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ABSTRACT 

Einstein‟s relativistic theory of gravitation – general relativity – is about a century old. At 

core it is one of the most revolutionary ideas of modern science – the idea that gravity is the 

geometry of four-dimensional curved spacetime. 

General relativity has been accurately tested in the solar system. It underlies our 

understanding of the universe on the largest distance scales and central to the explanation of 

various astrophysical phenomena. 

This report just gives an introduction to general relativity and some of the phenomena 

explained by this theory like the formation of black holes, the cosmological red shift e.t.c 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 | P a g e  
 

CONTENTS 

Acknowledgements         2 

Abstract          3 

1. Introduction         5 

a). General Relativity 5 

2. Gravity as Geometry       6 

a).The Equivalence Principle 6 

b).Clocks in a Gravitational Field 6 

3. Geodesics       7 

a).Geodesic Equation 7 

b).Solving the Geodesic Equation 8 

c).Null Geodesics 9 

4. Geometry Outside a Spherical Star     9 

a).Schwarzschild Geometry 9 

b).Gravitational Redshift 10 

c).Particle Orbits 11 

d).Light Ray Orbits 12 

5. Gravitational Collapse and Black Holes     13 

a).Stars 13 

b).The Schwarzschild Black Hole 13 

c).Collapse to a Black Hole 15 

d).Nonspherical Gravitational Collapse 15 

6. Cosmological Models       16 

a).Homogeneous, Isotropic Spacetimes 16 

b).The Cosmological Redshift 16 

7. Conclusion         18 

8. References       19 

             

 

 

 

 

  



5 | P a g e  
 

1.INTRODUCTION 

The study of bodies in motion and the cause for the motion is broadly called as “Mechanics”. 

There are two different interpretations of mechanics given each by Newton and Einstein 

namely “Classical Mechanics” and “General Relativity”.  

The Newtonian view of mechanics is popularly known as “Classical Mechanics”.  

The main assumptions of Classical Mechanics are: 

1. Space and time as completely distinct. 

2. The geometry of space is defined in Cartesian coordinates by the line element 

                                                              

3. Time is absolute. 

The Newtonian mechanics fails to give accurate results when the particles move with 

velocities comparable to the speed of light i.e   ⁄   . The Einstein‟s theory of “Special 

Relativity” comes to the rescue in this situation.  

a).General Relativity: 

The General Relativity is the more general version of special relativity which explains the 

motion of particles even from non-inertial frames. General relativity is the only theory with 

firm experimental verification which can explain “Gravity”. It does not consider gravity as a 

force but considers it as geometry of space-time.  

The space-time is a four dimensional unification of space and time. The space-time geometry 

is non-Euclidean and the presence of mass curves the space-time around it. The particles 

move in the straightest possible path in this curved space-time. 

General Relativity is in excellent agreement with the all experimental results till date. It 

assumes that the speed of light is the speed limit and only massless particles can achieve this 

velocity. The particles with nonzero mass can never achieve the speed of light because the 

force needed to achieve this would become infinite. 

It is in close connection with classical electrodynamics. Like the Maxwell‟s Equations 

explain classical electrodynamics the gravity can be explained by a set of ten equations called 

“The Einstein Equation”. The solutions to the equation give the geometry around a star or a 

black hole. The Vacuum Einstein equation is the equation similar to Poisson‟s equation in 

classical electrodynamics. Schwarzschild geometry is one of the solutions of Vacuum 

Einstein equation.  

This report deals with the concepts of Gravity as a result of curvature in the spacetime 

geometry caused by the presence of matter, the geodesics followed by the objects moving in 

space time and Schwarzschild geometry.  
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2.GRAVITY AS GEOMETRY 

General relativity considers gravity as an effect of curvature of four dimensional spacetime 

and not as a phenomena arising from forces and fields. 

a).The Equivalence Principle: 

“No experiment can distinguish a uniform acceleration from a uniform gravitational field”. 

The above statement is called the “Equivalence Principle” given by Einstein.  

For example let us assume two closed laboratories „A‟ and „B‟. The laboratory A is on the 

earth and the laboratory B is in deep space accelerating with the same acceleration as that of 

the „g‟ of earth. Now the observer in laboratory A drops ball and a feather and finds their 

acceleration to be same as „g‟. Now the observer in „B‟ repeats the same experiment and 

obtains the same result. So, the observer in laboratory „B‟ cannot decide whether he is in a 

gravitational field or is he accelerating. 

From the above example we can infer that the laboratory should be in a region where the 

gravitational field is uniform. Normally the gravitational field is different in different 

locations so the laboratory should be very narrow to be able to neglect the fluctuations. So the 

equivalence principle can also be stated as 

Experiments in a sufficiently small freely falling laboratory, over a sufficiently short time, 

give results that are indistinguishable from those of the same experiment in an inertial frame 

in empty space. 

      

b).Clocks in a Gravitational Field: 

Let us consider a uniformly accelerating rocket with an acceleration „g‟ along the z axis. Let 

observer A is at the head of the rocket and observer B is at the tail of the rocket. Let us 

assume observer A sends light signals to observer B frequently with the time difference 

between the successive signals as ΔτA and the time difference between the reception of 

successive signals be ΔτB. Let the height of the rocket be „h‟. Then the position of the 

observers can be given as a function of time as 

  ( )  
 

 
    and    ( )  

 

 
      

Let us consider the emission of two successive light pulses by A and their reception by B. Let 

    and       be the times of emission of the signals and let t1 be the time needed to 

reach B. The distance travelled by the first pulse is 

  ( )    (  )      

The distance travelled by the second pulse is shorter and given by 

  (   )    (      )   (          ) 
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Inserting the time dependent functions of positions in the above equations gives 

  
 

 
   

      

  
 

 
   

          (          ) 

Simplifying the above equations give 

       (  
  

  
) 

   is the gravitational potential difference between A and B. 

Thus the time interval is depending on the gravitational potential at the location of the clock. 

3.GEODESICS 

A geodesic is a generalized notion of straight line in a curved space. The particles which are 

free from any influences other than the curvature of the spacetime are called free or freely 

falling in general relativity. 

a).Geodesic Equation: 

The Path followed by a particle in space-time is called its “Geodesic”. The equations 

governing the motion of test particles and light rays in general curved spacetime are called 

“Geodesic Equations”. These can be obtained from Variational calculus 

Variational Principle for Free Test Particle Motion
1 

The world line of a free test particle between two timelike separated points extremizes the 

proper time between them. 

 

The proper time along a timelike world line between two points A and B in spacetime is 

    ∫ [    ( )  
    ]

 
 ⁄

 

 

 

The world line can be described parametrically by giving the four coordinates    as a 

function of a parameter σ that varies from 0 to 1 along the path from A to B. Then the proper 

time can be written as 

    ∫   *    ( )
   

  

   

  
+

 
 ⁄ 

 

 

Therefore the world lines that extremize the proper time should satisfy the Lagrange‟s 

equations                                       
 

  
(

  

 (
   

  
)
)  
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For the Lagrangian 

 (
   

  
   )  (    ( )

   

  

   

  
)

 
 ⁄

 

Where     is the metric of the spacetime. 

The general form of the geodesics in an arbitrary curved spacetime can be written as 

    

   
      

   

  

   

  
 

There are four equations because there are four values for α.The coefficients      are called 

the Christoffel symbols and are constructed from the metric and its derivatives.They can be 

taken to be symmetric in the lower two indices. 

If given a metric „g‟ then the christoffel symbols can be calculated from the equation 

    
 
   

 

 
(
    
   

 
    
   

 
    
   

) 

 

b).Solving the Geodesic Equation: 

Conservation laws reduce the number of equations that need to be solved. One first integral 

that is always available comes from the normalization of the four-velocity vector. It can be 

written as 

       
   

  

   

  
    

It is the only integral available for the most general metric. Further conservation laws arise 

from symmetries. For example symmetry in displacement in time gives rise to energy 

conservation and symmetry in displacement in space leads to linear momentum conservation 

e.t.c. 

Killing Vectors are used to identify the symmetries. For example in spherical polar 

coordinates azimuthal symmetry is specified by the killing vector ξ having components 

ξ
α
 = (0,0,0,1) 

Symmetry implies a conserved quantity along a geodesic. Let us suppose that L is 

independent of coordinate    then      ⁄   . That implies  

 

  
[

  

 (     ⁄ )
]    
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 (     ⁄ )
     

 

 

   

  
     

   

  
      

         

In an arbitrary coordinate system, a conserved quantity along a geodesic can be represented 

as  

   =contant 

c).Null Geodesics: 

Null geodesics are the geodesics followed by the light rays. The same procedure is followed 

to solve the geodesic equations as specified earlier only with few changes. The changes are: 

1. The affine parameter    is not the spatial distance. 

2. The normalization of velocity four-vector changes as 

 

       
   

  

   

  
   

4.GEOMETRY OUTSIDE A SPHERICAL STAR 

The simplest curved spacetimes in general relativity are the ones with the most symmetry. 

The geometry outside a spherical star is one of those and it is called as the Schwarzschild 

geometry. It is named after Karl Schwarzschild who solved the vacuum Einstein equation to 

find it in 1916. 

a).Schwarzschild Geometry: 

The line element in a particular suitable set of coordinates summarizing the Schwarzschild 

geometry is given by (G=c=1 units)  

     (  
  

 
)    (  

  

 
)
  

      (            ) 

The G=c=1 system of units is called geometrized units. The coordinates are called the 

Schwarzschild coordinates and the corresponding metric    is called the Schwarzschild 

metric. These are the following properties of this metric 

1. Time Independent:  

The metric is independent of time. The killing vector associated with this symmetry is 

ξ
α
 = (1,0,0,0). 

2. Spherically Symmetric: 

The 2D surface with t=r=constant is given by the line element 

      (            ) 

This surface has the geometry of a sphere with radius r in flat 3D space. Thus 

Schwarzschild geometry is symmetric under rotations about the z-axis. The killing 

vector associated with this symmetry is  
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   (       ) 

Here the coordinate r is not the radius of a sphere. Rather it is related with the area of  

2D spheres of fixed r and t by the standard formula  

  (   ⁄ )  ⁄  

3. Mass M:  

For small values of M the coefficient of dr
2
 can be expanded and we end up getting 

static weak field metric. Thus M can be identified as the total mass of the source of 

curvature.  

4. Schwarzschild Radius:   

The metric becomes singular at     and     . The latter is called the 

Schwarzschild radius. It is the characteristic length scale for the curvature in the 

Schwarzschild geometry. 

The metric can be explicitly written as 

gαβ= diag(-(1-2M/r), (1-2M/r)
-1

,r
2
,r

2
sin

2
θ) 

 

b).Gravitational Redshift: 

The change in observed frequency at infinity with respect to the emitted frequency is called 

as gravitational redshift. The energy of a photon measured by an observer with four-velocity 

uobs is 

          

But the energy of a photon can also be represented by the equation 

     

The spatial components of the four-velocity are zero for a stationary observer. From 

normalizing condition we get 

     ( )  (  
  

 
)
   ⁄

 

Thus  

     ( )  (     ⁄ )   ⁄  ξ
α
 

The frequency of photon measured by the stationary observer at a radius R is 

    (  
  

 
)
   ⁄

(    )  

Similarly at infinity 

    (    )  

But (    ) is a conserved quantity. Therefore we get       (  
  

 
)
  ⁄

. 
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c).Particle Orbits: 

i).Conserved Quantities: 

In Schwarzschild geometry the quantities that are conserved are ξ.u and η.u because the 

metric is independent of t and ϕ respectively.  

Let 

       (  
  

 
)
  

  
 

             
  

  
 

„e‟ is called as energy per unit rest mass and „l‟ is called as angular momentum per unit rest 

mass. 

ii).Effective Potential and Radial Equation: 

We have already told that normalization of velocity four-vector gives an integral. So, let‟s 

normalize the four-velocity. 

       

 (  
  

 
) (
  

  
)
 

 (  
  

 
)
  

(
  

  
)
 

   (
  

  
)
 

    

Now we can eliminate 
  

  
 and 

  

  
 using the conserved quantities „e‟ and „l‟. Doing so we get 

 (  
  

 
)
  

   (  
  

 
)
  

(
  

  
)
 

 
  

  
    

    

 
 
 

 
(
  

  
)
 

 
 

 
*(  

  

 
)(  

  

  
)   + 

By defining a constant    
    

 
 and the effective potential as 

    ( )  
 

 
*(  

  

 
)(  

  

  
)   +  

  

 
 
  

   
 
   

  
 

The equation can be compactly written as  

  
 

 
(
  

  
)
 

     ( ) 

The extrema of the effective potential can be found by solving the equation 
     ( )

  
  . 

There is one local minima and one local maxima, whose radii are given as 
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[  √    (

 

 
)
 

] 

If   ⁄  √   there is no extrema and the effective potential is always negative. If   ⁄  

√   the effective potential has one maxima and one minima. The maxima lie above 

    ( )    if    ⁄    and otherwise lies below it. The nature of the orbit depends on the 

relation between ϵ and Veff. 

iii).Radial Plunge Orbits: 

The simplest example is the radial free fall of a particle from infinity – l=0. The particle can 

start from infinity with various values of its kinetic energy corresponding to different values 

of ϵ. If the particle starts at rest from infinity then  dt/dτ=1 at infinity and e=1. 

We have  

 

 
(
  

  
)
 

 
 

 
   

We endup getting    ((     ⁄ )    (   ⁄ )  ⁄     ). Solving for r gives  

 ( )  (  ⁄ )  ⁄ (  )  ⁄ (    )
  ⁄  

Where    is an arbitrary constant which fixes the proper time when r=0. 

iv).Stable Circular Orbits: 

Stable circular orbits occur at the radii       . The radius of this orbit decreases with 

decreasing l/M , but stable circular orbits are not possible at arbitrarily small radii. The 

innermost stable circular orbit occurs when   ⁄  √   at the radius 

         

For a particle orbiting a gravitational source at       we can prove that 

   
 

  
 

The above equation is nothing but the kepler‟s law. 

d).Light Ray Orbits: 

The orbit of a light ray can also be calculated just as done for the particle but we have to 

consider that the affine parameter is different from the one used for particle orbits and also 

the normalization of velocity four vector gives u.u=0 rather than u.u= -1 for particle orbits. 

We endup getting   
 

  
 

 

  
(
  

  
)
 

     ( )   where      ( )  
 

  
(  

  

 
). 
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5.GRAVITATIONAL COLLAPSE AND BLACK HOLES 

a).Stars: 

The total life of a star is an interplay two opposing forces. 

1. The contracting gravitational force 

2. The expanding forces of gases heated by thermonuclear burning. 

A star is born when a cloud of interstellar gas consisting mostly of hydrogen and helium that 

is momentarily cooler, denser and lower in kinetic energy than its surroundings collapses due 

to gravitation. Compressional heating raises the temperature of the core high enough to ignite 

the nuclear fission reactions to release energy. The star then reaches a steady state where the 

energy lost to radiation is balance by that produced by the nuclear fission of hydrogen. Our 

sun is at present in this state. 

As time proceeds eventually, a significant fraction of hydrogen in the star‟s core is exhausted 

and there is no longer enough thermonuclear force to provide the energy lost to radiation. 

Gravitational contraction resumes. Again the compressional heating raises the temperature 

until the reaction which burns helium to other elements ignite. The star becomes brighter and 

its surface temperature changes. This cycle repeats itself until the majority of the element left 

in the star is iron or its neighbouring atoms in the periodic table. These iron peak nuclei are 

therefore called the ashes of thermonuclear burning. 

A star which runs out of thermonuclear fuel has two possibilities. 

1. Equilibrium star supported against the force of gravity by a non-thermal source of 

pressure. 

2. Star never reaches equilibrium and the end state is ongoing gravitational collapse. 

b).The Schwarzschild Black Hole: 

i).Eddington-Finkelstein Coordinates: 

Let‟s consider an idealized case where the collapsing body and the spacetime around it are 

spherically symmetric. According to Newton‟s the Newtonian gravitational potential outside 

a spherically symmetrical body is given by –GM/r, whether or not the body is changing with 

time. A similar theorem in general relativity shows that, even though the mass distribution is 

time dependent, the geometry outside a spherically symmetric gravitational collapse is time-

independent Schwarzschild geometry. 

As the collapse proceeds, more and more of the Schwarzschild geometry is uncovered. Now 

we have to face the singularities in the Schwarzschild metric at r=2M and r=0 and the 

significance in the change in sign of gtt and grr at r=2M. The singularity at r=2M turns out not 

to be a singularity in geometry of spacetime, but a singularity in Schwarzschild coordinates. 

To show this let use another coordinate system to represent the Schwarzschild geometry. 

Let us make a transformation so as to change the coordinate „t‟ in Schwarzschild geometry as 
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             |
 

  
  | 

Starting either from      or      and transforming t to v in the line element given by 

Schwarzschild metric gives the result  

     (  
  

 
)              (            ) 

This is called as Eddington-Finkelstein Coordinate system. The fact that the above metric is 

obtained by starting from the Schwarzschild metric starting from either      or      

shows that these two regions, although separated by a singularity in Schwarzschild metric, 

are in fact smoothly connected. 

At large values of r the metric approaches the flat metric with t replaced by v-r. But r=0 is a 

true singularity. It is a place of infinite spcetime curvature and infinite gravitational forces. 

ii).Light Cones of the Schwarzschild Geometry: 

The key to understanding the Schwarzschild geometry as a black hole is the behaviour of 

radial light rays. Since these are moving radially         and        

 (  
  

 
)              

[ (  
  

 
)      ]      

i.e            or   (  
  

 
)          

By solving we get    (        |
 

  
  |)           

           lines are incoming light rays. For the second solution for large values of r it 

represents outgoing rays. If      the same equation represents incoming rays. The curve 

     represents stationary light rays. The      divides the spacetime into two regions: 

1. The region outside      from which light can escape to infinity. 

2. The region inside     , where gravity is so strong that even light cannot escape. 

This is the defining feature of black hole geometry. The surface      is called the event 

horizon of a black hole. 

iii).Geometry of the Horizon and Singularity: 

The horizon      is a three-dimensional null surface in the spacetime. Its normal vector 

points in the r-direction and is a null vector. The v=constant slice of the horizon is a two 

surface with the geometry of a sphere with area A=16πM
2
, which is called the area of the 

horizon. The area does not change with v in the time independent Schwarzschild geometry. 

However it would change if matter fell into the black hole in a spherically symmetric way. 
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c).Collapse to a Black Hole: 

i).Two Observers – The Inside Story: 

To understand the consequences of a spherical collapse, consider two observers. One 

observer rides on the surface of a star down to r=0 whereas the other observer remains 

outside the horizon at a large fixed radius r = rR. The geometry outside the star is the well-

known Schwarzschild geometry. Suppose the falling observer carries a clock and 

communicates with the distant observer by sending out light signals at equally spaced times 

according to his clock. 

The pulses emitted by the falling observer seize to reach the distant observer once the star has 

crossed     . So there is no way that the observer from inside the horizon can 

communicate with the distant observer and the distant observer can never receive  any 

information from inside the horizon. 

ii).The Observers – The Outside Story: 

The distant observer never sees the star cross the radius     . The last signal to reach the 

distant observer is the one emitted just before the star crosses this radius. Furthermore the 

pulses emitted by the falling observer are received at increasingly longer intervals at the clock 

of the distant observer. The photons get red-shifted and the red-shift reaches infinity as the 

star reaches     . 

d).Nonspherical Gravitational Collapse: 

Realistic collapse situations are not exactly spherical. A pre-collapse star may be distorted by 

rotation. 

1. Formation of a singularity: 

Once the collapsing star crosses the      there is no escape from singularity even 

if the star is non-spherical.  

2. Formation of an Event Horizon: 

Even if the star is non-spherical once the singularity is formed it is hidden from the 

distant observer so there is an event horizon formed around the non-spherical black 

hole. 

3. Area Increase: 

As described earlier the area of the black hole increases when mass falls into it in a 

spherically symmetric way. However, even if the mass falls in non-spherically 

symmetric fashion, the area of the horizon increases. 

This is a consequence of the area increase theorem for black holes. It reminds us of 

the entropy in thermodynamics. Quantum mechanics can be used to show that the 

entropy of a black hole is proportional to its area. 
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6.COSMOLOGICAL MODELS 

 

a).Homogeneous, Isotropic Spacetimes: 

A homogeneous, isotropic spacetime is one for which the geometry is spherically symmetric 

about any point in space and the same at one point in space as at any other. Homogeneity and 

isotropy are the properties of space and not of spacetime. Homogeneous, isotropic spacetimes 

have a family of preferred three-dimensional special slices on which the three-dimensional 

geometry is homogeneous and isotropic. 

The Flat Robertson – Walker Metric: 

The simplest example of a homogeneous, isotropic geometry can be described by the line 

element 

           ( )(           ) 

Where a(t) is a function of the time coordinate t called the scale factor. The above equation is 

called the flat Robertson – Walker metric, not because the spacetime is flat but because the 

geometry of the special slices is flat. It‟s a Friedman – Robert – Walker (FRW) model when 

the scale factor obeys the Einstein equation. 

b).The Cosmological Redshift: 

The flat Robertson – Walker geometry is time dependent. The energy of a particle will 

change as it moves in this geometry similarly to the way it would if it moved in a time – 

dependent potential. Let‟s now derive the simple relation that gives its form. 

Let‟s rewrite the line element in polar coordinates: 

           ( )[      (            )] 

Let‟s fix our position as the origin. Consider an observer in a galaxy coordinate distance 

    away. Suppose the observer at the distant galaxy emits a photon with frequency ωe at 

time te which we receive at the present time t0. Let ω0 be the received frequency. 

The pulse emitted travels on a radial null curve for which 

              ( )    

Between the time interval te and t0 the pulse travelled a spatial coordinate distance R. 

Therefore 

  ∫
  

 ( )

  

  

 

This relation connects the times of emission and reception with the coordinate distance 

travelled. 
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Suppose the observer in the distant galaxy emits a series of pulses separated by some short 

interval of time δte,i.e with the circular frequency ωe=2π/ δte. The time interval δt0 between 

the pulses at reception can be calculated as 

∫
  

 ( )

      

      

   ∫
  

 ( )

  

  

 

Assuming that δte and δt0 are small, we get 

   
 (  )

 
   
 (  )

   

This in terms of frequency can be represented as: 

  
  
 
 (  )

 (  )
 

Although derived for a spatially flat FRW model, this relation holds in any of the 

homogeneous, isotropic models. In an expanding universe where  ( ) grows with t, the ratio 
 (  )

 (  )
 will be less than one and the received frequency will be less than the emitted one. This is 

called the “Cosmological Redshift”. 

    
  
  
 
  
  
 
 (  )

 (  )
 

„z‟ is called the red shift. 

For example, consider a galaxy a small distance away at the time of reception so that its 

coordinate separation R is small. Its distance at reception is  

    (  )  

Any light ray from the galaxy travels along the null path. The coordinate time that it travels is 

(  )    (  ) 
  (                 ). The time of travel is also d and te=t0-d, both 

neglecting R
2
 corrections. 

  
  

 
 *
 ̇(  )

 (  )
+   

This is Hubble‟s law and it gives the connection of Hubble constant to the geometry of 

spacetime 

    (  )  
 ̇(  )

 (  )
 

The inverse of    is called the Hubble time, tH. Hubble time is a convenient unit of time in 

cosmology. 
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7.CONCLUSION 

As you can see General Relativity is the only theory at present which can explain the various 

complex phenomena observed in the universe. Its applications range from microscopic to 

macroscopic. All the astronomical phenomena can be predicted and explained by this theory. 

It explains the evolution of a star. It is only a classical theory and a Quantum Mechanical 

formalism of General Relativity is not yet on firm footing. In future there can be another 

theory of which general relativity may become a special case like classical mechanics became 

a special case of the present general relativity. 

Thus general relativity is a very important theory and plays a vital role in understanding the 

formation and evolution of our universe. 
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