-byte, and 15% three-byte instructions. With a 12 MHz crystal, 58% of the instructions execute in $1 \mu \mathrm{~s}, 40 \%$ in $2 \mu \mathrm{~s}$ and multiply and divide require only $4 \mu \mathrm{~s}$. Among the many instructions added to the standard 8048 instruction set are multiply, divide, subtract and compare.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias $\ldots .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature..........$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on any
Pin to $V_{S S} \ldots \ldots$.
Voltage on $V_{C C}$ to $V_{S S} \ldots$.
Maximum lol per I/O pin 15 mA
Power Dissipation. 1.0W*
*This value is based on the maximum allowable die temperature and the thermal resistance of the package.
*Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTICE: Specifications contained within the following tables are subject to change.
D.C. CHARACTERISTICS $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 20 \%$; $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Symbol	Parameter	Min	Typ ${ }^{(3)}$	Max	Unit	Test Conditions
$V_{\text {IL }}$	Input Low Voltage (Except $\overline{E A}$)	-0.5		$0.2 \mathrm{~V}_{\mathrm{CC}}-0.1$	V	
$\mathrm{V}_{\text {IL } 1}$	Input Low Voltage ($\overline{\mathrm{E}} \overline{\mathrm{A}})$	-0.5		$0.2 V_{C C}-0.3$	V	
V_{IH}	Input High Voltage (Except XTAL1, RST)	$0.2 V_{C C}+0.9$		$V_{C C}+0.5$	\checkmark	
$\mathrm{V}_{\mathrm{H} 1}$	Input High Voltage (XTAL1, RST)	0.7 VCC		$V_{C C}+0.5$	V	
VOL	Output Low Voltage (6) (Ports 1, 2, 3)			0.45	V	$\mathrm{IOL}^{\prime}=1.6 \mathrm{~mA}{ }^{(1)}$
$\mathrm{V}_{\text {OL1 }}$	Output Low Voltage (6) (Port 0, ALE, PSEN)			0.45	v	$1 \mathrm{OL}=3.2 \mathrm{~mA}{ }^{(1)}$
V_{OH}	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-60 \mu \mathrm{AV} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$
		$0.75 \mathrm{~V}_{\mathrm{CC}}$			V	$\mathrm{I}_{\mathrm{OH}}=-25 \mu \mathrm{~A}$
		$0.9 \mathrm{~V}_{\text {CC }}$			V	$\mathrm{IOH}^{\prime}=-10 \mu \mathrm{~A}$
VOH_{1}	Output High Voltage	2.4			V	$\mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A} \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$
	(Port 0 in External Bus	$0.75 \mathrm{~V}_{C C}$			V	$\mathrm{IOH}=-300 \mu \mathrm{~A}$
		$0.9 \mathrm{~V}_{\mathrm{CC}}$			V	$\mathrm{IOH}=-80 \mu \mathrm{~A}$ (2)
I/L	Logical 0 Input Current (Ports 1, 2, 3)			-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathbf{I N}}=0.45 \mathrm{~V}$
$\mathrm{I}_{\text {TL }}$	Logical 1 to 0 Transition Current (Ports 1, 2, 3)			-650	$\mu \mathrm{A}$	$V_{I N}=2 \mathrm{~V}$
'LI	Input Leakage Current (Port 0, $\overline{E A}$)			± 10	$\mu \mathrm{A}$	$0.45<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\mathrm{CC}}$
RRST	Reset Pulldown Resistor	50		150	K Ω	
ClO	Pin Capacitance			10	pF	Test Freq $=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Icc	Power Supply Current: Active Mode, 12 MHz (4) Idle Mode, 12 MHz (4) Power Down Mode		$\begin{gathered} 11 \\ 1.7 \\ 5 \end{gathered}$	$\begin{gathered} 20 \\ 5 \\ 50 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$	(5)

PRERTMONARY

2764
 (8K x 8) UV ERASABLE PROM

200 ns (2764-2) Maximum Access Time . . . HMOS*-E Technology

- Compatible to High Speed 8 mHz 8086-2 MPU . . . Zero WAIT State

Two Line Control

- Pin Compatible to 2732A EPROM

■ Industry Standard Pinout . . . JEDEC Approved

- Low Active Current...100mA Max.

The Intel 2764 is a 5 V only, 65,536 -bit ultraviolet erasable and electrically programmable read-only memory (EPROM). The standard 2764 access time is 250 ns with speed selection available at 200 ns . The access time is compatible to high performance microprocessors, such as Intel's 8 mHz 8086 -2. In these systems, the 2764 allows the microprocessor to operate without the addition of WAIT states.

An important 2764 feature is the separate output control, Output Enable ($\overline{\mathrm{OE}}$) from the Chip Enable control ($\overline{\mathrm{CE}}$). The $\overline{\mathrm{OE}}$ control eliminates bus contention in multiple bus microprocessor systems. Intel's Application Note AP-72 describes the microprocessor system implementation of the $\overline{O E}$ and $\overline{C E}$ controls on Intel's EPROMs. AP-72 is available from Intel's Literature Department.
The 2764 has a standby mode which reduces the power dissipation without increasing access time. The active current is 150 mA while the standby current is only 50 mA . The standby mode is achieved by applying a TTL-high signal to the $\overline{\mathrm{CE}}$ input.

The 2764 is fabricated with HMOS*-E technology, Intel's high-speed N-channel MOS Silicon Gate Technology.

BLOCK DIAGRAM

MODE SELECTION

PINS MODE	$\begin{array}{r} \overline{C E} \\ (20) \\ \hline \end{array}$	$\begin{array}{r} \overline{O E} \\ (22) \\ \hline \end{array}$	$\begin{aligned} & \text { PGM } \\ & (27) \end{aligned}$	$V_{p p}$ (1)	$V_{c c}$ (28)	$\begin{gathered} \text { Outputs } \\ (11-13,15-19) \end{gathered}$
Read	V_{12}	V_{11}	$\mathrm{V}_{1 H}$	$V_{c c}$	$V_{c c}$	Dour
Standby	$V_{\text {IH }}$	x	x	$V_{C c}$	$V_{c c}$	High Z
Program	V_{1}	x	$V_{\text {LI }}$	$V_{\text {pp }}$	$V_{c c}$	$\mathrm{D}_{1 \times}$
Program Verify	$V_{\text {LI }}$	V_{11}	$V_{\text {LH }}$	$V_{p p}$	$\mathrm{V}_{\text {cc }}$	Dout
Program Inhibit	V_{1}	\times	x	$V_{\text {pp }}$	V_{cc}	High 2

x can be either $V_{I L}$ or $V_{I H}$

2764
PIN CONFIGURATION

[1] For total compatibility and upgradability from the 2732A and ROMs provide a trace to pin 26.

PIN NAMES

$A_{0}-A_{12}$	ADDRESSES
$\overline{\mathrm{CE}}$	CHIP ENABLE
$\overline{\mathrm{OE}}$	OUTPUT ENABLE
$\mathrm{O}_{0}-\mathrm{O}_{7}$	OUTPUTS
$\overline{\mathrm{PGM}}$	PROGRAM
N.C.	NO CONNECT

*HMOS is a patented process of Intel Corporation.

ERASURE CHARACTERISTICS

The erasure characteristics of the 2764 are such that erasure vegins to occur when exposed to light with wavelengths shorter than approximately 4000 Angstroms (\AA). It should be noted that sunlight and certain types of fluorescent lamps have wavelengths in the 3000-4000 \AA range. Data show that constant exposure to room level fluorescent lighting could erase the typical 2764 in approximate!y 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the 2764 is to be exposed to these types of lighting conditions for extended periods of time, opaque labels are available from Intel which should be placed over the 2764 window to prevent unintentional erasure.

The recommended erasure procedure for the 2764 is exposure to shortwave ultraviolet light which has a wavelength of 2537 Angstroms (\AA). The integrated dose (i.e., UV intensity X exposure time) for erasure should be a minimum of 15 W -sec/cm ${ }^{2}$. The erasure time with this dosage is approximately 15 to 20 minutes using an ultraviolet lamp with 12000 $\mu \mathrm{W} / \mathrm{cm}^{2}$ power rating. The 2764 should be placed within 1 inch of the lamp tubes during erasure. Some lamps have a filter on their tubes which should be removed before erasure.

DEVICE OPERATION

The five modes of operation of the 2764 are listed in Table 1. A single 5 V power supply is required in the read mode. All inputs are TTL levels except for $V_{p p}$.

TABLE 1. MODE SEL.ECTION

PINS MODE	$\begin{array}{\|c\|} \hline \overline{\mathrm{CE}} \\ (20) \end{array}$	$\begin{gathered} \overline{\mathrm{OE}} \\ (22) \end{gathered}$	$\begin{gathered} \overline{\mathrm{PGM}} \\ (27) \end{gathered}$	$\begin{aligned} & V_{\mathrm{Pp}} \\ & (1) \end{aligned}$	$\begin{aligned} & \mathbf{v}_{\mathrm{cc}} \\ & (28) \end{aligned}$	$\begin{gathered} \text { Outputs } \\ (11-13,15-19) \end{gathered}$
Read	$\mathrm{V}_{\text {IL }}$	$V_{1 L}$	V_{1}	$V_{\text {cc }}$	V_{Cc}	$\mathrm{D}_{\text {Out }}$
Standby	$V_{\text {IH }}$	\times	x	$V_{C . C}$	V_{cc}	High Z
Program	$\mathrm{V}_{\text {IL }}$	x	V_{11}	$V_{P P}$	$V_{c c}$	$\mathrm{D}_{\text {IN }}$
Program Verify	V_{LL}	$V_{\text {LL }}$	$V_{1 H}$	$V_{\text {Pp }}$	$V_{c c}$	Dout
Program Inhibit	V_{IH}	\times	x	$V_{\text {PP }}$	$V_{c c}$	High Z

x can be either V_{IL} or V_{HH}

READ MODE

The 2764 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable $(\overline{\mathrm{OE}})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time $\left(t_{A C C}\right)$ is equal to the delay from $\overline{\mathrm{CE}}$ to output $\left(t_{\text {cE }}\right)$. Data is available at the outputs after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been low and addresses have been stable for at least $t_{A C C}-t_{O E}$.

Standby Mode

The 2764 has a standby mode which reduces the active power current from 150 mA to 50 mA . The 2764 is placed in the standby mode by applying a TTL high signal to the CE input. When in standby mode, the outputs are in a high impedance state, independent of the $\overline{O E}$ input.

Output OR-Tieing

Because EPROMs are usually used in larger memory arrays, Intel has provided a 2 line control function that accommodates this use of multiple memory connection. The two line control function allows for:
a) the lowest possible memory power dissipation, and
b) complete assurance that output bus contention will not occur.

To most efficiently use these two control lines, it is recommended that $\overline{\mathrm{CE}}$ (pin 20) be decoded and used as the primary device selecting function, while $\overline{\mathrm{OE}}$ (pin 22) be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is desired from a particular memory device.

PROGRAMMING (See Programming Instruction Section for Waveforms.)
Programming is the same as Intel's 2732A except that $\overline{O E} / V_{P P}$ is not multiplexed. They have separate pins. Like the 2732A, exceeding 21.5 V will damage the 2764.

Initially, and after each erasure, all bits of the 2764 are in the " 1 " state. Data is introduced by selectively programming "Os" into the desired bit locations. Although only "Os" will be programmed, both " $1 s$ " and "Os" can be present in the data word. The only way to change a " 0 " to a " 1 " is by ultraviolet light erasure.

The 2764 is in the programming mode when $V_{\text {pp }}$ input is at 21 V and $\overline{\mathrm{CE}}$ and $\overline{\mathrm{PGM}}$ are both at TTL low. The data to be programmed is applied 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL.

For programming, $\overline{C E}$ should be kept TTL low at all times while $V_{p p}$ is kept at 21 V . When the address and data are stable, a 50 msec , active low, TTL program pulse is applied to $\overline{\mathrm{PGM}}$ input. A program pulse must be applied at each address location to be programmed. You can program any location at any time-either individually, sequentially, or at random. The program pulse has a maximum width of 55 msec .

Programming of multiple 2764 s in parallel with the same data can be easily accomplished due to the simplicity of the programming requirements. Like inputs of the paralleled 2764 s may be connected together when they are programmed with the same data. A low levelTTL pulse applied to the $\overline{P G M}$ input programs the paralleled 2764 s .

ROGRAMMING

le programming specifications are described in the Data Catalog PROM/ROM Programming structions Section.

BSOLUTE MAXIMUM RATINGS*

mperature Under Bias $\ldots \ldots \ldots \ldots \ldots \ldots-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
orage Temperature $\ldots \ldots \ldots \ldots \ldots .-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
I Input or Output Voltages with
Respect to Ground $\ldots \ldots \ldots \ldots \ldots \ldots+6 \mathrm{~V}$ to -0.6 V
p Supply Voltage with Respect to Ground
During Programming $\ldots \ldots \ldots \ldots . .+22 \mathrm{~V}$ to -0.6 V
orage Temperature $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
I Input or Output Voltages with
p Supply Voltage with Respect to Ground
During Programming
.+22 V to -0.6 V

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating onty and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not impled. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

I.C. and A.C. Operating Conditions During Read

	$\mathbf{2 7 6 4}$	$\mathbf{2 7 6 4 - 2}$	$\mathbf{2 7 6 4 - 3}$	$\mathbf{2 7 6 4 - 4}$
Operating Temperature Range	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}{\text { Power Supply }{ }^{1,2}}^{\mathrm{P}_{\mathrm{PP}} \text { Voltage }^{2}} \mathrm{5V} \pm 5 \%$	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 5 \%$	

IEAD OPERATION

J.C. AND OPERATING CHARACTERISTICS

Symbol	Parameter	Limits			Unit	Conditions
		Min	Typ ${ }^{3}$	Max		
$I_{L 1}$	Input Load Current			10	$\mu \mathrm{A}$	$V_{\text {IN }}=5.25 \mathrm{~V}$
Lo	Output Leakage Current			10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
$1_{p p_{1}{ }^{2}}$	$V_{\text {PP }}$ Current Read			15	mA	$\mathrm{V}_{\mathrm{pp}}=5.25 \mathrm{~V}$
ICct^{2}	$V_{c c}$ Current Standby			50	mA	$\overline{\mathrm{CE}}=\mathrm{V}_{1 H}$
$\mathrm{ICC2}^{2}$	$\mathrm{V}_{\text {cc }}$ Current Active		70	150	mA	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=V_{\text {IL }}$
V_{IL}	Input Low Voltage	-. 1		+. 8	\checkmark	
V_{IH}	Input High Voltage	2.0		$V_{c c}+1$	V	
$\mathrm{V}_{\text {OL }}$	Output Low Voltage			. 45	V	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$
V_{OH}	Output High Voltage	2.4			V	$\mathrm{I}_{\text {OH }}=-400 \mu \mathrm{~A}$

NOTES: 1. $V_{c c}$ must be applied simultaneously or before $V_{P p}$ and removed simultaneously or after $V_{p p}$
2. $V_{p p}$ may be connected directly to $V_{c c}$ except during programming. The supply current would then be the sum of $I_{c c}$ and $I_{p p r}$.
3. Typical values are for $T_{A}=25^{\circ} \mathrm{C}$ and nominal supply voltages.

TL494

SWITCHMODE
 PULSE WIDTH MODULATION CONTROL CIRCUITS

The TL494 is a fixed frequency, pulse wid:h modulation contro circuit designed primarily for Switchmode power supply control This device features

- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator With Master Or Slave Operation
- On-Chip Error Amplifiers
- On-Chip 5 Volt Reference
- Adjustable Dead-Time Control
- Uncommitted Output Transistors Rated to 500 mA Source Or Sink
- Output Control For Push-Pull Or Single-Ended Operation
- Undervoitage Lockout

The $\pi .494 \mathrm{C}$ is specified over the commercial operating range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The TL 4941 is specitied over the industrial range of $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. The TL494M is specified over the full military range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

SWITCHMODE

 PULSE WIDTH MODULATION CONTROL CIRCUITSplac: $_{4}^{1}$

N SUFFXX plastie package CASE 648-08

ORDERING INFORMATION	
Device	Temperature Range Package
TL494CN	0° to $+70^{\circ} \mathrm{C}$. Ptaskic DiP
TL494CJ	0 10.70 ${ }^{\circ} \mathrm{C}$ Ceramar OfP
TL.494in	25 to-85 C Prastic DIP
TL4941J	25 to-85 C Ceramic Dip
TL494M.	55 to 125 C Ceramic OPP

FGURE 1 - mock Dugain

figure 2 - timing diagram

MAXIMUM RATINGS fFuli operatrig ambient temperature range apphes uniess otherwise noted

Rating	Symbol	7.494C	TLA94	TLasm	Unit
Power Supply Voltage	VCC	42	42	42	v
Collector Output Voltage	$\mathrm{v}_{\mathrm{C} 1} \cdot \mathrm{v}_{\mathrm{C} 2}$	42	42	42	v
Collector Output Current leach trarsistor) (1)	${ }^{\text {Cl }}$. lC_{2}	500	500	500	mA
Amplifier input Voltage Range	VIR	0.31042	0.3 t0 42	:31042	v
Power Dissipation "' $T_{A}=45{ }^{\circ} \mathrm{C}$	P_{D}	1000	1000	100	mw
Operating Junction Temperature Plastic Package Ceramic Package	T.	$\begin{aligned} & 125 \\ & 150 \end{aligned}$	$\begin{aligned} & 125 \\ & 150 \\ & \hline \end{aligned}$	$\cdot 50$	$\begin{aligned} & c \\ & c \\ & \hline \end{aligned}$
Operating Ambient Temperature Raxce	$T_{\text {A }}$	01070	25 to 85	55.10125	c
Storage Temperature Range Plastic Package Ceramic Package	$T_{\text {sig }}$	$\begin{aligned} & 55 \text { to } 125 \\ & 65 \text { to } 150 \end{aligned}$	$\begin{aligned} & \text { 55 to } 125 \\ & 65 \text { to } 150 \\ & \hline \end{aligned}$	EE:0150	c

NOTE 1: Maximum thermal limits must de zoserved

THERMAL CHARACTERISTICS

Characteristics	Symbol	N Sutfix Plastic Package	J Suffix Ceramic Package	Unit
Thermat Resistance. Junction to Amsent	R, , JA	80	100	cw
Derating Ambient Temperature	${ }_{\text {TA }}$	45	50	c

recommended operating conditions

Condition/value	Symbol	TL494			Unit
		Min	Typ	Max	
Power Supply Voitage	VCC	7.0	i5	40	v
Collector Output Voltage	$\mathrm{V}_{\mathrm{C} 1} \mathrm{~V}_{\mathrm{C} 2}$	-	30	40	\checkmark
Collector Output Current leach transsisor)	${ }_{\text {Cl }}{ }^{\text {I }} \mathrm{C} 2$	-	-	200	mA
Amplifier input Volrage	$v_{\text {, }}$	-0.3	-	$\mathrm{vCC}-2.0$	\checkmark
Current Into Feedback Terminal	1fb	-	-	$=3$	mA
Reference Output Current	${ }^{\text {ref }}$	-	-	:0	mA
Timing Resistor	RT	1.8	30	500	K $\$ 1$
Timing Capacitor	C_{T}	0.0047	0.001	\bigcirc	${ }_{4}$
Oscillator Frequency	fosc	1.0	40	200	${ }^{*} \mathrm{H}_{2}$

ELECTRICAL CHARACTERISTICS $i=-15 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}-0.01 \mu \mathrm{~F}$. RT - 12 k 1 l unless otherwise noted.
For typical values $T_{A}-25^{\circ} \mathrm{C}$ for min rrax vatues T_{A} is the operaing ambient temperature range that applies w...ess other...se

${ }^{\text {-Characteristic }}$	Symbol	TL494C. 1			TL494M			Unit
		Min	Typ	Max	Min	Typ	Max	
REFERENCE SECTION								
Reference Voltage " 10 mA	$V_{\text {ref }}$	475	50	525	475	50	525	v
Line Regulation $\mathrm{V} \mathrm{VC}=7.0 \mathrm{~V} 1040 \mathrm{~V}$	Regline	-	20	25	\cdots	20	25	nv
Load Regulation (10 10 mA to 10 mA	Regload	-	30	15	.	30	15	nV
Short-Circuit Output Current $1 \mathrm{~V}_{\text {ref }}$: 0 V	'SC	15	35	75	15	. 35	75	

FEATURES

- Operating Supply Voltage up to 46 V
- Total Saturation Voltage - 3.4V max at 1 A
| - Overtemperature Protected
- Operates in Switched and Linear Regulation Modes
- 25W Power -Tab Package for Low Installed Cost
- Individual Logic Inputs for Each Driver
- Channel-Enable Logic Inputs for Driver Pairs

DESCRIPTION

The L298 is a power integrated circuit usable for driving resistive and inductive loads.
This device contains four push-pull drivers with separate logic inputs. Two enable inputs are provided for power down and chopping. Each driver is capable of driving loads up to 2A continuously.
Logic inputs to the 1298 have high input thresholds (1.85V) and hysteresis to provide trouble-free operation in noisy environments normally associated with me:ors and inductors. The L298 input currents and thresholds allow the device to be driven by TTL and CMOS systems without buffering or level shifting.
The emitters of the low-side power drivers are separately available for current sensing Feedback from the emitters can be used to control load current in a switching mode. or can be used to detect load faults.

Separate logic and load supply lines are provided to reduce total IC power consumption. Power consumption is reduced further when the enable inputs are low. This makes the 1298 ideal for systems that require low standby current. such as portable or batteryoperated equipment.

(ABSOLUTE MAximum ratings

Input and Inhibit Voltage, Vi. Vinhibit.................... -0.3 V to +7 V
Peak Output Current (each channel), Io

Repetitive (80% on -20% off: ton $=10 \mathrm{~ms}$) 2.5A
tic Operation ...2A

Total Power Dissipation (Tease $=75^{\circ} \mathrm{C}$), $\mathrm{P}_{\text {rot }}$.................. 25W
Storage and Junction Temperature. $\mathrm{T}_{\text {sig }} . \mathrm{T}_{\mathrm{i}} \ldots \ldots-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

THERMAL DATA

Thermal Resistance Junction-Case R en -case $\ldots \ldots . . .3^{\circ} \mathrm{C} / \mathrm{W}$ max.*
Thermal Resistance Junction-Ambient, Ruth rambo.... $35^{\circ} \mathrm{C} / \mathrm{W}$ max.

CONNECTION DIAGRAM

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS (for each channel. $V_{s}=42 \mathrm{~V} . V_{s s}=5 \mathrm{~V} . T_{1}=25^{\circ} \mathrm{C}$)

1) Sensing voltage can be -1 V for $\mathrm{t} \leq 50 \mu \mathrm{~S}$: in steady state $\mathrm{V}_{\text {sens }} \min \geq-0.5 \mathrm{~V}$.
2) See ligure la.
3) See figure 2a.

SWITCHING CHARACTERISTICS

Figure 1. Switching times test circuits.

NOTE: For INPUT chooder. set $E N=H$.
Figure 2. Switching Times Test Circuits.

NOTE: For INPUT chosder, set $E N=H$.

Figure 1a. Source Current Delay Times vs. Input or Enable Chopper

Figure 2a. Sink Current Delay Times vs. Input or Enabie Chopper.

APPLICATIONS

Figure 3. Bi-Directional DC Motor Control.

	INPUTS	FUNCTION
$V_{\text {inn. }}=H$	$C=H: D=L$	Turn right
	$C=L: D=H$	Turn lett
	$C=D$	Fast motor stop
$V_{\text {inn. }}=L$	$C=X: D=C$	Free running motor stop

$\mathrm{L}=$ Low
$\mathrm{H}=$ High
$\mathrm{X}=$ Don't Care

ICL232

 +5 V and $\mathrm{N}^{+}-0.6 \mathrm{~V}$. Each transmitter innowt has an inter-
nal 400 kilohm pullup resistor so any unused input can to left unconnected and its outout remains in its inw state. The

 Recelvers
The receiver inputs accept up to $\pm 30 \mathrm{~V}$ whis presenting
 threshold of 1.3 V which is within the $\pm 3 \mathrm{~V}$ limets, known as the transition region, of the RS-232 specificatson. The receiver output is V to V_{cc}. The cutput will be bow whenever
the input is greater than 2.4 V and high whenever the mput is floating or driven between +0.8 V and -30 V . The receivers
feature 0.5 V hysteresis to improve noise reiecton

ICL232
DETALED DECMIPTION
 uondunsuos somod moj semizel pue suoneoupeds zeez

 +1 TeV and -10 V . During phase one of the clock, capacitor

 during phase one, it is inverted with respect to ground to
proderee a signal across C 4 equal to $-2 \mathrm{~V}_{\text {cc }}$. The voitage converter accepts input voitages up to 5.5 V . The output impedance of the doubler $\left(V^{+}\right)$i approximately 200 ohms,
and
zine and
mately
450 ohms. The test circuit (Figure
3)) is aps 22 uF

7.9 Accessing the Serial Port from the BIOS

Computers in every part of the world communicate with each other and exchange data. Most of the time these computers use normal telephone lines for this communication. Phone lines only permit slow data transfer, but allow users to communicate from almost anywhere on the planet. Data transfers serially (i.e., oce bit at a time), while the sender and receiver maintain similar transfer protocols (parameters for data transfer).

Serial card

Since basic PC configurations aren't equipped for this type of data transmission, data transfer is only possible when the user adds an asynchronous communication, port (IBM's catch phrase for an $R S$ - 232 card, or serial interface card).

This type of card enables data transfer between two computers direct through a cable or through phone lines. Both the sender and receiver require a modem to communicate using the latter method. Modems convert computer signals into acoustical signals which can then be transmitted over telephone lines.

In addition to hardware, data communication requires software which controis the RS-232 card. BIOS offers this software in four functions called by interrupt 14 H Before discussing these functions in detail, let's examine data transfer protocol

Asynchronous transmission protocol

Word length
As the figure above shows, only the two line states, 0 and 1 (also called high and low) are important. The line remains high if no data transmission takes place. If the line's state changes to low, the receiver knows that data is being ransmitted. Between 5 and 8 bits transfer over the line, depending on the word length. Unfortunately the BIOS functions only support a word length of 7 or 8 bits. If the line is low during data transmission, this means that the bit to be sent is 0 . High signals a set bit. The least significant bit is transferred first, and the most significant bit of the character to be transmitted is transferred last.

Parity
The character can be followed by a parity bit which permits error detection during data transmission. Parity can be even or odd. For even parity, the parity bit augments the data word to be transmitted, so that an even number of bits results. For example, if the data word to be transmitted contains three bits set to 1 , the parity bit becomes I so that the number of 1 bits increments to four, making an even number. If the data word contained an even number of 1 bits, the parity bit would be zero. For odd parity the parity bit is set in such a manner that the total number of 1 bits is odd.

Stop bits
The stop bits signal the end of the transmission of data. Data cransmission protocol permits $1,1.5$ and 2 stop bits. Some users are confused about the option of working with 1.5 stop bits, since some believe that you can't divide a bit. The explanation for this paradox comes from the data transmission protocol.

Baud rate
Old standards dictate that data transfers at a rate of 300 baud (about 300 bits per second), and one stop bit. The signal for a 1 bit and the signal for a 0 bit are both events. Binary bits when transmitted in an analog environment such as phone ines may not be identical with baud rates. Since stop bits always have the value 1 , the line would be high for $1 / 300$ second. If instead you keep the line high for $1 / 200$ second, 1.5 bits are transmitted. The line remains high unail a new character transfers and sets the line transmitting the start bit to low.

Some interfaces work with negative logic. In such a case the conditions for 0 and 1 in the illustration above must be reversed. This doesn't change the basic principle of serial transmission.

Protocol settings
Data transmission only works if the sender and receiver both match various protocol parameters. First the baud rate (the number of bits ransmited per second) must be set. The standard baud rates for data exchange over voice telephone lines are 300,1200 and 2400 baud. These baud rates depend on the capabilities of the

Transfer registers

- first to a register designated as a A character cransmitted on a data line passestil processing ends on the character transjer holding register. It rems the transfer shift register from where the preceding it. Then the character moves to the transfer shit line. Depending on the UART transmits the characur bit by configuration, parity and stop bits implement the stream of data. When the 5 indicate function these two registers are empty.

Receiver registers

The receiver shift register accepts received data, then transmits the data to the receiver data register where the UART removes the parity and stop bits. If a
 to 1 to avoid overwriting. Bit 0 indicates that a character was received. If while
 transmission, it sets bit 2 of the line status. If a breakdown occurs in the agreed-
 always sets bit 4 if the data line remains longer in low (0) staus than required for the transmission of a character. Bit 7 signaen a RS-232 card and the modem isn't working properly.

7. The BIOS
PC System Programming
modem in use. For a dedicated (data only) telephone line or for direct data
transmission through a cable, speeds up to 9600 baud are possible. Up to 80 bytes
per second or 4800 bytes per minute can be transmitted at 9600 baud.
The word length depends on the data being transmitted. If the data consists of
normal ASCII characters, a 7 -bit word is enough, since the ASCII character set has
only 128 characters. If the data encompasses the complete PC set of 256
characters, 8-bit words are more practical.
Next the necessity of a parity check should be determined, and whether even or odd
parity should be used. In most cases parity checking is recommended, since phone
lines do not always transmit all data correcty. The parity selected is unimportant,
as long as both sender and receiver select the same parity.
The number of stop bits must be defined. One stop bit transmits successive
characters faster than a setting of two stop bits. On the other hand, two stop bits
increase the reliability of transmission.

[^0]> The following illustration shows a sample transmission of an "A" character with a protocol of 8 data bits, odd parity and one stop bit. Positive logic and a 300 baud transmission rate are assumed. Since the ASCII code of the "A"character is 65 (01000001 (b)) and therefore contains only two 1 bits, the parity bit changes to 1 to set the number of 1 bits to an odd number.

The brain of an RS-232 card is the UART (Universal Asynchronous Receiver Transmitter). You should be familiar with the design and capabilities of this

Bits	Protocol
bit 0,1	$\begin{aligned} & \text { Word length } \\ & 10 \text { (b) }-7 \text { bits } \\ & 11 \text { (b) }-8 \text { bits } \\ & \hline \end{aligned}$
bit 2	$\begin{gathered} \text { Number of Stop bits } \\ 0-1 \text { Stop bit } \\ 1-2 \text { Stop bits } \\ \hline \end{gathered}$
bit 3,4	Parity check $00(b)$ - none $01(b)$ - odd 10(b) - even
bit 5-7	Baud rate $000-110$ Baud $001-150$ Baud $010-300$ Baud $011-600$ Baud $100-1200$ Baud $101-2400$ Baud $110-4800$ Baud $111-9600$ Baud

After initialization the function loads the line status into the AH register.

Function 1: Transmit character

Function 1 transmits characters. During its call, the AH register must contain 1 and the AL register must contain the character to be transmitted. If the character was transmitued, bit 7 of the AH register changes to 0 after the function call. A 1 signals that the character could not be transmitted. The remaining bits correspond to the line status.

Function 2: Receive character

Function 2 receives characters. After calling this function the AL register contains the character received. AH contains the value 0 if no error occurred, otherwise the value corresponds to the line status.

Function 3: Line/modem status

Function 3 senses and returns the modem status and line status. It returns the line status in the AH register and the modem status in the AL register:

Bit 0 Modem ready to send status change
Bit 1 Modem on status change
Bit 2 Telephone ringing status change

Bit 2	relephone
Bit 3	Connection to receiver status change

Bit 3	Connect
Bit 4	Modem ready to send

Bit 4	Modem rea
Bit	Modem

Bit 5	Modem on
Bit 6	Telephone ringing

Bit 6	Telephone ringing
Bit	Connect

Bits 4 to 7 represent a duplication of bits 0 to 3 . Bits 0 to 3 indicate whether the contents of bits 4 to 7 have changed since the last reading of the modem status. If this is the case, the corresponding bit contains the value 1 . For example, if bit 2 contains the value 1 , this means that the content of bit 6 has changed since the last reading. In reality it means that the phone just started to ring or has stopped ringing, depending on the previous value of bit 6 .

[^0]: Sample protocol

