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Abstract
The Koslowski–Sahlmann (KS) representation is a generalization of the
representation underlying the discrete spatial geometry of loop quantum
gravity (LQG), to accommodate states labelled by smooth spatial geometries.
As shown recently, the KS representation supports, in addition to the action of
the holonomy and flux operators, the action of operators which are the
quantum counterparts of certain connection dependent functions known as
‘background exponentials’. Here we show that the KS representation displays
the following properties which are the exact counterparts of LQG ones: (i) the
abelian * algebra of SU (2) holonomies and ‘U (1)’ background exponentials
can be completed to a C* algebra, (ii) the space of semianalytic SU (2) con-
nections is topologically dense in the spectrum of this algebra, (iii) there exists
a measure on this spectrum for which the KS Hilbert space is realized as the
space of square integrable functions on the spectrum, (iv) the spectrum admits
a characterization as a projective limit of finite numbers of copies of SU (2)
andU (1), (v) the algebra underlying the KS representation is constructed from
cylindrical functions and their derivations in exactly the same way as the LQG
(holonomy-flux) algebra except that the KS cylindrical functions depend on
the holonomies and the background exponentials, this extra dependence being
responsible for the differences between the KS and LQG algebras. While these
results are obtained for compact spaces, they are expected to be of use for the
construction of the KS representation in the asymptotically flat case.
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1. Introduction

Loop quantum gravity (LQG) is an attempt at canonical quantization of a classical Hamil-
tonian description of gravity in terms of an SU (2) connection and its conjugate electric field
on a Cauchy slice. The electric field plays the role of a triad and thereby endows the slice with
a spatial geometry. One of the key results of LQG is that the corresponding quantum geo-
metry associated with LQG states has a fundamental discreteness. The smooth classical
geometry of space is then expected to arise through a suitably coarse grained view of this
discrete geometry [1].

One may enquire as to whether it is possible to describe the effective smoothness of
classical spatial geometry directly at the quantum level without explicit recourse to any coarse
graining. Koslowski answered this question affirmatively by slightly modifying the standard
LQG representation [2]. He did this through an assignation of an additional smooth triad field
label to every kinematic LQG state in conjunction with a modification of the action of flux
operators so as to make them sensitive to the additional label. As demonstrated in detail by
Sahlmann [3], the area and volume operators then acquire, in addition to the standard LQG
type discrete contributions, a ‘smooth’ contribution determined by this additional label.

As explained in detail elsewhere [5], our interest in the Koslowski–Sahlmann (KS)
representation arises from the possibility of using it to explore asymptotic flatness in cano-
nical quantum gravity. As a precursor to such an exploration, it is of interest to obtain a
detailed understanding of the KS representation for the simpler case of compact spatial
topology. Accordingly, building on the work of Koslowski and Sahlmann, we initiated a
study of the KS representation in [4, 5].

In [4], it was shown that in addition to the holonomy and flux operators of LQG, the KS
representation also supports the action of the quantum correspondents of certain classical
functions of the connection called ‘background exponentials’. Each such exponential β A( )Ē is
labelled by a background electric field Ēi

a and defined as ∫β = ΣA i E A( ) : exp ( ¯ )E i
a

a
i

¯ . Building
on this work and that of Sahlmann, in [5], we studied the imposition of gauge and diffeo-
morphism invariance in the KS representation.

In this work we further study the KS representation with a view to providing structural
characterizations similar to those developed for LQG. We refer here to the beautiful devel-
opments in the field, mainly in the nineties, which provided a characterization of the LQG
Hilbert space as that of square integrable functions on a quantum configuration space of
‘generalized’ connections, the square integrability being defined with respect to a suitable
‘Ashtekar–Lewandowski’ measure on this space [6–11]. Moreover, this quantum configura-
tion space can be viewed as a projective limit space [8–11, 13, 14]. In this work we prove that
exact counterparts of these characterizations exist for the KS representation. The layout of our
paper, including a detailed description of our results, is as follows.

The results in the paper depend on the use of structures which relate to the algebraic
properties of holonomies and background exponentials. The structures associated with
holonomies are semianalytic edges, piecewise semianalytic curves, the groupoid of paths and
its subgroupoids. These holonomy related structures are used to show the classic LQG results
mentioned above (see for example [10, 11]). The structures associated with background
exponentials are the vector space of semianalytic SU (2) electric fields, its abelian group
structure under addition, and the subgroups of this group which are generated by sets of
rationally independent semianalytic electric fields. These sets of rationally independent
semianalytic electric fields are the background exponential related counterparts of the sets of
independent edges, the latter serving as sets of independent ‘probes’ of the space of con-
nections in the LQG context [7, 10, 11]. Section 2 serves to review the above holonomy

Class. Quantum Grav. 31 (2014) 175009 M Campiglia and M Varadarajan

2



related structures (leaning heavily on the exposition of [10–12]) as well as to define the
background exponential related ones. Section 2 also establishes our notation for the rest of the
paper.

Most of our results depend on the validity of a key ‘master lemma’. This lemma states
that, given a set of independent probes and a corresponding set of elements in SU (2) (one for
each independent edge) and U (1) (one for each rationally independent electric field), there
exists a semianalytic connection such that the evaluation of the relevant set of holonomies and
background exponentials on this connection reproduces the given set of group elements to
arbitrary accuracy. In section 3, we provide a precise statement of this lemma and describe the
idea behind its proof. The proof itself is technically involved and relegated to an appendix.

Section 4 is devoted to the derivation of C* algebraic results for the KS representation.
First, we show that the abelian Poisson bracket algebra of holonomies and background
exponentials, , can be completed to a C* algebra, . From general C* algebraic
arguments [15], one concludes that the classical configuration space of connections is densely
embedded in the Gelʼfand spectrum Δ of , so that the spectrum may be thought of as a
space of ‘generalized’ connections. In order to understand elements of this space better, we
show that every element of the spectrum is in correspondence with a pair of homomorphisms,
one homomorphism from the path groupoid to SU (2) and the other from the abelian group of
electric fields to U (1). The first homomorphism corresponds to the algebraic structure pro-
vided by the holonomies and the second to that provided by the background exponentials.

Next we turn our attention to the definition of a measure on the spectrum which allows
the identification of the spectrum as the quantum configuration space for the KS repre-
sentation. We show that the KS ‘vacuum expectation’ value defines a positive linear function
(PLF) on . Standard theorems then imply that this function defines a measure μd KS on
the spectrum Δ and that the KS Hilbert space is isomorphic to the space ΔL μ( , d )2

KS . Next,
we consider the electric flux operators. These operators map the finite span of KS spinnets
into itself. We define the action of these operators on ΔL μ( , d )2

KS through the identification
of KS spin network states with appropriate cylindrical functions on the spectrum. The
compatibility of the measure μd KS with the adjointness properties of the flux operators so
defined, follows immediately from the fact that these adjointness properties are implemented
in the KS representation.

Section 5 is devoted to the projective limit characterization of the quantum configuration
space. We show that the spectrum Δ is homeomorphic to an appropriate projective limit space
̄ whose fundamental building blocks are products of finite copies of SU (2) andU (1). Once
again, theU (1) copies capture the structure provided by the background exponentials whereas
the SU (2) copies correspond to, as in LQG, the structure provided by the holonomies.
Following Velhinho [10], we show this through the identification of the C*-algebraic and the
projective limit notions of cylindrical functions together with an appropriate application of the
Stone–Weierstrass theorem. In this context, as we shall show, the C* algebraic notion of
cylindrical functions corresponds to polynomials in the holonomies and background expo-
nentials and their projective analogues to the same polynomials with holonomies replaced by
SU (2) elements and background exponentials byU (1) elements. Next, we show that the Haar
measures on these building blocks define a consistent family of cylindrical measures on

Δ≡̄ and that this family derives from the KS measure μd KS on Δ. We use this char-
acterization of μd KS to show that, similar to LQG [14],  lies in a zero measure set within ̄.

Section 6 focuses on the analysis of the algebraic structure underlying the KS repre-
sentation. Our motivation for such an analysis stems from recent work by Stottmeister and
Thiemann (ST) [19] in which they point out that the KS representation is not a consistent
representation of the standard holonomy-flux algebra of LQG. ST point out that any

Class. Quantum Grav. 31 (2014) 175009 M Campiglia and M Varadarajan

3



representation of the holonomy-flux algebra must satisfy an infinite number of identities
involving flux operators and their commutators. They provide an explicit and beautiful
example relating the double commutator of a triplet of fluxes to a single flux [19] and they
show that the KS representation does not satisfy this identity. Since the holonomies and fluxes
are well defined operators in the KS representation, this ‘Stottmeister–Thiemann’ obstruction
calls into question the existence of a consistent algebraic structure underlying the KS
representation. In section 6 we explicitly construct exactly such a consistent algebraic
structure.

We proceed as follows. Recall that the construction of the standard holonomy-flux
algebra, including the precise non-commutativity of the fluxes, is based on the work of
Ashtekar, Corichi and Zapata (ACZ) [18]. The fluxes are functions on the phase space of
gravity. ACZ studied the action of the Hamiltonian vector fields associated with these fluxes
on functions of connections constructed out of holonomies. This action is that of a derivation
and ACZ captured the non-commutativity of the flux operators in LQG through the non-
commutativity of these (classical) derivations. This in turn led to the construction of the
holonomy-flux algebra in terms of (cylindrical) functions of holonomies and their derivations.
Accordingly, we generalize the ACZ considerations to the KS case wherein the space of
connection dependent functions is built out of not only the holonomies but also the back-
ground exponentials. The ACZ arguments so generalized indicate the identification of the
algebraic structure of the Poisson bracket between fluxes with the commutator of derivations
on this (enlarged) space of (cylindrical) functions. This implies that similar to the con-
siderations of [16], the KS counterpart of the holonomy flux algebra is generated by these
functions, their derivations (which are obtained through the action of the flux Hamiltonian
vector fields) and multiple commutators of these derivations. We call this algebra as the
holonomy-background exponential-flux algebra. We show, from the considerations of
sections 3 and 4, that the KS representation is indeed a representation of the holonomy-
background exponential-flux algebra.

This algebra is different from the usual holonomy-flux algebra by virtue of the extra
structure provided by the background exponentials. In particular, the derivations corre-
sponding to the flux Hamiltonian vector fields have, so to speak, an extra set of U (1)
components in addition to the usual SU (2) ones. It is this extra structure, directly traceable to
the background exponential functions, which is responsible for the evasion of the ST
obstruction. In other words: (i) there is a consistent algebraic structure underlying the KS
representation, namely the holonomy-background exponential-flux algebra, (ii) this structure
is different from the standard holonomy-flux algebra and (iii) this structure does not neces-
sarily support the flux commutator identities which are satisfied by representations of the
holonomy-flux algebra; in particular, as we explicitly show, it does not satisfy the triple flux
commutator identity of [19]. This concludes our description of section 6.

Finally, section 7 contains a brief discussion of our results as well as some remarks on the
asymptotically flat case.

2. Preliminaries

All differential geometric structures of interest will be based on the semianalytic, ≫C k, 1k

category. The classical configuration space  is given by su (2)-valued one-forms τ=A Aa a
i

i

on a compact (without boundary) three-manifold Σ. τ =i, 1, 2, 3i are su (2) generators with
τ τ ϵ τ=[ , ]i j ijk k and ∈Aa  represents SU(2) connections of a trivial bundle. The elementary
configuration space functions are

Class. Quantum Grav. 31 (2014) 175009 M Campiglia and M Varadarajan

4



⎛
⎝⎜

⎞
⎠⎟

∫=h A e[ ] : , (2.1)e C
D A

C

D

e

∫β = ΣA e[ ] : , (2.2)E
i E A·

where = ∈C D h A SU, 1, 2, [ ] (2)e C
D is the =j 1 2 holonomy of the connection A along an

edge e (see section 2.1); ≡E A E A· i
a

a
i with τ=E Ea

i
a i a non-dynamical, unit density

weight, smearing electric field. β ∈A U[ ] (1)E is referred to as a ‘background exponential’.

2.1. Holonomy related structures

The probes associated with holonomies are paths. A path p is an equivalence class of oriented
piecewise semianalytic curves on the manifold, where two curves are equivalent if they differ
by orientation preserving reparametrizations and retracings. b(p) and f(p) denote the begin-
ning and end points of a path p. Two paths p and ′p such that = ′f p b p( ) ( ) can be composed
to form a new path denoted by ′p p. Thus ′ =b p p b p( ) ( ) and ′ = ′f p p f p( ) ( ). Under this
composition rule, the set of all paths,  , becomes a groupoid. An edge e is a path p that has a
representative curve which is semianalytic, with the image ẽ of this representative curve being
a submanifold with boundary. Paths can always be written as finite compositions of edges.
See [10, 11] for more precise definitions.

For a given connection ∈A , the holonomy along a path p, ∈h A SU[ ] (2)p , satisfies
=′ ′

′
′h A h A h A[ ] [ ] [ ]p p C

D
p C

C
p C

D, where = ′f p b p( ) ( ). Thus A defines a homomorphism from 
to SU (2). The set of all homomorphisms from  to SU (2) is denoted by SUHom( , (2)) ,
and corresponds to the space of generalized connections in LQG [10].

A set of edges …e e, , n1 is said to be independent if their intersections can only occur at
their endpoints, i.e. if ∩ ⊂e e b e b e f e f e˜ ˜ { ( ), ( ), ( ), ( )}i j i j i j . We denote by γ = …e e: ( , , )n1

an ordered set of independent edges and by H the set of all such ordered sets of independent
edges. Given γ γ′ ∈, H , we say that γ γ′ ⩾ iff all edges of γ can we written as composition
of edges (or their inverses) of γ′. Equivalently, if γ denotes the subgroupoid of  generated
by edges of γ, then γ γ′ ⩾ iff γ is a subgrupoid of γ′ . It then follows that (i) γ γ⩾ and (ii)
γ γ γ γ γ γ″ ⩾ ′ ′ ⩾ ⇒ ″ ⩾, . Thus ‘⩾’ defines a preorder [23] in H .

A preorder is weaker than a partial order in that it does not necessarily entail anti-
symmetry, i.e. ⩾ ⩾a b b a, does not necessarily imply a = b. For example, γ γ γ γ′ ⩾ ⩾ ′,
does not imply that γ γ= ′ since the two relevant sets of edges may differ in the ordering of
their elements or by the substitution of an edge by its inverse.

Next, note that semianalyticity of the edges implies that given γ γ′ ∈, H there always
exists γ″ such that γ γ″ ⩾ and γ γ″ ⩾ ′ [10, 11]. Thus ⩾( , )H is a directed set1.

2.2. Background exponential related structures

The probes associated with the background exponentials are electric fields, and we denote by
 the set of all (semianalytic) electric fields. We will often see  as an Abelian group with
composition law given by addition: ′ → + ′E E E E( , ) . For a given connection ∈A , the
background exponential function (2.2) satisfies β β β=′ ′+A A A[ ] [ ] [ ]E E E E and thus defines an
element in UHom( , (1)) (the set of homomorphism from  toU (1)). A set of electric fields
…E E, , N1 will be said to be independent, if they are algebraically independent, i.e. if they are

1 The label set H differs slightly from the one used in [10, 11] where labels are given by subgroupoids γ ,
regardless of the choice of ‘generator’ γ. One can nevertheless use H in the projective limit characterization of the
quantum configuration space. See appendix C for details.
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independent under linear combinations with integer coefficients2:

∑ = ∈ ⟺ = = …
=

q E q q I N0, 0, 1, , . (2.3)
I

N

I I I I
1

We denote by Υ = …E E( , , )N1 an ordered set of independent electric fields. The set of all
ordered sets of independent electric fields is denoted by B . Let = + … + ⊂Υ  E EN1 
denote the subgroup of  generated by Υ. We then define Υ Υ′ ⩾ iff Υ is a subgroup of Υ ′ ,
or equivalently if the electric fields in Υ can be written as algebraic combinations of those in
Υ ′. As in the edge case, it follows that ⩾ is a preorder relation.

In appendix B.1 it is shown that given any finite set of electric fields (not necessarily
independent), there always exists a finite set of algebraically independent electric fields that
generates the original set. Applying this result to the set ∪Υ Υ ′ for given Υ Υ ′ ∈, B , we find
Υ″ ∈ B satisfying Υ Υ″ ⩾ and Υ Υ″ ⩾ ′. Thus ⩾( , )B is a directed set.

2.3. Combined holonomy and background exponential structures

The combined set of labels associated with holonomies and background exponentials is given
by pairs γ Υ= ∈ × =l ( , ) :H B   with preorder relation given by γ Υ γ Υ′ ′ ⩾( , ) ( , ) iff
γ γ′ ⩾ and Υ Υ′ ⩾ .  is then a directed set, which will be used in section 5 to construct the
projective limit description of the KS quantum configuration space.

Given = … … ∈l e e E E( , , , , , )n N1 1  we define the group

= ×G SU U: (2) (1) , (2.4)l
n N

and the map

→π G: , (2.5)l l
β β↦ = … …( )A π A h A h A A A[ ] : [ ], , [ ], [ ], , [ ] . (2.6)l e e E En N1 1

Most of the results in the present work rely on the result that ⊂π G[ ]l l is dense in Gl for
any label ∈l . This is shown in section 3 and appendix A.

2.4. KS representation

The KS Hilbert space, KS , is spanned by states of the form ∣ 〉s E, , where s is an LQG spin
network and E a background electric field. The inner product is given by

δ〈 ′ ′∣ 〉 = 〈 ∣ ′〉 ′s E s E s s, , , (2.7)E ELQG ,

where 〈 ∣ ′〉s s LQG is the spin network LQG inner product and δ ′E E, the Kronecker delta.
Holonomies (2.1) and background exponentials (2.2) act by

= ∣ 〉h s E h s Eˆ , ˆ , , (2.8)e D
C

e B
ALQG

β = ′ +′ s E s E Eˆ , , . (2.9)E

Above, we have used the notation of [4] wherein given an LQG operator Ô with action
∑∣ 〉 = ∣ 〉O s O sˆ

I I
s

I
( ) in standard LQG, we have defined the state ∣ 〉Os Eˆ , in the KS

representation through

2 It is easy to verify that (2.3) is equivalent to rational independence, i.e. the analogue of condition (2.3)
with ∈ qI .
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∑∣ 〉 = ∣ 〉Os E O s Eˆ , : , . (2.10)
I

I
s

I
( )

The action of fluxes is given by

= ∣ 〉 +F s E F s E F E s Eˆ , ˆ , ( ) , , (2.11)S f S f S f, ,
LQG

,

where f i is the su (2)-valued smearing scalar on the surface S and ∫=F E S f E( ) dS f
S

a
i

i
a

, the
flux associated with the background electric field Ea

i .
The KS representation supports a unitary action of spatial diffeomorphisms and gauge

transformations, which can be used to construct a diffeomorphism and SU (2) gauge invariant
space via group averaging techniques [3, 5].

3. The master lemma

In this section we state the master lemma and describe the idea behind its proof. We conclude
with a summary of the steps in the proof. These steps are implemented in detail in
appendix A.

Statement of the lemma: let …e e, , n1 be n independent edges. Let …E E, N1 be N
rationally independent semianalytic SU (2) electric fields. Let G be the product group
= ×SU UG : (2) (1)n N . Define the map ϕ →: G through

ϕ β β= … …( )A h A h A A A( ): [ ], , [ ], [ ], , [ ] . (3.1)e e E En N1 1

Then the image ϕ ( ) of  is dense in G.
Idea behind the proof: let ∈g G so that = … …g g u ug ( , , , , , )n N1 1 where

α∈ = …αg SU n(2), 1, , and ∈ = …u U I N(1), 1, ,I . Then it suffices to show that for
any given ∈g G and any δ > 0, there exists an element ∈δAg,  such that

⎡⎣ ⎤⎦ δ α− ⩽ ∀ = … =δ
ααh A g C n C D1, , and , 1, 2. (3.2)e

C

D

C
Dg,

1

⎡⎣ ⎤⎦β δ− ⩽ ∀ = …δ θA e C I N1, , , (3.3)E
ig,

2I
I

where C C,1 2 are δ-independent constants, C D, are SU (2) matrix indices and
θ= ∈θ u e: ,I

i
I

I . We shall show that the above equations hold with =C 01 and an
appropriate choice of C2. In what follows we shall drop the superscript g in δAg, to avoid
notational clutter.

First we construct a connection δAB, which satisfies equation (3.3). This is done using the
rational independence of the set of electric fields in conjunction with standard results on the
Bohr compactification of m [21]). In general, of course, the evaluation of the edge holo-
nomies on this connection will not satisfy equation (3.2).

On the other hand, from standard LQG results [7], given any set of n group elements we
are guaranteed the existence of a connection whose holonomies along the n independent
edges αe{ } reproduce these group elements exactly. Further, these LQG results imply that
such a connection ϵA can be constructed for any positive ϵ such that it vanishes everywhere
except around balls of radius ϵ, each such ball intersecting the interior of each edge in an ϵ
size segment (where ϵ is a coordinate distance, measured in fixed coordinate charts). More-
over, since the connection samples only an ϵ size segment of each edge, it can be shown that
the connection is of order ϵ1 . Clearly the three dimensional integral of such a connection
yields order ϵ2 contributions.
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Were we to add such a connection to δAB, above, then, for small enough ϵ, it would have
a negligible effect on the conditions (3.3). However, the connection δAB, has, in general,
support on the set of edges αe{ } and hence contributes to the edge holonomies. The idea then
is to carefully choose the connection ϵA so that its contributions together with those from δAB,

yield the set of elements αg{ }. In order to do this we need to cleanly seperate the contributions
of δAB, from those of ϵA . This would be easy to do if δAB, and ϵA had mutually exclusive
supports; if this were so the integral over each edge αe of +δ ϵA AB, would seperate into
contributions over segments of this edge where each segment supports either δAB, or ϵA but
not both. We could then write each edge holonomy of +δ ϵA AB, in terms of compositions of
holonomies along the segments of each edge, each segment holonomy being evaluated solely
with respect to δAB, or solely with respect to ϵA . We could then choose ϵA so as to ‘undo’ the
contributions from δAB, and yield the required group elements αg

Indeed, as shown in the appendix, we can choose the supports of δAB, and ϵA such that
each edge αe can be written as ∘ ∘α α αs s s1 2 with αs̃ in the support of ϵA and α αs s˜ , ˜1 2 in the support
of δAB, so that +δ ϵ

αh A A[ ]e
B, takes the form δ ϵ δ

α α αh A h A h A[ ] [ ] [ ]s
B

s s
B, ,1 2 . We then choose ϵA

such that =ϵ
α

− −
α α αh A h g h[ ] ( ) ( )s s s

1 11 2 so that conditions (3.2) are satisfied with =C 01 .
To obtain δAB, with the desired support we first construct a connection δĀB, which

satisfies the conditions (3.3) and then multiply it with a semianalytic function of appropriate
support. To do so, recall that the support of ϵA is in balls of size ϵ. We construct a ball of size
ϵ2 around each such ball. Then the desired function is constructed so as to equal unity outside
these balls of size ϵ2 , and vanish inside the ϵ size balls which support ϵA . Since the mod-
ification of δĀB, is only in regions of order ϵ3, for small enough ϵ these modifications
contribute negligibly to the background exponentials and one can as well use δAB, instead of

δĀB, to satisfy the conditions (3.3).
The technical implementation of the proof then proceeds along the following steps which

are detailed in appendix A.

(i) Using standard results from Bohr compactification of m, we construct a connection δĀB,

which satisfies (3.3) for some C2.
(ii) For sufficiently small ϵ and for appropriately chosen ϵ- independent charts, we show the

existence of balls ϵ α =αB n(2 ), 1 ,.., of coordinate size ϵ2 such that

∩ϵ ϵ α β= ∅ ≠α βB B(2 ) (2 ) iff , (3.4)

∩ϵ α β= ∅ ≠α βB e(2 ) ˜ iff , (3.5)

∩ϵα αB e¯ (2 ) ˜ is a semianalytic edge. (3.6)

(iii) We construct a real semianalytic function ϵf such that ⩽ϵf| | 1 on Σ with

∪Σ ϵ= −ϵ α αf B1 on (2 ) (3.7)

∪ ϵ= α αB0 on ( ), (3.8)

where ϵαB ( ) denotes the ϵ size ball with the same centre as ϵαB (2 ).
(iv) From (3.6) it follows that

= ∘ ∘α α α αe s s s (3.9)1 2

with
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∩ ϵ=α α αs e B˜ : ˜ ¯ ( ) (3.10)

∪ ∩ Σ ϵ= −α α α α( )s s e B˜ ˜ ˜ ( ) . (3.11)1 2

Define:

⎡⎣ ⎤⎦= =αα
h A g i: , 1, 2 (3.12)s

B f i,i

where = ϵ
δA f A: ¯B f B, , . Then we construct a connection ϵA supported in∪ ϵα αB ( ) such that

=ϵ
α α α
− −

α ( ) ( )[ ]h A g g g (3.13)s
1 1 2 1

(v) We define = +δ ϵA A A: B f, and show that conditions (3.2) and (3.3) are satisfied with
=C 01 and some C2.

4. C*-algebraic considerations

4.1. C* algebra 

We denote by  the *-algebra of functions of  generated by the elementary functions
(2.1) and (2.2), with * relation given by complex conjugation. A generic element of 
takes the form:

∑ β= … ∈′
=

′ ′a A c A h A h A[ ] [ ] [ ] [ ] , (4.1)
i

M

i E e C
D

e C
D

1
i

i i

i

mi
i

mi
i
mi
i

1 1

1 

for given M complex numbers ci, M electric fields ′Ei ,∑ =
m

i

M
i1
edges ′ek

i, and choices of

matrix elements for the SU (2) holonomies, ∈C D, {1, 2}k
i

k
i . Since holonomies and

background exponentials are bounded functions of , elements of  are bounded.
Thus, the sup norm is well defined on :

∥ ∥ = ∈
∈

a a A a: sup [ ] , . (4.2)
A




Being a sup norm, it is compatible with the product and complex-conjugation star relations,
so that upon completion we obtain a unital C* algebra denoted by . By Gelʼfand theory
 can be identified with the C* algebra of continuous functions on a compact, Hausdorff
space Δ, Δ≃ C ( ) . It will be useful for later purposes to denote by Δ Δ⊂ CCyl( ) ( ) the
subalgebra of continuous functions corresponding to  in the Gelʼfand identification.

ΔCyl( ) will be referred to as the space of cylindrical functions of Δ.
Finally, the fact that  separates points in  implies that  is topologically dense in

Δ [15]. Hence Δ represents a space of generalized connections.

4.2. Characterization of elements of 

It will be useful to characterize elements of  by identifying independent edges and
electric fields involved in any given algebra element as follows.

Let ∈a  so that it is of the form (4.1).
Let … ⩽E E N M( , , ), ,N1 be a set of independent electric fields as defined in section 2 in

terms of which all ′EJʼs in (4.1) can be written as integral linear combinations:

Class. Quantum Grav. 31 (2014) 175009 M Campiglia and M Varadarajan

9



∑= = … ∈′

=

E k E I N k, 1, , , (4.3)J
I

N

J
I

I J
I

1

(such an algebraically independent generating set always exists, see appendix B.1). From
(4.3) it follows that the background exponentials in (4.1) can be replaced by appropriate
products of background exponentials (and their complex conjugates) associated with these
independent electric fields.

Let ∑… ⩽
=

e e n m( , , ),n i

M
i1 1
be a set of independent edges as defined in section 2 such

that all edges in (4.1) can be obtained as compositions of them or their inverses. It follows that
the edge holonomies in (4.1) can be replaced by products of holonomies (and their complex
conjugates) along these independent edges.

With these replacements the element a acquires the form of a polynomial in the holo-
nomies along the independent edges, background exponentials associated with the indepen-
dent electric fields, and their complex conjugates. Thus we have shown that with
= … … ∈l e e E E l: ( , , , , , ),n N1 1 , the algebra element (4.1) takes the form:

= ( )a A a π A[ ] [ ] , (4.4)l l

where β β≡ … … ∈ ≡ ×π A h A h A A A G SU U[ ] ( [ ], , [ ], [ ], , [ ]) (2) (1)l e e E E l
n N

n N1 1
as in

equation (2.6) and → a G:l l is a function that depends polynomially on the SU (2) and
U (1) entries and their complex conjugates. Clearly, there exist many choices of l for which
equation (4.4) holds.

It is then useful to define the notion of compatibility of a and l. Given ∈a  so that
a is necessarily of the form (4.1), let l be such that all edges and all electric fields in (4.1) can
be obtained in terms of compositions of edges and integral linear combinations of electric
fields in l. Then we shall say that l is compatible with a, that a is compatible with l and that
a l, are mutually compatible. In this language what we have shown above is that given
∈a  and l which is compatible with a, there exists a function → a G:l l with poly-

nomial dependence on its SU(2) andU(1) entries and their complex conjugates such that (4.4)
holds.

A key result which we shall need, and which follows directly from the lemma, may then
be stated as follows:

Let ∈l  and ∈a  such that l is compatible with a. Then the function al as
constructed above is the unique continuous function on Gl whose restriction to ⊂π G[ ]l l
agrees with a A[ ]3. Accordingly, we shall say that (given mutually compatible a l, ) al is
uniquely determined by a l, .

Next, note that if l is compatible with a and ″l is such that ″ ⩾l l, then ″l is compatible
with a so that we have

= =″ ″( ) ( )a A a π A a π A[ ] [ ] [ ] . (4.5)l l l l

It is of interest to elucidate the relationship between al and ″al . We proceed as follows.
Since ″ ⩾l l, edges ∈e li can be written as compositions of edges in ″l . Let us denote this

relation by: = ″ …e p e˜ ( , )i i 1 , where p̃i denotes a particular composition of edges (and their
inverses) in ″l . This corresponds to a relation on the holonomies of the form:

= = …″ ″…h A h A p h A[ ] [ ] ( [ ], ), (4.6)e p e i e˜ ( , )i i 1 1

3 The result follows immediately from the fact that al is manifestly continuous on Gl, that equation (4.4) gives the
values of al on the set ⊂π G[ ]l l and that, by the lemma of section 3, this is a dense subset of Gl.
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where →″p SU SU: (2) (2)i
n is the map determined by interpreting the composition rules of p̃i

as matrix multiplications. For example, if = ∘ ″″ −e e e( )1 2 1
1 then ″ … ″ = ″ ″

″
−p g g g g( , , ) ( )

n1 1 2 1
1.

Similarly, electric fields ∈E lI can be written as integer linear combinations of electric
fields in ″l :

∑= … = ∈ = …
″

″

=

″ ( )E P E q E q I N˜ , : , , 1, , . (4.7)I I

J

N

I
J

J I
J

1
1

Associated with (4.7) there is the map →″P U U: (1) (1)I
n given by

Π″ … ″ = ″
″

″
=P u u u( , , ) ( )I

n J
n

J
q

1 1 I
J
so that

β β β= = …″ ″… ( )( )A A P A[ ] [ ] [ ], . (4.8)E P E I E˜ ,I I 1 1

The above maps combine in a map4

= … … →″ ″( )p p p P P G G: , , , , , : (4.9)l l n N l l, 1 1

(that is ‘block diagonal’ in the SU(2) andU(1) entries). Equations (4.6) and (4.8) can then be
summarized as

= ″ ″( )π A p π A[ ] [ ] . (4.10)l l l l,

Substituting (4.10) in the last term of (4.5) we find:

=″ ″ ″ ″( )( ) ( )a π A a p π A[ ] [ ] . (4.11)l l l l l l,

Thus ″al and ∘ ″a pl l l, coincide on the dense subset ″ ⊂ ″π G[ ]l l . Since ″al and ∘ ″a pl l l, are
continuous functions on ″Gl we conclude that

= ∘″ ″a a p . (4.12)l l l l,

We conclude this section by noting one more consequence of the lemma:
The algebra norm (4.2) of ∈a  as in (4.4) coincides with the sup norm on Gl of al:

∥ ∥ = =
∈ ∈

(a a π A a gsup [ ]) sup ( ) . (4.13)
A

l l
g G

l
l

4.3. Characterization of Δ

One of the characterizations of the quantum configuration space in standard LQG is given by
the set SUHom( , (2)) of homomorphisms from the path groupoid  to SU (2) [10, 11]. The
analogue space associated with the background exponentials is given by UHom( , (1)) , the
set of homomorphisms from the abelian group  of semianalytic electric fields (with abelian
product given by addition) to U (1).

We will now establish a one-to-one correspondence between Δ
and ×SU UHom( , (2)) Hom( , (1))  .

First we show that any element ϕ Δ∈ defines an element of
×SU UHom( , (2)) Hom( , (1))  . Recall that from Gelʼfand theory, ϕ is a C* algebraic

homomorphism from the C* algebra  to the C* algebra of complex numbers . Let 
and  be the *-algebras generated, respectively, by only the holonomies and by only the
background exponentials. The sup norm on defines a norm on each of and  and
the two algebras can then be completed in their norms so defined to yield the C* algebras 
4 This map will be of later use in the projective limit construction of section 5.
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and . Clearly  and  are subalgebras of  with  being exactly the holonomy
C* algebra of LQG.

Let ϕ ϕ=: |H  be the restriction of ϕ to . ϕH is a homomorphism from  to .
By the standard LQG description [10, 11], ϕH defines an element ∈ϕs SUHom( , (2)) given
by

ϕ=ϕ ( )s p h( ) : . (4.14)C
D

p C
D

Similarly, it is easy to verify that ϕ ϕ=: |B  defines an element ∈ϕu UHom( , (1))
given by

ϕ β=ϕ ( )u E( ) : , (4.15)E

since =ϕu (0) 1, + =ϕ ϕ ϕu E E u E u E( ) ( ) ( )1 2 1 2 and = −ϕ ϕu E u E( ) ( ), implying
∈ϕu E U( ) (1) (see [11, 12] for the analogue statement in the context of -Bohr).

Conversely, given ∈s SUHom( , (2)) and ∈u UHom( , (1)) we want to find ϕ Δ∈
such that =ϕu u and =ϕs s. Following the same strategy as in LQG [10–12], we first find a
homomorphism ϕ → :  , and then show it is bounded and hence extends to .

Given a general element ∈a , it can always be written in the form (4.4) for any l
compatible with a. Accordingly, we choose some compatible = … …l e e E E( , , , , , )n N1 1 and
define ϕ on  by:

ϕ = … …( )( ) ( )a a s e s e u E u E( ) : ( ), , ( ), , , . (4.16)l n N1 1

Since al is uniquely defined (see section 4.2), there is no ambiguity in this definition if l is
specified. However, there are infinitely many l which are compatible with a. We now show
that ϕ ∈ a( ) given by (4.16) is independent of the choice of such l. Accordingly, let ′l l, be
compatible with a. Then we need to show that

… … = … …′ ′ ′( ( ) ( ) )( )( )a s e u E a s e u E( ), , , , , , . (4.17)l l1 1 1 1

This can be shown by writing al and ′al in terms of a finer label ″l such that ″ ⩾ ′l l and ″ ⩾l l
according to (4.12), and using the homomorphism properties of s and u. Let

→″p SU SU: (2) (2)i
n and = →″P U U: (1) (1)I

n be the maps described in section 4.2
determined by the way probes of l are written in terms of those of ″l . The homomorphism
property of s and u implies that

= …″( )s e p e( ) , , (4.18)i i 1

= …″( )( )u E P E , , (4.19)I I 1

substituting these relations in the rhs of (4.16) and using the result (4.12) we find

… … = … …″ ″ ″( )( ) ( )( )( )a s e u E a s e u E( ), , , , , , . (4.20)l l1 1 1 1

Repeating the argument for the set ′l , one concludes

… … = … …″′ ′ ′ ″ ″( ( ) ) ( )( ) ( ) ( )a s e u E a s e u E, , , , , , . (4.21)l l1 1 1 1

Hence (4.17) follows and (4.16) is independent of the choice of compatible l.
Next we show that ϕ so defined is a homomorphism to . By choosing any fixed l it

trivially follows that:
(a) ϕ maps the zero element of  to ∈ 0 .
(b) ϕ maps the unital element of  to ∈ 1 .
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(c) given any complex number C and algebra element ∈a , ϕ ϕ=Ca C a( ) ( ).
Further note that there exists a ‘fine enough’ l which is simultaneously compatible with a

given set of elements + ∈a b ab a b a, , , , * . From the continuity of
+a b ab a b a, , ( ) , ( ) , ( *)l l l l l on Gl, the continuity preserving property of the operations of

addition, multiplication and complex conjugation on the space of continuous functions on Gl

and the uniqueness of the specification of any → c G:l l given mutually compatible
∈ ∈c l,  (see section 4B), it follows that:

(d) ϕ ϕ ϕ=ab a b( ) ( ) ( ), ϕ ϕ ϕ+ = +a b a b( ) ( ) ( ) and ϕ ϕ=a a( *) ( )*.
Properties (a)–(d) show that equation (4.16) defines a homomorphism from  to .

Next, we note that due to the lemma and equation (4.13) ϕ is bounded since:

ϕ = … … ⩽ = ∥ ∥
∈

( )( )a a s e u E a g a( ) ( ), , , sup ( ) . (4.22)l
g G

l1 1
l

It then follows that ϕ uniquely extends to a homomorphism from  to  (see [11] around
equation 6.2.71 for discussion of extension of bounded homomorphisms to completed
algebra).

Finally it is easy to verify explicitly that (4.16) satisfies =ϕu u and =ϕs s, thus estab-
lishing the correspondence between Δ and ×SU UHom( , (2)) Hom( , (1))  .

4.4. Realization of the KS Hilbert space as the space L2 Δ; μKS
� �

We now use the KS representation of  (see section 2.4 and [5]) to construct a PLF on
. Given ∈a , let us denote by â the corresponding operator in the KS Hilbert
space KS . We define the PLF by

ω =a a( ) : 0, 0 ˆ 0, 0 , (4.23)

where 〉 ∈|0, 0 KS is the KS ‘vacuum’ state corresponding to the trivial spin network and
vanishing background electric field. As in LQG [10–12], the PLF can be written as an integral
over the group elements: For ∈a  given by (4.4), we have (see appendix B.2 for a
proof):

∫ω =a a g μ( ) ( )d , (4.24)
G

l l
l

for any ∈l  compatible with a. Here μd l is the Haar measure on the group Gl normalized so
that ∫ =μd 1

G l
l

. Boundedness of ω follows from the lemma via equation (4.4):

∫ω = ⩽ = ∥ ∥∈a a g μ a g a( ) ( )d sup ( ) . (4.25)
G

l l g G l
l

l

Thus ω uniquely extends to Δ≃ C ( ) [11]. The Riesz–Markov theorem then implies the
existence of a regular measure μKS on Δ such that

∫ω =
Δ

a a μ( ) d , (4.26)KS

where in the rhs of (4.26) a is seen as an element of ΔC ( ) via the Gelʼfand identification. By
construction it follows that Δ≃ L μ( , )KS

2
KS , since KS can be identified with the GNS

Hilbert space associated with ω, and the two constructions lead to the same representa-
tion [10].

Elements Δ∈ ≃a C ( ) have now a dual interpretation: when seen as elements of
ΔC ( ) we will interpret them as ‘wavefunctions’ in the L2 representation, i.e. vectors on the

Hilbert space. When seen as elements of , we will usually associate them with operators
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â on the Hilbert space KS . In the ‘wavefunction’ picture, Δ ≃Cyl( )  plays a special
role: It is a dense subspace of ΔL μ( , d )2

KS , which serves as a dense domain for the definition
of the unbounded flux operators F̂S f, . In the next section we discuss the action of fluxes (2.11)
in this ‘wavefunction’ picture.

4.5. Action of fluxes on L2 Δ; μKS
� �

In the L2 description of KS , the KS spinnet 〉s E| , corresponds to the ‘wavefunction’
β Δ∈T Cyl( )s E , where ∈T A[ ]s  is the spin network function associated with s [11],

β ∈A[ ]E  the background exponential function (2.2), and βT ,s E the respective elements
in ΔCyl( ) under the Gelʼfand identification Δ≃ Cyl( ) .

Since the action of the flux operator F̂S f, on 〉s E| , yields the finite linear combination of
KS spinnets (2.11), we can translate this action as a map Δ Δ→F̂ : Cyl( ) Cyl( )S f, . In this
description, equation (2.11) takes the form

β β β= +( )( )F T F T F E Tˆ ˆ ( ) . (4.27)S f s E S f s E S f s E, ,
LQG

,

Here Δ∈F T( ˆ ) Cyl( )S f s,
LQG

denotes the finite linear combination of spin networks, ∣ 〉F sŜ f,
LQG

,
obtained by the action of the flux operator labelled by (S, f) in the standard LQG
representation. Recall that since ∈T A[ ]s , it is a polynomial in a set of independent
edge holonomies. Using the algebraic identification of  with ΔCyl( ), it then follows
from standard LQG that the correspondent in  of Δ∈F T( ˆ ) Cyl( )S f s,

LQG
is

− ∈ ⊂iX T A( [ ])S f s,
H   where XS f,

H is a ‘derivative operator’ whose action on T A[ ]s

is built out of that of left and right invariant vector fields of SU(2), on the SU(2) valued edge
holonomies underlying T A[ ]s [20].

It is useful for the purposes of section 6 to note that we may also re-express X T A( [ ])S f s,
H

as the classical Poisson bracket T A F{ [ ], }s S f, (see for example [11, 18] as well as
equation (6.3) below). This sort of re-expression extends to both the terms in the right-hand
side of equation (4.27) so that the correspondent in  of the right-hand side can be written
as the Poisson bracket β−i T A A F{ [ ] [ ], }s E f S, .

Next note that since any element of Δ≃ Cyl( ) is a polynomial in the holonomies
and background exponentials, the Peter–Weyl theorem (see for example [11]) implies that any
such element can be re-expressed as a finite linear combination of KS spin net functions, i.e.
a A[ ] can be written as an expansion∑ βc T A A[ ] [ ]

i i s Ei i
for suitably defined spinnets si and

electric fields Ei. Denoting the wave function in ΔCyl( ) corresponding to ∈a A[ ]  by a,
it then follows from the previous paragraph and equation (4.27) that the  correspondent
of F aŜ f, is −i a A F{ [ ], }S f,

5.

5. The quantum configuration space as a projective limit

As in LQG, the quantum configuration space Δ admits a characterization as a projective limit
space. In section 5.1 we describe the projective limit space, denoted by ̄, and show that it is
homeomorphic to Δ. In section 5.2 we discuss measure theoretic aspects of ̄.

5 This result can also be interpreted as follows. Since the KS representation is a representation of the classical
Poisson algebra [5], it follows that given ∈a A[ ]  and ∈a A F{ [ ], }S f, , we have that

=a F i a F[ ˆ, ˆ ] { , }S f S f, , . The ‘wavefunction’ associated with ∈a  corresponds to the vector ∣ 〉 ∈â 0 KS where
∣ 〉0 is the KS vacuum. Using the fact that ∣ 〉 =F̂ 0 0S f, and the above commutation relation, one concludes that the
 element associated with the wave function F a( ˆ )S f, is given by −i a A F{ [ ], }S f, .
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5.1. Topological identification of � with Δ

The ingredients in the construction of ̄ are: (i) the directed set  and the family of compact
spaces ∈G l{ , }l  defined in section 2.3; (ii) the continuous projections

″ ″ → ″ ⩾p G G l l: ,l l l l, described in section 4.2, equation (4.9).
Recall that ″pl l, is determined by the way probes in l are written in terms of probes in ″l .

These maps are surjective6 and it is easy to verify that if ″ ⩾ ′ ⩾l l l then = ∘″ ″′ ′p p pl l l l l l, , , .
Thus ′G p( , { }, { })l ll satisfy the required conditions for the construction of a projective limit
space [13, 23].

Let us describe the main features of ̄ (see appendix C for additional details as well as
for a comparison with the usual construction in LQG). A point in ̄ is given by an assignment
of points ∈x Gl l for each ∈l  satisfying the consistency condition = ′ ′x p x( )l l l l, whenever
′ ⩾l l. ̄ is a compact Hausdorff space (see [11] and appendix C). We denote by ′x{ }l an
element of the projective limit space. The canonical projections

→p G: ¯ , (5.1)l l
↦′x x{ } , (5.2)l l

satisfy = ∘′ ′p p pl l l l, for ′ ⩾l l, are continuous7, and as shown in [13] surjective8.
Note that given a connection ∈A , the points ∈π A G[ ]l l satisfy the projective con-

sistency conditions with respect to the projections ′pl l, by virtue of equation (4.10). This
implies that every ∈A  defines an element of ̄. Since holonomies and background
exponentials seperate points in , it follows that this definition is unique so that there is a
natural injection of  in ̄. It follows that with this injection, we have that

= ∈p A π A G( ) ( ) . (5.3)l l l

We now show, following [10, 13], that ̄ and Δ are homeomorphic by identifying their
corresponding algebras of continuous functions, C ( ¯ ) and ΔC ( ).

Let GPol( )l denote the set of functions on Gl that depend polynomially in their entries
and their complex conjugates. This is the space of the functions al of section 4.2. Define

∪= ⊂∈( ) ( )( )p G CCyl ¯ : Pol ¯ , (5.4)l L l l
* 

where pl
* is the pullback of the projections (5.1). Since the plʼs are continuous, elements of

Cyl( ¯ ) are continuous functions on ̄. An element ∈f Cyl( ¯ ) is always of the form
= ∘f f pl l for some ∈l  and some ∈f GPol( )l l . As in section 4 we will say that such l and

fl are compatible with f. If l is compatible with f with corresponding ∈f GPol( )l l then ′ ⩾l l
is also compatible, with corresponding function ∘ ∈′ ′f p GPol( )l l l l, (this follows from the
property = ∘′ ′p p pl l l l, ). Note also that if l is compatible with f, the surjectivity of pl implies
the uniqueness of fl, i.e. fl is the only function on Gl such that = ∘f f pl l.

From the following four properties: (i) Cyl( ¯ ) is a * subalgebra of C ( ¯ ) 9; (ii) the
constant function belongs to Cyl( ¯ ) ; (iii) Cyl( ¯ ) separates points in ̄ (since the ‘coordi-
nates’ xl belong to Cyl( ¯ ) ); and (iv) ̄ is compact and Hausdorff, it follows from the

6 The master lemma implies that ′ ′p G( )l l l, is dense in Gl. Continuity of ′pll implies compactness of ′ ′p G( )l l l, . Since
Gl is Hausdorff ′ ′p G( )l l l, is closed and hence =′ ′p G G( )l l l l, .
7 The topology of ̄ corresponds to the weakest topology such that the maps (5.1) are continuous [11].
8 We thank José Velhinho for pointing us to [13].
9 This follows from the fact that for given functions ∈f g, Cyl( ¯ ) , one can always find a common compatible
label l so that the operations of linear combinations, products and complex conjugation in Cyl( ¯ ) can be recast as the
corresponding operations in GPol( )l . For instance: = =fg p f p g p f g( )( ) ( )l l l l l l l

* * * .
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Stone–Weierstrass theorem that the completion of Cyl( ¯ ) in the sup norm coincides with
C ( ¯ ) [10].

We now show that Cyl( ¯ ) is isomorphic to . Given ∈f Cyl( ¯ ) and
∈ ∈l f G, Pol( )l l compatible with f, we define the map

→( )T : Cyl ¯ (5.5) 
= ∘ ↦ = ∘f f p T f f π( ) . (5.6)l l l l

From the properties of compatible labels and functions described in this section for elements
of Cyl( ¯ ) and in section 4 for elements of , it follows that T(f) in (5.6) is independent of
the choice of l and that T is an algebra homomorphism. Furthermore, by virtue of
equation (4.13) and the surjectivity of ∀p ll , it follows that ∥ ∥ = ∥ ∥T f f( ) Cyl( ¯ )  .

Going from  to Cyl( ¯ ) , recall from section 4.2 that given ∈a , we can find a
compatible ∈l  such that =a A a π A[ ] ( [ ])l l with ∈a GPol( )l l . For any such al we define
= ∘f a p: l l. We now show that this definition is independent of the choice of compatible l.

Accordingly let ′l l, be compatible with a. Consider any ″l compatible with a with ″ ⩾ ′l l l, .
From equation (4.12) we have that ∘ = ∘ =″ ″ ″′ ′a p a p al ll l l l l from which it follows that
∘ = ∘ ∘ = ∘″ ″ ′ ′a p a p p a pl l l ll l l l . Thus = ∘f a p: l l defines the same element of Cyl( ¯ )

regardless of the choice of l. The uniqueness of al given a l, (see section 4.2) then implies that
this map from  to Cyl( ¯ ) is injective. Finally, it can easily be verified that this map is
the inverse map of (5.6).

It follows that Cyl( ¯ ) and  are equivalent as normed, * algebras. Hence their
completions are isomorphic. By Gelʼfand theory it follows that ̄ and Δ are homeomorphic,
which completes our characterization of the quantum configuration space as a projective limit
space.

As an application of this characterization, we demonstrate a curious ‘cartesian’ structure
of ̄. Note that the master lemma of section 3 is a statement of a certain ‘algebraic inde-
pendence’ of the ‘U (1) probes’ (namely the background exponentials) and the ‘SU (2) probes’
(namely the edge holonomies). This suggests that the quantum configuration space may admit
a split into a ‘holonomy’ related part and a ‘background exponential part’. Indeed, a product
structure of this sort is implied by the characterization of section 4.3 wherein we showed that
as a point set Δ could be identified with ×SU UHom( , (2)) Hom( , (1))  . However, no
topological information is available in this characterization. We would like to see if the
product structure persists when SUHom( , (2)) , SUHom( , (2)) are equipped with suitably
defined topologies so that the Gelʼfand topology of Δ can be realized as a product topology.
We found it difficult to show this using C* algebraic methods because the norm on 
intertwines the properties of the holonomy and the background exponential structures. We
now show that the projective limit characterization of Δ allows an immediate demonstration
of the desired result.

Recall from section 2.3 that = ×H B   with H and B described in sections 2.1 and
2.2 respectively. Each label set can be separately used to construct the projective limit spaces
¯ H and ¯ B . The relevant ingredients for ¯ H are the compact spaces =γG SU(2)n with n the
number of edges in γ, and the maps γγ′p as described after equation (4.6) (see also
appendix C). Similarly the relevant ingredients for ¯ B are the spaces =ΥG U: (1)N with N the
number of electric fields in Υ and corresponding projections Υ Υ ′p , as described after
equation (4.7). Let →γ γp G: ¯ H and →Υ Υp G: ¯ B be the canonical projections analogous
to (5.1).We now demonstrate that ̄ and ×¯ ¯H B  are homeomorphic.

We first construct a bijection between the two spaces. Given ∈x{ } ¯l , each ∈x Gl l is
given by a pair ∈γ γx G and ∈Υ Υx G where γ Υ=l ( , ) so that = ×γ ΥG G Gl . The
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consistency condition on the xlʼs implies consistency of the γx ʼs and Υx ʼs so that γx{ } defines
an element in ¯ H and Υx{ } an element in ¯ B . Conversely, given ∈γx{ } ¯ H and ∈Υx{ } ¯ B
the corresponding point in ̄ is given by ≡ = ∈γ Υ γ γ Υ Υ′ ′x x p x p x G: ( ({ }), ({ })l l( , ) . x{ }l so
defined satisfies the consistency conditions and hence defines an element of ̄ which cor-
responds to the inverse of the previous mapping.

We now show that this bijection between ̄ and ×¯ ¯H B  is a homeomorphism. Recall
that the topologies of ̄, ¯ H , ¯ B are generated by inverse projections γ Υ

− − −p p p, ,l
1 1 1 of open

sets in γ ΥG G G, ,l . Given γ Υ=l ( , ) and open sets ⊂ ⊂γ γ Υ ΥU G U G, , the bijection between
̄ and ×¯ ¯H B  identifies the open set × ∈γ Υ

−p U U( ) ¯
l

1  with the open set
× ∈ ×γ γ Υ Υ

− −p U p U( ) ( ) ¯ ¯1 1
H B  . Since the product topology on Gl is generated by rectangle

sets and since

∪ ∪

∩ ∩

× = ×

× = ×

α γ
α

Υ
α

α γ
α

Υ
α

γ Υ γ Υ

− −

− −( )
( )

( ) ( )
( ) ( )p U U p U U

p U U p U U

,

, (5.7)

l l

l i
i i

i l
i i

1 1

1 1

for some (possibly non-denumerable) label set α and finite label set i, it follows that the
bijection is indeed a homeomorphism thus completing the proof.

To relate this result with that of section 4, let us denote by ΔH the spectrum of  and
ΔB that of . The arguments of the present and previous sections may be reproduced for
each of the algebras  and  to conclude that Δ≃ ≃ U¯ Hom( , (1))B B  10 and

Δ≃ ≃ SU¯ Hom( , (2))H H  (the latter being the standard characterizations in LQG). Thus,
the product structure presented here coincides with that of section 4.

5.2. Measure theoretic aspects of the projective limit space

Recall from appendix C that we have two equivalent projective limit constructions of ̄. The
first, which we have used hitherto in this section, is based on the preordered directed set of
labels γ Υ= =l{ } {( , )} . The second is based on the partially orderered directed label set

γ Υ= =lˆ {ˆ} {( ˆ, ˆ )} where, as detailed in appendix C, γ̂ corresponds to the path subgroupoid
of  generated by the edges in γ and Υ̂ to the abelian subgroup of  generated by the electric
fields in Υ. In what follows we shall follow the argumentation of [10]. Since this reference
uses a partially ordered label set in its analysis, we shall use the second, partially ordered
directed label set, characterization of ̄.

Let the Haar measure on Gl̂ be μl̂ . Note that the Haar measure μl̂ is a regular Borel
measure. As shown in appendix C.3, the set of measures μ{ }l̂ satisfies the consistency
condition =′ ′p μ μ( )*l l l lˆ, ˆ ˆ ˆ whenever ′ ⩾l lˆ ˆ, where ′ ′p μ( )*l l lˆ, ˆ ˆ is the push-forward measure. Let

Δ≡ ≡C C( ¯ ) ( )  be the C* algebra of continuous functions on ̄. Our demonstration
above that =Cyl( ¯ )  implies that Cyl( ¯ ) is dense in C ( ¯ ) . It then follows from
proposition 4, section 3.2 of [10] that the consistent family of (regular Borel) Haar measures
μ{ }l̂ defines a unique regular Borel measure on ̄. A natural question is if this projective limit
measure is the same as the measure μKS

11. We now show that the answer to this question is in
the affirmative. The proof of proposition 4 in [10] uses the fact that the consistent set of
measures define a PLF on C ( ¯ ) . From appendices B.2 and C.3, it follows that this PLF is
exactly the KS PLF of equation (4.23). It immediately follows from this fact, together with the

10 In order to show this we use the fact that, just as for , elements of  seperate points in .
11 Note that the identification of ̄ with Δ as a topological space implies the identification of corresponding Borel
algebras so that this question is well posed.
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unique association of the measure μKS with the KS PLF via the Riesz–Markov theorem, that
the projective limit measure is μKS.

As an application of the projective limit characterization of μKS, it is straightforward to
check that a simple adaptation of the proof of Marolf and Mourão [14] for the LQG case
shows that, as in LQG, the classical configuration space  lies in a set of measure zero in the
quantum configuration space ̄. The main feautures of this adaptation are as follows (we
assume familiarity with the notation and contents of [14]):

(a) Choose the subsets△ ϵ ={ }i i
n

1 of SU(2)n as in [14]. For each ∈q q(0, ]0 (for some fixed
< <q q, 0 10 0 ), choose ϵ ϵ==

∞
=
∞{ } { }i i i

q
i1

( )
1 as in [14].

(b) For each fixed q, replace the set of shrinking (independent) hoops β{ }i of [14] by a set of
shrinking edges e{ }i . To specify this edge set, fix a coordinate chart x y z{ , , } around
some point Σ∈p0 so that p0 is at the origin and let ei be the straight line along the z-axis
from the origin to ϵ δ(0, 0, )i

q
i

( ) where δi is as defined in [14].
(c) Use the small edge expansion for the edge holonomy of a connection ∈A  to show that

its edge holonomy is confined to a neighbourhood of the identity of size ϵi
q( ) for

sufficiently large i.

It is then easy to see that the desired result follows by a repetition of the proof of Marolf
and Mourão (without the complications of quotienting by the action of gauge transformations,
since we are interested in  rather than  ).

We leave other applications of projective techniques (such as the definition of a host of
projectively consistent ‘differential geometric’ structures [11, 13]) to future work.

6. The holonomy-background exponential-flux algebra

Our construction of the holonomy-background exponential-flux algebra parallels that of the
holonomy-flux algebra in [16, 18] and we assume familiarity with those works. The only
minor difference between our treatment and theirs is that we restrict attention to polynomial
cylindrical functions of the form (4.1) whereas the cylindrical functions of [16, 18] comprise
all continuous functions rather than only polynomials. In section 6.1 we construct the hol-
onomy-background exponential-flux algebra. In section 6.2 we use an identity of ST [19] to
illustrate the difference between the holonomy-background exponential-flux algebra and the
LQG holonomy flux algebra. In section 6.3 we show that the KS representation is a repre-
sentation of the holonomy-background exponential-flux algebra.

6.1. Construction of the classical and quantum algebras.

Let ∈a  and let ∈l  be compatible with a (see section 4). Then it is straightforward to
verify that:

={ }a A F X a A[ ], : [ ], (6.1)S f S f, ,

= +X X X: , (6.2)S f S f S f, ,
H

,
B

∑= ∂
∂∈

( )X X h
h

: , (6.3)S f
e l

S f e C
D

e C
D

,
H

,
H

i

i
i

i

i
i

i
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∑ β
β

= ∂
∂∈

( )X X: . (6.4)S f
E l

S f E
E

,
B

,
B

I

I

I

Here X h( )S f e,
H

i is defined exactly as in LQG so that its evaluation involves the appropriate
action of SU (2) invariant vector fields on ∈h SU (2)ei . The evaluation of βX( )S f E,

B
I

involves
the analogous action of the U (1) invariant vector field on β ∈ U (1)EI

:

∫β
θ

β= ∂
∂

=θ

β=θ
( )X S f E e iF Ed . (6.5)S f E

S
a

i
iI
a i

e
S f I E,

B
,I

i
EI

I

From equations (6.2)–(6.5) it follows that the operators X X X, ,S f S f S f, ,
H

,
B all act as derivations

on , i.e. they map  into itself and their actions obey the Leibniz rule (see
equation (6.8) below). It is also easy to check that

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= =′ ′ ′ ′X X X X, , 0 on . (6.6)S f S f S f S f,
B

,
B

,
B

,
H 

Next, note that if we choose ∈a  such that it depends only on the holonomies, XS f, acts
exactly as in LQG. In other words, the action of XS f, restricted to ⊂  ( is
defined in 4.3) is exactly the LQG action. It then follows, similar to the LQG case, that while
the commutator of a pair of derivations ′ ′X X[ , ]S f S f, , on  is itself, in general, not of the
form ″ ″XS f, , this commutator still acts as a derivation on . As in the LQG case, consider,
the finite span of objects Vderiv of the form:

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦
⎤
⎦⎥…− −

aX a X X a X X X, , , , ... , . (6.7)S f S f S f S f S f S f, , , , , ,n n n n1 1 2 2 1 1 1 1

(Note that the classical correspondents of these objects are
…− −

aF a F F a F F F, { , }, { , {...{ , } }}S f S f S f S f S f S f, , , , , ,n n n n1 1 2 2 1 1 1 1
, where ∈a ). It follows that

every ∈Y Vderiv acts as a derivation on  i.e.

→ = + ∀ ∈Y Y ab Y a b aY b a b: , ( ) ( ) ( ), , . (6.8)  
Next, define the vector space A = × Vderiv . We define the * operation on A by:

= = ( )( )a Y a Y Y b Y b( , )* ¯, ¯ , where ¯ ( ) : ¯ , (6.9)

where ā denotes the complex conjugate of a. From the definitions (6.2)–(6.5), it follows that
=X X¯S f S f, , . This can then be used to show that multiple commutators of the XS f, ʼs are also

invariant under the ‘ ¯ ’ relation. It then follows straightforwardly that the * operation maps A
to itself and defines a * relation on A. Finally, we define the Lie bracket [ , ] on A by

′ ′ = ′ − ′ ′a Y a Y Y a Y a Y Y[( , ), ( , )] ( ( ) ( ), [ , ]), (6.10)

where ′ ∈Y Y V[ , ] deriv is the commutator of the derivations ′Y Y, on . We refer to
A( , [ , ]) as the classical holonomy-background exponential-flux algebra. It is the exact
counterpart of the (classical) ACZ holonomy-flux algebra (referred to as A( , { , })class in [16])
underlying the standard LQG representation. The classical Lie algebra A can be converted to
its quantum counterpart Â through the steps of section 2.5 of [16].

In the next section we comment on the differences between the algebra A and its LQG
counterpart Aclass [16]. For notational convenience, we shall denote Aclass by ALQG.
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6.2. On the difference between A and ALQG

As is apparent from the previous section, the construction of A differs from that of ALQG due
to the added structure provided by the background exponentials. In more detail, the generators
of A (see equation (6.7)) differ from those of ALQG (equation (19) in [16]) in two ways. First,
the cylindrical function a in (6.7) depends on the background exponentials as well as the
holonomies so that ∈a  whereas the cylindrical functionΨ in (19) of [16] depends only
on the holonomies so that Ψ ∈ . The second difference is that the derivation XS f, and its
commutators in (6.7) inherit their algebraic properties from their realization as derivations on
 whereas the corresponding LQG objects in (19) of [16] inherit theirs from their
realization as derivations on . In contrast to the first, the second difference is a bit subtle.
To see it explicitly, we turn our attention to the beautiful example considered by ST in [19].

Accordingly, consider A∈X X X(0, [ [ , ]])S f S f S f, , ,
LQG

1 2 3
. From the ST identity [19], we

have that

⎡⎣ ⎡⎣ ⎤⎦⎤⎦ =X X X X,
1

4
(6.11)S f S f S f S f f f, , , ,[ ,[ , ]]1 2 3 1 2 3

where both the left-hand side and the right-hand side are derivations on . This implies the
identification of the elements X X X(0, [ [ , ]])S f S f S f, , ,1 2 3

and X(0,
1

4
)S f f f,[ ,[ , ]]1 2 3

in the
algebra ALQG.

Let us now consider X X X(0, [ [ , ]])S f S f S f, , ,1 2 3
as an element of A. From equations (6.2)

and (6.6) it follows that

⎡⎣ ⎡⎣ ⎤⎦⎤⎦ ⎡⎣ ⎡⎣ ⎤⎦⎤⎦=( ) ( )X X X X X X0, , 0, , . (6.12)S f S f S f S f S f S f, , , ,
H

,
H

,
H

1 2 3 1 2 3

From (6.11), (6.3) it immediately follows that

⎡⎣ ⎡⎣ ⎤⎦⎤⎦ =X X X X,
1

4
. (6.13)S f S f S f S f f f,

H
,

H
,

H
, [ , [ , ]]

H
1 2 3 1 2 3

Now, from (6.2) it follows that ≠X XS f f f S f f f, [ , [ , ]]
H

,[ ,[ , ]]1 2 3 1 2 3
because of the missing ‘U (1)’

contribution, XS f f f, [ , [ , ]]
B

1 2 3
, which in turn means that in contrast to the LQG case, the two

elements X X X(0, [ [ , ]] )S f S f S f, , , LQG1 2 3
and X(0, )S f f f

1

4 ,[ ,[ , ]]1 2 3
are not identified in the algebra A.

6.3. The KS representation and Â

As shown in [16] elements in Â are of the form aX X Xˆ ˆ ˆ .. ˆS f S f S f, , ,n n1 1 2 2
where â and X̂S f,i i

are the
quantum correspondents of ∈a  and FS f,i i

. The algebraic properties of â derive from
those of ∈a  and the algebraic properties of X̂S f,i i

derive from the algebraic properties
of XS f,i i

as derivations on . Thus the algebraic properties of elements in Â derive from
those of  and derivations thereon.

Next we note the following:

(1) There is an algebraic isomorphism between cylindrical functions on Δ, ΔCyl( ) and 
(see section 4).

(2) The KS representation is an ΔL μ( , d )2
KS representation. The space of cylindrical

functions ΔCyl( ) is dense in ΔL μ( , d )2
KS . The operators a Fˆ, Ŝ f, map ΔCyl( ) into itself

and their actions can be inferred from the algebraic isomorphism between ΔCyl( ) and
 (see section 4.5). In particular, given Ψ Δ∈ Cyl( ) with correspondent
Ψ ∈A[ ]  :
(i) â acts by multiplication so that Ψ Ψ=a aˆ : , where Δ∈a Cyl( ) is the correspondent

of the element ∈a A[ ] .
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(ii) From section 4.5 and equation (6.1), the correspondent of ΨF̂S f, in  is
Ψ−iX A[ ]S f, so that the algebraic properties of F̂S f, are determined by those of the

derivation XS f, on .
(3) The KS inner product implements the * relations on A∈a Fˆ, ˆ ˆ

S f, as adjointness relations.

The discussion in the first paragraph of this section together with (1)–(3) above show that
the KS representation is indeed a representation of Â.

7. Discussion

In this work we have shown that the KS representation admits structural characterizations
which are the counterparts of LQG ones. An immediate question is whether these char-
acterizations can also be used to show a LOST-Fleischhack type [16, 17] uniqueness theorem
based on the holonomy-background exponential-flux algebra of section 6. If so, the KS
representation would then be the unique representation of this algebra with a cyclic, dif-
feomorphism invariant and SU (2) gauge invariant state and at the kinematic level, there
would be little to choose between the KS and the LQG representations. A key question is then
if any progress is possible in the KS representation with regard to the quantum dynamics.
While [3, 5] suggest that there is no fundamental obstruction to the imposition of SU (2)
gauge invariance and spatial diffeomorphism invariance, we do not know if the Hamiltonian
constraint can be defined in this representation. Of course, if one takes the view that the KS
representation is some sort of effective description for smooth spatial geometry, and that the
underlying fundamental description is that of LQG, this question is moot.

The results presented in this work and summarized in detail in section 1 have been
derived in the context of compact (without boundary) spatial topology. However, our main
interest in the KS representation is in its possible application to asymptotically flat quantum
gravity12. In contrast to the compact case, in the asymptotically flat case the classical con-
nection and its conjugate triad field are required to satisfy detailed boundary conditions at
spatial infinity.

The triad field is required to approach a fixed flat triad at spatial infinity. It is difficult to
tackle the triad boundary conditions in an LQG like representation because of the contrast of
the discrete spatial geometry underlying LQG with the smooth, asymptotically flat spatial
geometry in the vicinity of spatial infinity. In particular, the spatial geometry needs to be
excited in a non-compact region, which means that the LQG spin networks of the compact
case need to be generalized so as to have infinitely many edges and vertices [24]. Moreover, a
suitably coarse grained view of the quantum spatial geometry in the vicinity of spatial infinity
must coincide with an asymptotically flat one. On the other hand, the KS representation offers
the possibility of already accounting for smooth spatial geometry without coarse graining,
and, asymptotically flat spatial geometry without the consideration of KS spinnet graphs with
infinitely many edges [5]; in brief this may be achieved by restricting attention to KS spin net
states whose graphs have a finite number of compactly supported edges but whose triad label
satisfies the asymptotic conditions. The boundary conditions on the connection are, however,
much harder to tackle. This is so because the natural spinnet basis has much more controllable
behaviour with respect to the electric flux operators both in the LQG and the KS repre-
sentations. Since we already have a possibility of encoding the triad boundary conditions in
the KS representation, let us focus on the issue of connection boundary conditions in the KS
(as opposed to the LQG) representation.

12 For an application to the case of parametrized field theory, see [25, 26].
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As we have shown, in the compact case, one way in which the quantum configuration
space is tied to the classical configuration space is that the latter embeds into the former as a
dense set. One may hope that something similar happens in the asymptotically flat case,
namely, the quantum configuration space is the topological completion of the space of
semianalytic connections satisfying the asymptotic conditions. While this would be one way
in which the classical boundary conditions on the connections leave their imprint in the
quantum theory, one may worry that since the quantum configuration space is larger than the
classical one, perhaps a (for example, measure theoretically,) large number of quantum
connections could be thought of as violating these boundary conditions. We now argue that
this fear could be misplaced. In the holonomy-background exponential algebra, ,
classical connections are integrated against one dimensional edges to give holonomies and
against three dimensional background fields to give background exponentials. If, as men-
tioned in the previous paragraph, in the asymptotically flat case we restrict the edges of
interest to be confined to compact regions, it is only the background fields which sense the
asymptotic behaviour of the connection. Let us then focus only on the structures associated
with the background exponentials. A preliminary analysis indicates that the fields which label
the background exponential functions satisfy the ‘maximally’ permitted asymptotic behaviour
which allows their integrals with respect to (classical) connections to be well defined. If it
transpires that the quantum connections, as in the compact case, define homomorphisms from
the abelian group of fields, subject to this ‘maximal’ asymptotic behaviour, the very existence
of these homomorphisms could be reasonably interpreted as the imposition of classical
asymptotic behaviour on the quantum configuration space.

Thus, the KS representation offers hope that the complications arising due to asymptotic
flatness are not insurmountable, at least at the level of quantum kinematics. We are at present
engaged in working out the ideas sketched above. To conclude, we remark that if these efforts
meet with success, they may also shed light on how to generalize LQG to asymptotically flat
spacetimes so as to retain the most remarkable feature of the theory, namely the fundamental
discreteness of space.
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Appendix A. Proof of the master lemma

Step (i):
The N background electric fields Ei are rationally independent but not necessarily linearly

independent. Let ⩽m N be the dimension of the linear span of the background electric fields
and assume …E E{ , , }N1 is ordered so that the first m electric fields are linearly independent.
The last = −p N m: electric fields can then be written as linear combinations of the first m
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ones:

∑= = …+
=

E k E j p, 1, , , (A.1)m j

μ

m

j
μ

μ

1

for some real constants k j
μ. Next, let ν = …νA m, 1, , , be m su (2)-valued one-forms

satisfying13:

⎡⎣ ⎤⎦∫ δ ν= = …ν νE A μ mTr , , 1, , , (A.2)μ
a

a μ

and consider the m parameter family of one-forms:

∑=⃗
=

A t A: . (A.3)t

μ

m

μ
μ

1

The U(1)N part of the map (3.1) restricted to the m parameter family of connections (A.3)
induces the following map from m to U(1)N :

… ↦ … …( )t t e e e e( , , ) , , , , , . (A.4)m
it it it k it k

1
m μ

μ
μ p

μ
1 1

Our aim is to use the map (A.4) to reproduce with arbitrary precision the given N phases
… ∈θ θe e U( , , ) (1)i i NN1 . The first m phases can be exactly reproduced by taking:

θ= + ∈ = …t πn n μ m2 , , 1, , . (A.5)μ μ μ μ

We are then left with the m integers n{ }μ to approximate p phases, the relevant map being:

… ↦ …( )n n e e( , , ) , , . (A.6)m
i πn k i πn k

1
2 2μ

μ
μ p

μ
1

Now, the condition of rationally independence of the N electric fields translates into the
following condition of rational independence of N vectors in m: The canonical basis
⃗ ∈ = …e i m, 1, ,i

m (with components δ⃗ =e( )i μ
i
μ), together with the vectors

⃗ ∈ = …k j p, 1, ,j
m (with components ⃗ =k k( )i μ

j
μ), are rationally independent. The

example (26.19 (e)) of [21] shows that, under this condition, the range of the map (A.6) is
dense in U(1)p14. This implies that given δ > 0, we can find ⃗ ∈δ t m( ) such that
= = …θδ

e e μ m, 1, ,it iμ μ
( )

and δ− < = … = −θδ
+e e j p N m| | , 1, ,it k iμ j

μ
m j

( )
. Setting

=δ
⃗ δA A¯ :B

t
,

( ) we obtain the desired connection satisfying (3.3).
Step (ii):
Let αp be a point on the open edge −α α αe b e f e˜ { ( ), ( )}. Since Σ is Hausdorff, there

exists an open neighbourhood αU of αp such that αU seperates αp from the points α αb e f e( ), ( ).
Further, αU can be chosen such that ∩ = ∅α βU ẽ for α β≠ ; else αp is an accumulation point
of a sequence in βẽ , which, by virtue of the compactness of βẽ , implies that ∩∈α β αp e e˜ ˜ ,
contradicting the condition that αẽ and βẽ can only intersect at their endpoints. A similar
argument implies that α = …αU n, 1, , can be chosen such that ∩ = ∅α βU U if α β≠ .

Finally, since αẽ is a semianalytic manifold, it follows (see for example definition A.12 of
[16]) that αU can be chosen to be small enough that it is in the domain of a single semianalytic
chart χα in which it takes the form of a ball of size τ within which ∩α αe U˜ is connected and

13 To explicitly obtain m su (2)-valued one-forms νA satisfying (A.2), we introduce a semianalytic metric hab on Σ
which defines an inner product on the space of background electric fields by ∫〈 ′〉 = ′−E E h h, : Tr [E E ]ab

a b1 2 . Since
…E E, , m1 are linearly independent, and 〈 〉, positive definite, the ×m m matrix ν〈 〉 = …νE E μ m, , , 1, ,μ is

invertible. Let νcμ be its inverse, so that∑ δ〈 〉 =
ρ ρ ρν ν=

E E c,
m

μ μ1
. It is then easy to verify that the one-forms

∑=ν
ρ ρν ρ

−
=

A h c h E:a
m

ab
b1 2

1
satisfy (A.2).

14 This results also follows from theorem IV in section III.5 of [22].
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runs along a coordinate axis. Thus, we have that χ ⊂α α U( ) 3 with
χ τ= ⃗ ∈ ∥ ⃗ ∥ <α α U x x( ) { | }3 , and that ∩χ τ τ= −α α αU e( ˜ ) (( , ), 0, 0).

In the χα coordinate chart, we denote balls of coordinate size δ centred at the origin by
δαB ( ). Accordingly we denote the above choice of αU by ταB ( ). Clearly by taking ϵ τ≪ we

have ϵ ⊂α αB U(2 ) .
Step (iii):
We need to specify ϵf in ϵ ϵ−α αB B(2 ) ( ) such that ϵf is semianalytic. Consider the

polynomial in  given by ∫= ′ − ′ ′g y c y y y( ) : ( (1 )) d
y K

0
, with c chosen so that =g (1) 1 and

>K k . Then g interpolates between the constant 0 function for <y 0 and the constant 1
function for >y 1 in a CK manner. Setting

⎧
⎨⎪

⎩⎪
χ

ϵ
ϵ

ϵ ϵ ϵ
∘ ⃗ =

∥ ⃗ ∥ <
∥ ⃗ ∥ ⩾

∥ ∥ − ⩽ ∥ ⃗ ∥ <
ϵ α

( )( )
( )( )f x

x
x

g x x

0 for
1 for 2

1 for 2
(A.7)

1
3

2 2

does the job.
Step (iv):
We take ϵA with support on αU given by

χ=ϵ
α α ϵα ( )A w a x| d . (A.8)U

*

Here ∈αw su (2) are constant (but ϵ and δ dependent) su (2) elements satisfying

α= = …α α α
− −

α ( ) ( )e g g g n, 1, , , (A.9)w 1 1 2 1

and taken to be in the ball of radius π4 of su (2) that maps onto SU (2) under the exponential map.
χ →ϵ α α a U: ( ) is taken to be:

⎪
⎪

⎧
⎨
⎩

ϵ ϵ

ϵ
⃗ = ′ − ∥ ⃗ ∥ ∥ ⃗ ∥ ⩽

∥ ⃗ ∥ >
ϵ

( )( )a x
c x x

x

for

0 for
(A.10)

K2 2

with >K k and ′c chosen so that∫ =
ϵ

ϵ
ϵ

−
a x x( , 0, 0)d 1. This last condition, together with the

choice of αw (A.9) guarantees the required condition (3.13).
Step (v):

ϵA was constructed so that the holonomies of = +δ
ϵ

δ ϵA f A A: ¯B, along the edges αe
exactly reproduce the group elements αg and hence (3.2) is satisfied with =C 01 . For theU (1)
elements we have

⎡⎣ ⎤⎦− = −∫ ∫ ∫θ θ− − −δ δ
ϵ

δ ϵ( )e e e e e (A.11)i E A i i E A i i f E A E A· · ¯ 1 · ¯ ·I I I
B

I I
B

I
, ,

⎡⎣ ⎤⎦⩽ − + −∫ ∫θ− − −δ
ϵ

δ ϵ( )e e e1 1 . (A.12)i E A i i f E A E A· ¯ 1 · ¯ ·I
B

I I
B

I
, ,

From step (i) above, the first term in A.12 is bounded by δ. The phases in the second term can
be bounded by:

∫ ∫∑− ⩽ −ϵ
δ

α
ϵ ϵ δ

β

= α
( ) ( )f E A f E A1 · ¯ 1 · (A.13)I

B
n

B
I

,

1
(2 )

( )

δ ϵ⩽c ( ) (A.14)1
3
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for some constant δc ( )1 , and

⎡⎣ ⎤⎦∫ ∫∑ χ⩽ϵ
ϵ

ϵ
=

∥ ⃗∥<
( )E A E w a x y z· Tr ( )* d d d (A.15)I

i

n

x
i I

x
i

1

δ ϵ⩽c ( ) (A.16)2
2

for some constant δc ( )2 . Here we used the fact that χ E wTr [(( )* ) ]i I
x

i has some ϵ independent
bound and that ∫ ϵa x y z| |d d d has an order ϵ2 bound as follows from the condition on ′c
described after equation (A.10). By Taylor expanding, we conclude that, for given δ and
sufficiently small ϵ, the second term in (A.12) has an ϵ2 bound:

δ ϵ− <∫ − −ϵ
δ ϵ

e c| 1| ( ) , (A.17)i f E A E A[(1 ) · ¯ · ] 2I
B

I
,

for some constant δc ( ). Thus, if for given δ we chose ϵ such that

ϵ δ δ≪ c( ( )) , (A.18)1 2

we achieve the desired bound (3.3) with =C 22 .

Appendix B. Assorted proofs

B.1. Generating set (4.3)

If the M electric fields ′ … ′E E, ,1 M , are algebraically independent, then M =N. If not, then
there exists M integers = …q i M, 1, ,i , not all of them zero, such that∑ ′ =q E 0

i i i . At
least one qi is different from zero, so for concreteness let ≠q 0M . We can then solve for
′EM to get

∑′ = ′−

=

−

E q E . (B.1)M M
i

M

i
1

1

1

Define

= ′ = … −−E q E i M: , 1, , 1. (B.2)i M i
(1) 1

Then the electric fields ′ = …E i M, 1, ,i , can be expressed as integer linear combinations
of the −M 1 electric fields Ei

(1) (B.2). If … −E E, , M1
(1)

1
(1) are algebraically independent,

we are done. Otherwise we apply the above procedure to the −M 1 electric fields Ei
(1) to

obtain a new set of −M 2 electric fields in terms of which the rest are expressed as
integer linear combinations. The procedure is iterated until one obtains an algebraically
independent set.

B.2. Equation (4.24)

By linearity of the PLF, it is enough to consider the special case where al takes the form

… … = … …a g g u u a g g u u( , , , , , ) ˜( , , )( ) ( ) , (B.3)l n N n
m

N
m

1 1 1 1
N1

where ∈ = …m I N, 1, ,I . In such case, we have

∑ω = …
=

( )a a h h m E( ) 0, 0 ˜ ˆ , , ˆ · 0, (B.4)e e

I

N

I I

1
n1
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δ= …
∑
=

( )a h h0 ˜ ˆ , , ˆ 0 (B.5)e e
m E

LQG
0,n

I

N

I I
1

1

∫ ∏ δ=
=

a g μ˜( )d . (B.6)
SU I

N
m

(2) 1 0,
n I

Here we used that standard rewriting of the LQG PLF in terms of SU (2) integrals [11], the
algebraic independence of the electric fields (2.3), and the basic inner pro-
duct δ〈 ∣ 〉 = 〈 ∣ 〉s E s E s s, , E E1 1 2 2 1 2 LQG 1 2 .

As in the treatment of -Bohr [11, 12], we notice that the last factor in (B.6) corresponds
to an integral over U(1)N with normalized Haar measure:

∫ ∫∏ θ
… = θ

=

μ u u
π

ed ( ) ( )
d

2
(B.7)

U

m
N

m

I

N
I im

(1)
1

1
N

N I I1

∏ δ=
=

. (B.8)
I

N

m

1

0, I

Substituting the Kronecker deltas in (B.6) by (B.7) we recover (4.24) for the special case of f
given by (B.3). By linearity, it follows that (4.24) holds for general algebra elements.

Appendix C. Projective limit

In this appendix we give further details on the projective limit space and clarify the relation
between the use of preordered and partially ordered label sets. To simplify the discussion, we
first describe in detail the case of standard LQG in section C.1. In section C.2 we give the
partially ordered label set description of ̄. In section C.3 we show cylindrical consistency of
the Haar measures on Gl and G .l̂

C.1. Relation between preorder and partially ordered label sets for holonomy probes.

In the usual construction, the label set is given by subgroupoids of  generated by finitely
many edges. Let LQG be such label set so that ∈L LQG denotes a subgroupoid of 
generated by a finite number of edges. The relation ′ ⩾L L iff L is a subgroupoid of ′L , makes

LQG a partially ordered directed set. The compact space associated with ∈L H is:

= L SU: Hom( , (2)), (C.1)L
and the projections ′pLL are defined by restriction: ∈′ ′yL L induces a homomorphism on
any subgroupoid ⩽ ′L L by simply restricting the action of ′yL to L. Let us denote by ¯ LQG
the resulting projective limit space, as described in [10, 11].

The corresponding ingredients in our construction are: the label set H , the compact
spaces =γG SU(2)n and the projections γγ′p determined by the way edges in γ are decom-
posed in terms of edges of γ″, see section 4.2. It is easy to verify the compatibility of the
projections with the relation ‘⩾’ in the sense described in section 5. The corresponding
projective limit space can be constructed completely analogous to ¯ LQG : the ‘ambient’ space
= ∏γ γ∞ ∈G G:

H with the Tychonov topology (the weakest making the canonical projections
to γG continuous) is compact and Hausdorff [11]. The projective limit space is the subset
⊂ ∞G¯ H of points in ∞G satisfying consistency conditions with the projections:
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γ γ= ∈ = ∀ ′ ⩾γ γ γ γ γ∞ ′ ′{ }x G p x x¯ : { } ( ) , . (C.2)H ,
¯ H is given the topology induced by ∞G , and the same proof [11] that ¯ LQG is closed goes
through here as well15. By the same arguments as for ¯ LQG , it follows that ¯ H is a compact,
Hausdorff space.

Let us see that ¯ LQG and ¯ H are homeomorphic. A bijection between the two spaces can
be given as follows. Denote by ∈γ LQG  the subgroupoid generated by γ and let

γ= ∈ =γ{ }L LGen( ) , (C.3)H 
be the set of all possible ‘generators’ of a given ∈L LQG . For γ γ′ ∈ L, Gen( ) we have that
γ γ′ ⩾ and γ γ⩾ ′. γ γ′p , then defines a homeomorphism between γ′G and γG with inverse given
by γ γ′p , . An element ∈yL L defines a point in γ ∈γG L, Gen( ) by [10]:

ρ γ→ = … ∈γ γG e e L: , ( , , ) Gen( ), (C.4)L n1
γ↦ … =( )y y e y e y( ), , ( ) : ( ). (C.5)L L L n L1

The points γ= ∈γ γx y G: ( )L for each γ ∈ LGen( ) satisfy the consistency conditions

γ γ= = ′ ∈γγ γ γ γ γ γ γ′ ′ ′ ′p x x p x x L( ) , ( ) , , Gen( ). (C.6)

Conversely, any ∈γ γx G determines a homomorphism in γ by

σ →γ γ γG: (C.7)

γ↦ =γ γγ γ
x y y x( ) , (C.8) 

and given γx and γ′x satisfying (C.6), they define the same homomorphism. The continuous
maps ργ and σγ above are inverses of each other. Let:

ρ= ∘ →γ γ γp p G˜ : : ¯ (C.9)L LQG
σ γ= ∘ → ∈γ γp p L˜ : : ¯ , Gen( ). (C.10)L LH 

Then it is easy to verify that the maps

ρ ρ→ = γ′ ′{ }( ) ( )x p x: ¯ ¯ , { } : ˜ { } (C.11)L LLQG H 

σ σ→ =γ γ′ ′{ }( ) ( )x p x: ¯ ¯ , { } : ˜ { } , (C.12)LH LQG 
are inverse of each other and that they provide a bijection between ¯ LQG and ¯ H . Finally this
bijection is clearly a homeomorphism: the topology on ¯ H generated by the projections γp
coincides with that generated by the projections p̃L by virtue of continuity and invertibility of
the maps ργ and σγ .

C.2. Partially ordered directed label set for �

We describe here the partially ordered directed set relevant for ̄. Define an equivalence
relation in  by ∼ ′l l iff ⩾ ′l l and ′ ⩾l l. Let = ∼H  be the corresponding quotient
space. We denote by l̂ elements of H . On H we can define the relation ⩾ ′l lˆ ˆ iff ⩾ ′l l for
some ∈l l̂ and ′ ∈ ′l l̂ . It is easy to verify that this relation is well defined (independent of the

15 Lemma 6.2.10 in [11] can be repeated to show that every convergent net αx{ }l in ∞G such that αx{ }l is in ¯ H for
any α, converges to a point in ¯ H
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choice of representatives l and ′l ), and that it defines a partial order on H , since by con-
struction ⩾ ′l lˆ ˆ and ′ ⩾l lˆ ˆ imply = ′l lˆ ˆ . It is easy to verify that the directed set property of 
implies that H is a partially ordered directed set.

An intrinsic characterization of l̂ can be given as in the previous section:
γ Υ≈ =γ Υl̂ ( , ) :( ˆ, ˆ )  , where γ Υ ∈ l( , ) ˆ. The pair γ Υ( , )  is independent of the choice of

representative, and the ⩾ relation defined above for H corresponds to: ⩾ ′l lˆ ˆ iff the pair of
subgroupoids associated with ′l̂ are subgroupoids of the pair associated with l̂ .

We now describe the spaces and projections associated with the label set H . Given
′ ∈l l l, ˆ, we have maps →′ ′p G G:ll l l and →′ ′p G G:l l l l . The consistency condition of the

maps implies that ∘ =′ ′p p Idll l l Gl and ∘ =′ ′ ′p p Idl l ll Gl , so that ′pll is a diffeomorphism
between ′Gl and Gl. The space Gl̂ could then be defined as Gl for some fixed representative
∈l l̂ . In the present case, however, the label sets have additional structure that allows for a

more intrinsic definition of Gl̂ . By the same argument as in the previous section, it is easy to
verify that an element ∈g Gl defines a pair of homomorphisms
= ∈ ×γ Υg g g SU Uˆ ( , ) Hom( , (2)) Hom( , (1))H B   , with γ Υ=l ( , ). Further, ∈′ ′p g G( )l l l

defines the same pair of homomorphisms ĝ for any ′ ∈l l̂ . Thus we set
= ×γ ΥG SU U: Hom( , (2)) Hom( , (1))l̂   with γ Υ ∈ l( , ) ˆ. The definition is independent of

the choice of representative γ Υ ∈ l( , ) ˆ. Finally, the projections ′pl lˆˆ can be defined, as in the
previous section, by restriction of the homomorphisms to the corresponding subgroupoid.
Such definition is then compatible with the projections ′pll .

The discussion of the previous section can be easily adapted to the present case to
conclude that the projective limit space associated with ′G p( , { }, { })l l lH ˆ ˆˆ is homeomorphic
to ̄.

C.3. Projective consistency of the Haar measures on Gl

Let = ×G SU U(2) (1)l
n N where n and N are the number of independent edges and electric

fields in l. Let μl be the normalized Haar measure on Gl so that μl is a product of Haar
measures on the SU (2) and U (1) factors. We want to show that =′ ′p μ μ( )*l l l l, whenever
′ ⩾l l so that ∈μ l{ , }l  define a consistent family of measures. Recall that the maps ′pll ,
described in section 4.3 are ‘block diagonal’ i.e. do not mix SU (2) factors with U (1) ones.
Given γ Υ γ Υ′ ′ ⩾( , ) ( , ), ′pll is determined by maps

= … = …′
′
′( )g p g g i n, , , 1, , (C.13)i i n1

= … = …
′

′ ′( )u P u u i N, , , 1, , . (C.14)I I
N1

The consistency condition then translates into two separate conditions, =′p μ μ* n n and
=′P μ μ* N N , where μn is the Haar measure on SU(2)n, μN that ofU(1)N and similarly for the

primed quantities. The proof that ∗ =′p μ μn n is the same as the one used in standard LQG to
show the cylindrical consistency of the SU (2) Haar measures, see [7, 10]. Such a proof is
mainly group theoretical, and so it should not be difficult to adapt it to the U (1) factors.
Below we present an alternative proof for the cylindrical consistency of the U (1) measures.

Let C U( (1) )N be the space of continuous functions on U(1)N . Recall that C U( (1) )N is a
C* algebra with norm ∥ ∥ = ∈f f u: sup | ( )|u U(1)N , so that in particular it is a normed vector
space. Define the linear functionals Γ and Γ′ on this space by:

∫Γ = …f f u u μ( ) : ( , , )d (C.15)
U

N N
(1)

1
N
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∫Γ′ = ′ … ′ ′′
( )f f P u P u μ( ) : ( ), , ( ) d (C.16)

U
N N

(1)
1

N

where

Π′ = ′′
=P u u( ) ( ) , (C.17)I J

N
J

q
1 I

J

with qJI the integers that determine how electric fields of Υ are written in terms of those in Υ ′,
see equation (4.7). Showing ∗ =′P μ μN N is then equivalent to showing
Γ Γ= ′ ∀ ∈f f f C U( ) ( ) ( (1) )N . First, we note that both Γ Γ′, are bounded and hence
continuous with respect to the topology of C U( (1) )N : clearly Γ ⩽ ∥ ∥f f| ( ) | . For Γ′ we have:

Γ′ ⩽ ′ = = ∥ ∥
′∈ ∈′

f f P u f u f( ) sup ( ( )) sup ( ) , (C.18)
u U u U(1) (1)N N

where the first equality is due to the fact that the map →′P U U: (1) (1)N N is surjective. Next,
let ⊂U C UPol( (1) ) ( (1) )N N be the set of functions given by finite linear combinations of
elements of the form Π = u( )I

N
I

m
1

I with ∈ mI . Since UPol( (1) )N is a * sub algebra of
C U( (1) )N and separates points, it follows by the Stone–Weierstrass theorem that UPol( (1) )N

is dense in C U( (1) )N . By the bounded linear transformation theorem [11] it is then enough to
show that Γ and Γ′ agree on this dense subset ofC U( (1) )N . Finally, by linearity we can focus
attention on an element Π = u( )I

N
I

m
1

I . One finds (see equation (B.7)):

Γ Π Π δ== =( )u( ) (C.19)I
N

I
m

I
N

m1 1 0,
I

I

and

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫Γ Π Π Π′ = ′′

= = =′ ( )( )u u( ) (C.20)I
N

I
m

U
I
N

J
N

J

q
m

1
(1)

1 1
I

N

I
J I

Π δ=
∑

′
=

=

(C.21)J
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m q
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I
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I I
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Π δ= = , (C.22)I
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m1 0, I

where we used ∫ δ=u
U

m
m(1) 0, and the rational independence of the electric fields:

= ∀ ⟺ ′ = ⟺ = ⟺ = ∀m q J m q E m E m I0 0 0 0 . (C.23)I I
J

I I
J

J I I I

We thus have shown that the measures μ{ }l represent a family of consistent measures on

′G p( , { }, { })l ll . The measures μl̂ on Gl̂ are defined by the push forward of maps
σ →G G:l l l̂ defined analogously as σγ in equation (C.7). The consistency of the measures
μ{ }l immediately implies the consistency of the measures μ{ }l̂ .
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