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This article introduces Fermi Transport, starting
with elementary examples and slowly rising in
level. A number of exercises are suggested for
the reader’s active participation.

We learn in high school that when linearly polarised light
passes through a sugar solution, its plane of polarisation
is rotated. What is perhaps less well known is that the
same thing happens when light is passed through a he-
lically coiled optical fibre. This is due to a geometric
effect. The polarisation vector E is perpendicular to the
direction of propagation k of the light beam. If the beam
changes direction, and k swings towards the E vector,
the polarisation vector rotates with it in the E—k plane,
maintaining orthogonality E - k = 0. The three direc-
tions (k, B,k x E) form a right-handed frame. If k(s)
describes a closed curve on the sphere of directions, (Fig-
ure 1), the electric vector is found rotated by an angle
equal to the signed area enclosed by the curve k(s). This
is due to the curvature of the sphere of directions. In

Figure 1. It shows the sphere of directions
in green, with three radial directions labeled
1, 2, 3. The polarisation vectors are shown
in red perpendicular to the radius vector
and therefore tangential to the sphere. If
the direction of a light ray changes from 1 to
3 2 to 3 to 1, the polarisation vector is rotated
as shown. On its return to the 1 direction,
the polarisation vector is as shown in blue,
rotated relative to the initial polarisation shown in red. The angle of rotation
is equal to the area of the geodesic triangle 1-2-3-1, which in this case is an
octant of the sphere 47/8, i.e., n/2, which is a right angle. This is also equal
to the angle excess — the sum of the angles of the geodesic triangle 1231
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the special case of the helix mentioned above, the prop-
agation direction describes a small circle on the sphere
(a circle of latitude), which encloses an area per turn
of @ = 27(1 — cos) (where 0 is the polar angle, or
co-latitude) and gives rise to a rotation of the plane of
polarisation by an angle a.

Light is a travelling electromagnetic wave described by
Maxwell’s equations. These equations tell us that light
is a transverse wave: the direction of the electric vec-
tor is perpendicular to the direction of propagation k.
If light travels in a straight line, the electric vector re-
mains parallel to itself and orthogonal to the direction of
propagation. If the light changes direction slowly (over
many wave lengths) the electric vector must also change
direction in order to maintain orthogonality. Suppose
that light, initially travelling along ki with polarisation
B, (E1 k, = 0), changes direction infinitesimally to a
neighboring direction ks. What would the polarisation
at ks be? Our first guess, B, is definitely wrong because
it is not in general orthogonal to ko. A geometrically
natural guess is to pick the vector nearest to E; from all
the vectors orthogonal to f(g. In other words, minimise
(E; — E1)? subject to the constraint Es - ky = 0. Using
Lagrange multipliers, we find

E, — E; = Xk, (1)

wherg A i§ determined from the condition E, - Rg =0to
be —k2 . El. SO,

E; = Ei — (ks - Byk, = P By, (2)
where Py, is the projector orthogonal to ko:
P, =1 —ky 0k, . (3)

We see from (2) that E, lies in the By — ko plane. A
small computation assures us that since Ey is nearly or-
thogonal to ks, projection does not alter its length (to

Geometric effects
rotate the plane of
polarisation just as
a sugar solution
does.

Maxwell's
equations tell us
thatlightis a
transverse wave.
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Fermi's transport
rule is parallel
transport followed
by projection.

first order in infinitesimals) and E is also a unit vector.
Motivated by this geometric argument, let us define the
Fermi derivative along a space curve x(s) as the ordi-
nary derivative followed by projection orthogonal to the

tangent vector k(s) = d’;—f):
DrE dE
=P —. 4
ds Pk(s) ds ( )

Using k(s) - E(s) = 0, we can write

DrE  dE . (dk -
B i(%E) o

We arrive at Fermi transport by requiring that the Fermi
derivative of the polarisation vector vanishes along a
curve. This leads to the Fermi transport rule

dE . [dk .

— =—-k[—E 6

ds <ds ) ’ (6)
which ensures that k- B = 0 is maintained if it was true
initially. Along straight lines, polarisation is transported

parallel to itself, but along curved lines, it changes ac-
cording to (6).

Adding a term which vanishes and switching to index
notation, we can rewrite Fermi’s rule as

dEe  (dke ., ., dEY\ -
= K —k* — | E 7
ds < ds ds ) ’ )
or I
—— = A% [, (8)
ds
where A% — (% b — ke %) is an antisymmetric ten-

sor describing the rotation of our right-handed frame
(k, E,k x E). This form brings out the fact that the
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transport rule is a rotation and preserves inner prod-
ucts. This transport rule (equivalently written as (6) or
(7)) is an elementary example of Fermi transport.

The transport law for the electric field (8) was written
down by the geometrical consideration that we wish to
maintain k and E orthogonal, since light is a transverse
wave. This law of transport can also be derived from
Maxwell’s equations. The gentle reader is encouraged
to perform the derivation using the method described in
Box 1.

The Fermi
transport rule can
be derived from
Maxwell's
equations.

Box 1.

For the reader’s entertainment, we suggest that she derives the transport law! starting
from Maxwell’s equations. First introduce the vector potential A to solve the homo-
geneous Maxwell equations. Then reduce the equation to a time-independent situation
by assuming a monochromatic Waveé of frequency w travelling in a constant background.

Replace time derivatives by —iw (E — —iw) and so the electric field E is replaced by

iwA. For simplicity assume that there is no optical activity or magnetic effects in space,
only a refracting medium like glass or optical fibre. Set the magnetic permeability to
1, p = 1, and assume ¢(z) to be slowly varying function of space (constant over many
wavelengths). Plug in the form

A@) = (@)@
and use the high frequency eikonal approximation (assume w is large). The leading
equations (hlghest order in w) tell us that &k = 0 (the wave is transverse) and that the

wave vector k — wVo satisfies k -k — we (this gives the dispersion relation). Computing
ke aakb = k@ aaabwd = k@ abka — ab(k“ka/Q) we find

2
£20, kb — 8, (“"26) (i)

that gradients in e(z) causes refraction. Invoking the subleading terms we get the trans-
port law for the polarisation

kaaboﬂ == k“(@bab) — a“@bkb, (11)

which describes the turning of the polarisation vector and the amplification of the wave
due to focussing. From the subleading equations, we also have a®d,¢e(z) + ¢d,a® = 0
which can be used to express the divergence of « in terms of gradients of ¢(x). We find

" G CHlugireanu, Czech. Math. J., Vol.11, p.588, 1961.

Box 1. Continued...
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Box 1. Continued...

Defining unit vectors (]Af, &) we find that % = /%aaa/%b = —1/2P;0(Ine) and /%aaa@b =

—/;b %da, the Fermi transport law in three-dimensional form. This form was given by
S M Rytov?. We remark that this derivation can be repeated for any waves, e.g., seismic
waves (the P waves are transverse and Fermi transported) or electron waves described
by the Dirac equation. The derivation is tedious, but entirely straightforward.

k®abdpe

kbopat = — — kY. (iii)

2 L D Landau and E M Lifshitz, Electrodynamics of Continuous Media, Pergamon Press, 1960.

Spinis a four-
vector orthogonal
to the momentum

four-vector.

Let us now move from light rays propagating in space
to massive particles propagating in flat space-time. The
direction of propagation is now a four-vector p* (where
pw = 0,1,2,3, we use signature (+,—,—,—)) and the
spin of the particle is given by a vector S* orthogonal
to p* (p-S = 0). The particle could be an electron, a
gyroscope or a planet. As is usual we define spin as a
spatial vector in the rest frame of the particle and move
this description to other frames by Lorentz transforma-
tion. The four-momentum p* satisfies p*p, = m?, where
m is the rest mass of the particle, which we will hence-
forth set to 1. If the four momentum p* changes, the
spin vector S* must change with it maintaining orthog-
onality S - p = 0. As one can guess, the natural rule
for transporting S along the world line of the spinning
massive particle is (remember, we set m = 1, and also
the speed of light ¢ = 1, it makes life simpler and 7 is
the proper time along the particle world line)

5" ARS,, (9)

dr
where A" = (% P’ — p* %) is a second rank anti-
symmetric tensor. This rule (9) is Fermi transport.
One can view A*dr as the generator of the Lorentz
transformation that ‘rotates’ (p“(7), S*(7)) to the pair
(p*(7 + dr), S*(r + dr)), in the plane containing both
p’s, maintaining orthogonality p- S = 0. This rule (9)
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actually describes the behaviour of gyroscopes in accel-
erated frames, the spin of an electron in an atom and
the spin of an orbiting neutron star.

Apart from being physically relevant, the rule is geomet-
rically natural. Let p* be a four-momentum of a massive
particle: a time-like, future-pointing vector of unit size:
P >0, p” —p-p= 1. Let H, be the set of vectors
orthogonal to p* : H, = {S|S-p = 0}. H, can be identi-
fied with ‘space’ for an observer in the rest frame of the
particle.

Suppose now we have two such four-momenta p; and
P2, how can one compare vectors in H,, and H,,?7 The
natural choice is to identify! the two spaces by means ' Toidentify two points means to
of the unique Lorentz transformation that takes p; to regard them as the same. For
po and leaves the subspace orthogonal to both vectors ©X@mPle. identifying the two

. . . . . ends of your shoe lace would
unchanged. This transformation is given by the matrix

make it into a loop. In the present
identify points in the
T n case we i y
(p1 + P5)(p1v + p2w) + 2p4 pr,.  (10)  twospaces H and H, by the
1+ p1-po rule described in the text.

oS
A21V76V

Ais a Lorentz transformation: it preserves the Minkowski
metric 1, = diag(1l, =1, =1, —1). That is, AL A%, =
Nag. 1t takes py to po: Ab,pY = ph and Aoy = A Tt
is the identity on vectors orthogonal to the linear sub-
space spanned by p; and ps. As ps approaches p; along
a curve p(7) with tangent vector g—f, AL, (7) approaches
the identity with tangent

dAY dp* dp
AH _ 21v _ L, — 1 v ]
v dr < dr bv—p dr >

The rule for comparison of vectors reduces to the trans-
port rule (9).

Given three vectors py,p2, ps on the unit hyperboloid,
one can identify H,, with H,, and H,, with H,, using
the above rule. However, this rule does not close; the
result of combining A3 Aze Ay = ' is not the identity.
[ leaves p; invariant (I'p; = Ajs Asa po = Aisps = p1)
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Figure 2. The Pseudosphere: It shows part of a two-dimensional surface
of constant negative curvature embedded in three-dimensional space.
Unlike the sphere, the whole of the pseudosphere cannot be described
as a subset of Euclidean space without self intersections. We show a part
of the pseudosphere. However, the whole of the pseudosphere can be
embedded in Minkowski space. In fact the mass shell of a relativistic
particle is an example of such embedding. The sum of the angles of a
geodesic triangle on a pseudosphere add up to less than x radians.
Triangles have angle deficits rather than angle excesses due to the
negative curvature. The pseudosphere is an example of hyperbolic
geometry, which has fascinated artists like M C Escher, whose work you

can find on the internet.

Geometrically
natural answer
givesthe physically
correct answer

for transport.

The earth's axis
precesses ever so
slightly due to
Fermi transport.

and is therefore a pure rotation of H,,. Thisis called the
Thomas rotation. The lack of integrability can be traced
to the curvature of the unit hyperboloid p2—p?—p3—p2 =
1. Unlike the sphere which has uniform positive curva-
ture, the hyperboloid has uniform negative curvature.
(See Figure 2.) 1t is striking that the geometrically nat-
ural argument gives the physically correct answer for
the transport of spins! This is no accident, the geome-
try encodes the symmetry of the Lorentz group and any
relativistic equations of motion that one writes down for
the spin will repect Lorentz invariance.

This discussion can be moved to the curved space—time
of general relativity in toto. The metric of space-time
is no longer Minkowskian, but one still has a Lorentzian
metric in each tangent space. The transport law given
by Fermi is:
DS#
dr

where all that has been done is to replace the ordinary
derivative by the covariant derivative.

= A™S,,

What are the physical consequences of Fermi transport?
Just as a helical fibre rotates the plane of polarisation
of light, the spin of a massive particle precesses, if the
particle is in accelerated motion even if no torques are
applied in the instantaneous rest frames of the particle.
This is an elementary consequence of the fact that
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Lorentz transformations do not in general commute. As
an example, consider a massive spinning particle follow-
ing a helical world line. In equations x(7) = vR cos wr,
y(r) = ~vRsinwr, z(r) = 0, t(r) = ~r. This de-
scribes a particle in circular orbit of radius R and speed
v = tanhn, (where 7 is the rapidity) and v = coshn =
1/v/1 —v?). We would expect that every time the par-
ticle completes a circle, the spin direction would rotate
in the x — y plane by an angle o« = 27 (1 — coshn) =
27(1 — ). Note that « is negative here since v exceeds
one. As one can see from the formula for «, the effect is
appreciable only at relativistic speeds. Actually, all of us
follow helical world lines since we travel with the earth
around the Sun in a nearly circular orbit at 30km/sec.
Also we all have a gyroscope, in fact we live on one: the
spinning earth itself is a gyroscope, whose axis points
very nearly to the North Star. The plane of the earth’s
orbit is called the ecliptic (where eclipses occur) and the
earth’s rotation axis is tilted by about 23" from the nor-
mal to the ecliptic. Due to Fermi transport you would
find that every time your birthday comes around, the
spin axis of the earth rotates by about four millionth of
a degree about the normal to the ecliptic. It would take
you a million birthdays to work up an appreciable effect.
Good luck with that!

There are much larger precession effects that will over-
whelm geometric precession, but it is the principle of
the thing we want to emphasise here. The effect is tiny
since the speed of the earth around the Sun is small
compared to the speed of light. However, electrons in
the inner shells of heavy atoms move with relativistic
speeds. Such geometric precession effects have been oh-
served in atomic physics. In order to correctly account
for the fine structure of atomic spectra (the relativistic
correction to the spectra) one has to take into account
the fact that the electron spin is subject to geometric
precession. This effect is called Thomas precession: it

We all liveona
spinning gyroscope.
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Abstractions help
us see what is
common to diverse
situations.

The geometrical
idea of a
connection
permeates many
branches of
modern physics.

is a geometrical correction to the precession of electron
spin. For a corresponding discussion of massless parti-
cles, see Bozx 2.

Fermi was 21-years old when he wrote his paper on Fermi
Transport, generalising the idea of parallel transport
in general relativity. Fermi’s original paper appeared
in Italian [1], and is not accessible to most of us, but
you can find English language treatments in secondary
sources (see suggested reading [2, 3]). The idea was
extended in [4] by A G Walker (of Robertson—Walker
fame) to set up coordinate systems in general relativity.
The transport law (9) is sometimes called Fermi—Walker
transport. Although the law was discovered in general
relativity, it can be understood in Minkowski space, as
we have done. It does not involve curvature of space—
time, but only needs non-geodesic time-like curves (in
physical terms, accelerated world lines). Its geomet-
ric nature can be understood in terms of the curvature
of the mass shell hyperboloid or the fact that Lorentz
transformations in different directions do not commute.
This last feature of special relativity — that Lorentz
transformations in different directions do not commute
— apparently came as a shock to Albert Einstein when
he heard about it!

In this article we have moved from polarised light to rela-
tivistic gyroscopes to spinning neutron stars to spinning
electrons in the inner shells of atoms. Fermi transport
even appears in the theory of DNA elasticity [5, 6] (see
Box 3). That is quite a range of phenomena, described
by the idea of Fermi transport! This is a good example
of mathematical abstraction. The power of abstraction
is that it ‘abstracts’ the essence of a phenomenon and
then one finds that this essence applies in many different
situations. The idea that is abstracted here is the idea
of a ‘connection’, one that dominates many areas of the-
oretical physics these days. It is curious that the same
idea had been arrived at earlier by mathematicians like
Riemann, Weyl, Levi-Civita and Cartan.
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Box 2.

Fermi transport is a rule for transporting polarisation vectors along a time-like space—time
curve. It (i) preserves inner products between vectors, (ii) reduces to parallel transport on
geodesic curves and (iii) is not integrable, in the sense that the transport depends on the
entire curve and not just the end points. In this respect it differs from the more familiar
Serret—Frenet equations of elementary differential geometry which are integrable. Is there
a notion of transport of polarisation vectors along null non-geodesic curves? The answer,
it turns out is yes, but this takes us well beyond the scope of this article. See reference
below!, which describes the transport of polarisation vectors along null, non-geodesic
curves. The corresponding transport is locally integrable, unlike Fermi transport. In
this respect, it is closer to the Serret—Frenet equations. Unlike Fermi transport (and like
Serret—Frenet), transport along null curves does not have a smooth geodesic limit. For a
light illustration see Figure 3.

Figure 3. Fermi transport and
Kattabomman transport.

1 J Samuel and Rajaram Nityanada, Transport along Null Curves, J. Phys. A., Vol.33, p.2895, 2000.
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Box 3.

Take a belt, buckle its ends together and set it on a table. The centerline of the belt
(join the holes in the belt and extend this line around) lies in a plane half the belt’s
thickness above the table. Now unbuckle it, twist the buckle one turn (that is two half
turns) buckle it again and set it down on the table. You will notice that the centerline
is no longer in a plane. If you twist the buckle two turns, the deviation of the centerline
from planarity is even greater.

If you twist the buckle Lk times before buckling it you generate a configuration where
the edges of the belt (which are closed circles) are linked Lk times. To see this substitute
the belt with a strip of paper or a ribbon and cut down the centerline to see that the
two halves of the strip (or ribbon) are linked Lk times. In order to accommodate the
impressed link Lk, the belt (or strip or ribbon) responds in two ways: the centerline
‘writhes’ and the belt twists around the centerline. The impressed link decomposes into
twist and writhe

Lk = Tw+ Wr, (i)

where Wr is a property of the centerline. Tw is the twisting of the width of the belt
around the Fermi transported frame. The manner in which Lk is divided into twist and
writhe depends on the elastic constants that resist bending and twisting. The above
relation holds for any configuration of the belt. You can see similar effects by wringing
a towel.

This result (i) was proved by Calugireanu. It was independently found by Fuller. Brock
Fuller was approached by Vinograd, a molecular biologist who asked if a quantitative
description of the configurations of overwound DNA was possible. Fuller’s treatment is
now used in understanding the molecular biology of DNA molecules. DNA in its cellular
environment is subject to torques and forces. Fermi transport appears naturally in this
biological context!
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