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SYNOPSIS

In this thesis, we study the interplay between cellular shape and the cortical actin. Corti-

cal actin is a thin layer enriched in actin filaments, myosin motors and crosslinkers in the

vicinity of plasma membrane which is driven far from equilibrium by constant consumption

of ATP. As a result of ‘treadmilling’ and contractile stresses induced due to the action of

myosin motors, both of which are active processes in that they require ATP consumption,

active currents and mechanical stresses are generated in cortical actin. Cortical actin along

with the plasma membrane engages into mechanical sensing and response during various

cellular processes associated with the cell surface including cell migration, endocytosis and

interaction with extracellular milieu.

We find that, when the shape of the cells is non-deformable, as is the case for Fission Yeast

and a number of bacterial cells, geometry of the cell is crucial in determining the steady

state patterns of the acto-myosin filaments. Cellular shape not only influences the possible

steady state patterns but also determines the stability of these patterns. When the cellular

shape is deformable, the interplay between the cell shape and the cortical actin gives rise

to interesting instabilities comprising of the acto-myosin and membrane waves, tubules, and

waves with growing amplitudes. Work in this thesis has two main parts. Motivation and

results for each part are highlighted as follows :

Dynamics and patterning of the cortical actin on curved, tense membranes

Experiments on the cylindrical Fission Yeast cells, reconstituted cylindrical liposomes and

rod-shaped bacteria provided sufficient evidence that the dynamics and patterning of active

polar filaments is influenced by the cellular shape. To understand the effect of cell geome-

try we propose well established active hydrodynamic equations that incorporate couplings

between filament orientation and cell geometry. This description naturally leads to the

spontaneous formation of stationary or moving rings and cables and asters, as is observed in

Fission Yeast and rod-shaped bacteria. We focus on the role of cell radius and acto-myosin

contractility in bringing about the transition between various steady state patterns. For-

mation of the acto-myosin rings in cylindrical Fission Yeast cell typically proceeds by the
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nucleation of actin patches and then growth in the form of cables which finally condense into

acto-myosin rings. We understand this sequence of transition as a function of acto-myosin

contractility, cell radius and the domain area as a nucleation and growth problem. In case of

the rod shaped bacteria B. Subtilis, anisotropies rooted in the cell wall synthesis machinery

provide ‘easy directions’ that can determine the relative orientation of segments of MreB

filaments (homologues of actin in bacterial systems) with respect to the long axis of the

cylindrical cells. Taking into account these anisotropies which enter the framework via the

parameters of the theory results into moving helical segments on the surface of cylindrical

cells.

Rings and asters are obtained as steady state solutions on the surface of cylindrical cells.

We ask if these are the stable solutions when the shape of the cell is made spherical. We

find that the asters are stable solutions. On the other hand, rings are unstable solutions

on the surface of sphere and slide towards the poles. These predictions have also been con-

firmed in the experiments performed on the Fission Yeast cells of spherical shape, having

acquired a spherical shape after the removal of cell wall. These experiments show sliding

of the acto-myosin ring under the action of active contractile stresses generated in the ring.

Fluorescence images of myosin-II indicate that the active force density along the ring is

uniform and the mean force density is constant in time as the ring slides. This allows us

to propose a simple mechanical model based on the interplay between acto-myosin contrac-

tility and cell geometry in high friction limit. Using this model, we predict linear scaling

of the slippage time with the cell radius, also verified from experiments. With the same

assumptions about the nature of active contractile stresses, we obtain the dynamics of ring

on conical and saddle shaped surfaces. Noticing that the shape of the plasma membrane

during budding and cell division can be obtained by combining simple shapes e.g. planar,

cylindrical, spherical, cone and saddle shaped we make classify the steady state patterns of

acto-myosin filaments on composite surfaces.

Deformable plasma membrane and active cortical actin

When the cellular shape is deformable, active currents and stresses of the cortical actin

can induce interesting shape instabilities. Last part of this thesis is a study of interplay
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between cortical actin and the shape of plasma membrane. Active stresses generated in the

cortical actin can give rise to the membrane deformation leading to acto-myosin mediated

instabilities, waves, ruffles and budding in cells. Motivated by these ubiquitous patterns ob-

served in the lamellipodia of the motile and spreading cells, we propose active hydrodynamic

equations for the coupled dynamics of active cortical actin and cell membrane shape. We

study long wavelength instabilities of a plasma membrane coupled with active cortical actin

and find spontaneous emergence of tubules, acto-myosin and membranal waves as well as

waves with growing amplitudes. Towards the end of this thesis, we propose active mechanism

of deformation of the plasma membrane due to active stresses generated in the cortical actin.

Our results clearly establish an important role played by the cellular geometry in governing

the dynamics and patterning of the cortical actin and are supported by the experiments

performed on Fission Yeast cells and bacterial systems. We highlight the role of an intimate

coupling between the cellular shape and the cortical actin in giving rise to the shape defor-

mations of the plasma membrane. This approach is generic and has the advantage of being

applicable to a variety of cellular contexts.

Prof. Madan Rao Pragya Srivastava

Raman Research Institute
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Chapter 1

Introduction

1.1 Active Matter

Active matter consists of constituent particles that consume energy from an internal pool or

ambient medium and systematically give rise to the movement or generate stresses by going

through an internal cycle of dissipation. Examples of active matter are found over a vast

range of length scales including micron sized cell cytoskeletal system to the bird flocks with

length scale of order of a Kilometer. In recent years, active systems have attracted a lot of

attention due to their ubiquitous nature, unusual mechanical and rheological properties and

the features of pattern formation distinct from their passive counterparts [1]. Some repre-

sentative examples of active matter consist of bird flocks, fish schools, bacterical suspension,

vibrated granular rods, cell cystokeleton and reconstituted active components. Focus of the

present work will be on the last two examples of active systems (Fig.1.1 (a)).

Living cells are outstanding example of active matter (Fig. 1.1(a)). Cellular medium is

driven far from equilibrium by ATP-dependent molecular machines and the cytoskeletal fil-

aments to bring about the organization as well as to execute various cellular process. There

are three kind of cytoskeletal filaments : microtubules, intermediate filaments and actin

filaments as shown in (Fig. 1.1(b)). Thin layer just beneath the plasma membrane called

the cell cortex, is enriched in actin filaments and myosin motors which regulate the local

composition and shape dynamics of the cell surface in a variety of contexts such as cell

3
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division, cell migration and interaction with extracellular environment [2],[3],[4].

In this thesis, we provide a theoretical study of the interplay between cellular shape and the

dynamics and patterning of cortical actin. Cellular shape affects the patterning of cortical

actin and in turn gets affected by the active current and stresses generated in the cortical

actin. We start by giving an overview of the concepts and systems that we will encounter

through the thesis.

(a) (b)

Figure 1.1: (a) Active cellular medium : Components of the cell cytoskeleton. Nucleus
is shown in green, microtubules in yellow and actin filaments in purple (Image courtesy :
www.cellimagelibrary.org/images/240), (b) Schematic diagram of the cell showing nucleus and the cy-
toskeleton. Microtubules emanate from the centrosome near the nucleus while actin filaments are nucleated

at the plasma membrane. The cell cortex is a dense crosslinked meshwork of actin filaments.

1.2 Cell Cortex as an Active Fluid

At the inner surface of plasma membrane actin filaments are organized in the form of dense

crosslinked meshwork : the cell cortex. Nucleation of actin at the plasma membrane is as-

sisted by actin nucleaters such as Arp2/3 and formins, which give rise to the different kind

of structures of actin filaments. First step towards the polymerization of actin filaments

is formation of a nucleus consisting of three actin monomers. This nucleus then grows by
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Figure 1.2: Polymerization of actin filaments and treadmilling : ATP bound monomers get attached to
the barbed end and ADP bound monomers getting detached from the pointed end. In steady state actin
filaments reach a constant length and a move with respect to the medium in a process called ‘treadmilling’.
Profilin enhances the rate of attachment at plus end while the capping proteins are used as length regulators

(Courtesy : [4])

fast growth at one end known as the ‘+’ or barbed end and a slower growth at the other,

known as the ‘-’ end or pointed end. For the concentration of actin monomers more than

a critical concentration, the filament grows. In absence of the ATP hydrolysis the critical

concentration beyond which the growth happens, is same at both the ends and the filament

either grows or shrinks. ATP hydrolysis leads to a difference in the critical concentrations

at the two ends so that there is net attachment at the ‘+’ end and net detachment at the

‘-’ end. In steady state the filament then reaches a steady state length. This process of

polymerization makes the actin filaments inherently polar (Fig. 1.2) [4].

In addition to the actin filaments, crosslinkers (e.g. α−actinin), motor proteins (e.g. myosin)

and linker proteins organize the actin filaments into a dynamic mesh like structure with the

thickness in the range of 50-100 nm [5]. Various components of this crosslinked meshwork

turn over allowing for the structural relaxation of the network. While typical time scale for

the turn-over of actin is in the range of 30-45s, actin crosslinkers and motor proteins turn

over typically 5-10 times faster thus leading to the turn over of the whole meshwork at the

time scale of less than a minute [5]. At the length scales of the order of microns and time

scales of several minutes the cell cortex thus behaves as a two dimensional fluid. In this
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thesis, we will be working in these regimes of length and time scales and will treat the cell

cortex as an active polar fluid in two-dimension.

1.2.1 Active Stresses and Currents in the Cortical Actin

Another component of the cell cortex are molecular motors e.g. myosin-II that get attached

to one or more number of actin filaments (Fig. 1.3). Myosin-II motors attach to actin

filaments and walk towards the + end of filament by consumption of ATP. In this process they

induce relative torques and relative sliding of actin filaments (Fig. 1.3)[4], thus generating

active stresses and currents in a collection of acto-myosin filaments. We now elaborate more

on the forms of active current and stresses.

Figure 1.3: (a) Two actin filaments bound by myosin-II which walks towards the ‘+’ end of the filaments,
thus generating a torque (shown by the red arrows) leading to relative alignment of the filaments, (b)
Action of myosin motors on the parallel and anti-parallel bundles of actin filaments : generation of relative

sliding and contractile pulling (red arrows).

Active Stresses : Active forces are internal forces and to the lowest order, active particles

are force dipoles. Total force in an elemental volume is zero i.e.
∫

Ω
f(r)dr = 0 (Fig. 1.4).

Active force density thus can be written as f(r) = ∇ · σa, where σa is active stress. Form

of the active stress due to active force dipoles has been derived in [6] and is proportional

to Qij = (ninj − 1
2
δij) where n denotes the averaged polar orientation associated with the

acto-myosin particles (Fig. 1.4). Active deviatoric stress σa is given as

σaij = −WcQij (1.1)
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(a) (b)

Figure 1.4: (a) Collection of acto-myosin filaments : Total force in an elemental volume is zero, (b) polar
orientation n directed towards the ‘-’ end of filaments.

where c(r) denotes the coarse grained concentration of active particles. Parameter W refers

to the extensile (W > 0) or contractile nature W < 0 of the active filaments. Collection of

acto-myosin filaments is an example of contractile systems.

Active Currents : Polar active filaments can move with respect to their surrounding

medium with a velocity va proportional to their polar orientation n. This relative motion

can arise due to a process called ‘treadmilling’ or it can be motor driven. These two processes

result in the relative motion of filaments in following ways :

• Treadmilling : As stated earlier, actin polymerization takes place by attachment of

ATP bound actin monomers at the + end and ADP bound monomers getting detached

from the − end. In steady state, this net assembly of actin monomers at + end and

net diassembly of actin monomers at − end leading to movement of the filament with

respect to the medium in a process known as ‘treadmilling’ and is illustrated in (Figs.

1.5(a))[4].

• Motor driven motility : Action of myosin-II motors on the actin filaments can also lead

to the relative motion of filaments. Fig. 1.5(b) shows the diagram of a motility assay

where myosin motors were attached to the glass surface. Actin filaments were added

and bound to the myosin motor heads. Upon addition of ATP, actin filaments were

moved by the action of myosin motors clearly demonstrating the motor driven motility

of actin filaments [4].
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(a) (b)

Figure 1.5: (a) Treadmilling : In steady state, a net flux of the monomoers towards the ‘-’ end of the
filament leads to relative motion of the filament with respect to the medium (Image courtesy : [4]), (b)
Actin motility assay : myosin motors attached to the glass surface move actin filaments upon addition of

ATP (Image courtesy : [4]).

Gradients of the active stresses generate flow in the medium which are described by the

hydrodynamic velocity v. Due to the contribution from active stresses v will have terms

proprotional to ∇ · σa. Advection of the acto-myosin filaments thus can be because of (a)

the velocity associated with the medium that has contributions from the active stress and,

(b) relative velocity due to self propulsion of actin filaments coming from the treadmilling

and motor driven motility. The second contribution accounting for the relative motion of

filaments with respect to the medium will be the dominant one in experimental situations

where the selective transport of acto-myosin filaments is observed in a relatively static back-

ground. In this thesis we will be dealing with situations where this will be the case, e.g. in

Fission Yeast cells where the transport of actin filaments is assisted by the motor proteins

such as Myosin-II and Myosin-V [7]. We will focus on the effect of this relative motion on

the dynamics and patterning of acto-myosin filaments.

1.2.2 Mechanisms of Dissipation : Viscosity and Friction

Active stresses produced in a collection of acto-myosin filaments get balanced by the dis-

sipative stresses. In the fluid model of cell cortex, there are two sources of dissipation :

(a) viscosity and (b) effective friction of the quasi 2-d meshwork. Denoting hydrodynamic

velocity by v, the force balance reads :
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−∇ · σa = η∇2v − Γv (1.2)

where η and Γ are viscosity and friction coefficients. Ratio of the viscosity and friction gives

a hydrodynamic screening length scale l =
√

η
Γ
. If length scales involved in the process are

much larger than this hydrodynamics screening length friction is the dominant mechanism

of dissipation, while for the length scales smaller than l viscosity dominates the dissipation.

The dense cortical actin meshwork provides large friction leading to small values of the

screening length. We work in the length scales larger than this screening length so that the

dominant mechanism of dissipation is the effective friction due to the cell cortex.

1.3 Theoretical Framework : The Active Hydrodynamic Approach

(a) (b)

Figure 1.6: (a) Short-dynamic actin filaments (in yellow) crosslinked by myosin (in black) in addition
to the relatively static long filaments on the inner side of plasma membrane (Courtesy : [8]), (b) Cryo-
electorn micrograph image of the cortex in Normal Rat Kidney cells showing a static crosslinked meshwork

(Courtesy : Morone et al, http://www.nanobio.frontier.kyoto-u.ac.jp/lab/slides/4/e.html).

To describe the collection of acto-myosin particles, we follow the well-established framework

of ‘Active hydrodynamics’ which comprises of two steps : (a) identification of the ‘slow’ vari-

ables whose dynamics is slow as compared to microscopic time scales, and (b) proposing the

equations of motion for these slow variables using general symmetry based arguments that

include all the terms allowed by symmetries upto the lowest orders in fields and gradients.
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Because of active driven nature of the systems under consideration, the sign of parameters

entering of the theory is not constrained by the requirements of stability. This approach

has the advantage of being valid across a variety of systems where context-dependent mi-

croscopic details go into setting the parameters.

We display the dynamical equations of motion for the hydrodynamic variables which were

proposed in the context of an Active Composite Membrane [2], with a purpose to introduce

the theoretical framework. In order to understand the non-trivial features of the organization

of the GPI-APs on the plasma membrane of mammalian cells, the notion of Active Composite

Membrane was proposed by Gowrishankar et al. [2]. The time scales associated with the

dynamics of formation and fragmentation of GPI-APs nanoclusters on the plasma membrane

were of the order of 1-10s. Experimental evidences suggesting that the patterning and

dynamics of GPI-APs was coupled to the cortical actin meshwork motivated the idea of a

thin layer of dynamic actin filaments (Fig. 1.6(a)) in addition to the the relatively crosslinked

actin meshwork showed by cryo-electron micrographs (Fig. 1.6(b)) [2]. It is at this point

that the experimental systems which we will be dealing with in the present thesis differ.

Although the notion of an additional layer of dynamic actin filaments need not be invoked

in the present work, the underlying theoretical framework is same.

1.3.1 Hydrodynamic Description

First step towards developing the ‘active hydrodynamic’ description is to identify the ap-

propriate variables. These variables belong to two categories (a) variables associated with

conservation laws, and (b) variables associated with ‘broken symmetries’ of the system. The

time scales under consideration in [2] were less than the turnover time scale so that the total

number of acto-myosin filaments in cortex remains constant. The coarse grained concentra-

tion c(r, t) of acto-myosin filaments is thus associated with a conservation law and is defined

as

c(r, t) = (1/V )Σiδ(r− ri(t)) (1.3)

Where V is elemental area of coarse graining.

Another ‘slow’ variable corresponds to the polar orientation of the dynamic filaments n(r, t)
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which breaks the rotational symmetry in the plane of membrane above a critical density of

filaments and, is defined as

c(r, t)n(r, t) = (1/V )Σiniδ(r− ri(t)) (1.4)

The concentration of acto-myosin filaments denoted by c(r, t) follows a conservation law

whose dynamics is given by continuity equation :

∂c

∂t
= −∇ · J (1.5)

where the current J = v0cn−D∇c; v0cn is motor driven active current and D is the diffusion

coefficient defined as the trace of diffusion matrix

D = D‖nn +D⊥(I− nn) (1.6)

Dynamical equation for n is similar to the Toner-Tu equations [9] and is given by

∂n

∂t
= −λn · ∇n +K1∇2n +K2∇(∇ · n) + α(c0 − c∗)n− β|n|2n + ζ∇c (1.7)

Terms on the R.H.S. are contributions from (a) non-linear self advection, (b) active alignment

torques, (c) a soft potential α(c0 − c∗)n − β|n|2n ensuring uniform order above a critical

mean concentration c∗, and (d) symmetry allowed coupling to gradients of c.

Equations 1.5 and 1.7 lead to the formation of asters in steady state, for high values of the

contractile activity (Fig.1.7). Gowrishankar et al. discuss the patterning of acto-myosin

filaments and sequence of transitions in these patterns in planar geometry in detail [10].

Results of this study have successfully been used to explain the dynamics of composition

of the plasma membrane [2] as well as to understand the active enhancement of chemical

reaction rates at the cell surface [11].

Active currents in cortical actin thus provides a novel mechanism to understand the hetero-

geneous organization of plasma membrane. In addition, active currents and stresses can get
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Figure 1.7: A collection of asters obtained in steady state shown schematically (Courtesy : [8]).

affected by the geometry of the cell. We now discuss some examples where cellular shape is

important to determine the patterning of acto-myosin filaments.

1.3.2 Patterning of Cortical Actin : Substrate Geometry

Fission yeast cells are simple and attractive model to study cell cycle because of their small

and well characterized genome. Shape of the Fission Yeast cells is cylindrical with two

hemispherical end-caps and is maintained by a rigid cell wall. In planar geometry a col-

lection of acto-myosin filaments has been observed to assemble into a variety of structures

including asters, vortices and active networks [12]. In Fission Yeast cells, actin organizes

itself into three structures : actin cables, actin rings and actin patches [13]. When cell wall

of the Fission Yeast cells is removed they acquire spherical shape. Patterns of the acto-

myosin filaments on spherical Fission Yeast cells are rings and patches. Cellular shape not

only affects the patterning of acto-myosin filaments, but also the stability of those patterns.

Acto-myosin rings formed on the Fission Yeast cells which are not of right shape are not

stable leading to failed or inappropriate cell division [14]. Fidelity of the cell division thus

crucially depends on the shape of dividing cells.

For large part of this thesis we address the question of dynamics and patterning of acto-

myosin filaments on non-deformable curved geometries by generalizing ‘active hydrodynamic

framework’ which explicitly includes the coupling between cortical actin dynamics and the
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(a) (b)

Figure 1.8: (a) Lamellipodia, peripheral and dorsal membrane ruffles are shown schematically in a cell
migrating along the direction shown by green arrow. (Courtesy: [15]). Associated actin structures are
displayed in Fig. 1.9 (b)Electron micrograph image of the lamellipodia in Xenopus keratocytes, showing

highly branched meshwork of actin filaments organized in sheet like structure. (Courtesy : [16])

curvature of the substrate.

When the cellular shape is deformable, dynamics of the shape changes of plasma mem-

brane gets coupled to the active cortical actin. This intimate interplay between acto-myosin

contractility and shape changes of the plasma membrane gives rise to the self organized

waves and ruffles. We present few relevant examples highlighting the role of active stresses

generated in the cortical actin in deforming the plasma membrane.

1.4 Migrating and Spreading Cells

1.4.1 Lateral Membrane Waves and Ruffles

Leading edge of the migrating cells typically has a flat sheet like structure called lamel-

lipodium (Fig. 1.8(a)) which is made up of highly branched actin meshwork (Fig. 1.8(b))

and undergoes rapid turnover. Immediately following this is a structure called lamella which

contains actin bundles and myosin-II [15]. These two actin modules regulate the cell motility

by co-ordinating actin polymerization in the lamellipodium and the contractile activity in

the lamella. Periodic protrusion and retraction of membrane and acto-myosin self organize

into lateral membrane waves and ruffles at the leading edge and are ubiquitous patterns of
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motile cells [17]. Some common acto-myosin structures and the corresponding membrane

shape at the leading edge are displayed in Fig.1.9[15]. A number of studies have identified

the dynamics of actin polymerization and the acto-myosin contracility coupled with the

traction forces on the substrate, as the regulatory mechanism for the cell motility and the

generation of waves and ruffles at the leading edge [18],[19],[20],[21].

Following this, leading edge of the motile and spreading cells can be treated as a thin layer

of acto-myosin filaments on a substrate. This layer exhibits waves in the membrane shape

as well as the acto-myosin density. We will use these features to build up dynamical equa-

tions for membrane shape and the acto-myosin filaments with a purpose to understand the

spontaneous emergence of waves, ruffles and other membrane instabilities.

(a)

Figure 1.9: Schematic diagrams of the actin structures in lamellipodia, ruffles and filopodia (Courtesy
:[15] )
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1.4.2 Endocytosis

Endocytosis is the process of internalization of plasma membrane with its constituent molecules

and surface proteins. The nanoclusters of GPI-APs are internalized by a pathway that is

independent of the specific proteins such as clathrin and dynamin and is known as GPI-

enriched endocytic compartments (GEEC) pathway. Though the mechanisms of membrane

deformation and endosome scission are not properly understood, a number of experiments

have established major role played by actin in the GEEC pathway. Direct perturbations

to the actin polymerization result in the blocking of the GEEC pathway [22]. Experiments

performed by Chadda et al. provide evidence for the GEEC pathway to be based on Cdc42

mediated actin polymerization [22]. Cdc42 is a small GTPase that regulates actin poly-

merization by binding to N-WASP activating Arp2/3 complex. Since Arp2/3 complex is

responsible for branched structure of actin we speculate that the deformation of plasma

membrane for GEEC pathway can be caused by the active stresses generated in the cortical

actin that is ‘horizontal’ to it.

Another piece of indirect evidence for the architecture of actin involved in GEEC, comes

from the work of Gowrishankar et al. where they clearly demonstrate the major role of

active currents in sorting out the membrane proteins and in the formation of GPI-APs nan-

oclusters. These nanoclusters form at the flat regions of the cells where actin meshwork

is horizontal to the plasma membrane [2] which are then endocytosed via GEEC pathway.

There can be two possibilities for the mechanism of membrane deformation in the GEEC

pathway, (a) passive deformation because of the spontaneous curvature and chiral inter-

actions [23] and, (b) active deformation because of the stresses applied by cortical actin.

We propose in this thesis that the localized membrane deformation in GEEC pathway are

induced by the active mechanical stresses applied by the horizontal cortical actin.

We now discuss the idea of active membranes which we will encounter in the final chapter

of this thesis.
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Figure 1.10: Mechanisms leading to the instability of an active membrane (Courtesy [26])

1.5 Active Membranes

Studies on the shape fluctuations of the membranes with ion pumps such as bacteriorhodopsin,

ion channels and actively generated forces normal to the membrane, motivated the idea of

active membranes [24],[25]. Active membranes are membranes with the active force centers

withthe direction of active forces normal to the membrane. Depending on the relative orien-

tation of force with respect to the local normal active pumps can be ‘+pump’ or ‘−’pump.

The difference in the number density of ± pumps gives rise to an imbalance density. A

coarse grained model based on the coupling between the membrane shape and imbalance

density has been constructed in [26]. Pressence of an active pump induces local curvature of

a preferred sign in the membrane. For appropriate signs of the local spontaneous curvature

and the activity of the pumps active membranes are linearly unstable [26]. The two mech-

anisms that drive an active membrane to instability are depicted in the Fig. 1.10. In the

parameter regime where membrane is stable, activity suppresses the thermal fluctuations

of a tensionless membrane. Some examples of active membranes are the membranes with

ion pumps and ion channels [26] and a fluid membrane with the active fission and fusion

processes [23].
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1.6 Theme of the Thesis

In the next chapter, we present an extensive analysis of the steady state patterns on the

cylindrical surfaces and predict transitions in these patterns as the cell diameter or motor-

driven activity are varied.

In chapter 3, we explore the formation and stability of axi-symmetric patterns on spherical,

saddle shaped and conical surfaces. Noticing that the shapes of endocytic buds and the

cells undergoing division resemble the composite shapes that can be obtained by combining

planar, cylindrical, spherical and saddle shaped geometries, we make predictions about the

stability of patterns of acto-myosin filaments. In chapter 4, we describe the experiments on

spherical Fission Yeast cells that confirm our predictions on the stability of acto-myosin rings

and understand the dynamics of these rings using a mechanical model based on interplay

between cell shape and the acto-myosin contractility.

The final chapter presents the analysis of long wave-length instablities of the plasma mem-

brane coupled with the cortical actin network lying horizontal to it and proposes active

mechanisms for the deformation of membrane.
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Chapter 2

Polar Active Fluid on a tense

cylindrical membrane

2.1 Shape is Important

Fission Yeast (S. pombe) is a well characterized model organism to understand the pro-

cess of cell division. Fission Yeast is a unicellular organism and its cylindrical shape is

maintained by a rigid cell wall. During Cytokinesis, the final stage of cell division, actin

filaments, Myosin-II and a number of specific proteins assemble the cytokinetic ring, which

then constricts resulting into the two daughter cells. In addition to the acto-myosin rings,

acto-myosin filaments also form cables and nodes in a wild type Fission Yeast [1], [2] (Fig.

2.1). A recent study reveals that the formation of acto-myosin rings for cytokinesis proceeds

by the nucleation of actin filaments throughout the Fission Yeast cell, which are then ‘reeled

in’ to the maturing ring via non-medial acto-myosin cables [1]. If the shape of Fission Yeast

cell is made spherical then acto-myosin rings do not stably maintain their position and slip

towards the poles [3]. This remarkably demonstarates the significance of cell geometry and

in general the influence of geometry on the steady state patterns of actin filaments.

Focus of this chapter is on the role of shape in determining the steady state patterns of active

polar filaments. We propose a theoretical framework based on the ‘Active hydrodynamics’

that includes coupling between the cortical actin and cell geometry and is applicable to a

21
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(a) Actin patches (b) Actin cables (c) Actin rings

Figure 2.1: Actin labelled with Lifeact is observed to assemble in (a) patches, (b) cables and (c) rings in
Fission Yeast cell : [1]

variety of cellular contexts such as : (i) patterning and dynamics of the MreB filaments on

rod shaped bacteria B. Subtillis, (ii) reconstitued cylindrical liposomes [? ] and, (iii) FtsZ

filaments in bacteria(and reconstituted in yeast). We first propose dynamical equations for

the cortical actin in curved geometries using the same approach and asumptions as discussed

in the previous chapter.

2.2 General Framework : Curvature Orientation Coupling

As argued in the previous chapter, we describe the cortical actin as a 2-dimensional polar

active fluid on the inner surface of a cell. Assuming that the (de)polymerization processes of

actin filaments (into)from actin monomers have reached at the steady state, total number of

the actin filaments of the steady state length l in the cortex is conserved. The concentration

of actin filaments, thus, is a conserved variable and is denoted by c(r, t). Dynamics of

concentration c(r, t) follows the continuity equation ∂tc = −∇ · J, where the operator ∇ is

covariant derivative defined on the surface of cell [? ]. Current for the concentration has

following expression

Ji = v0cni + Λkl
ijκ

j
kcnl −D∇ic (2.1)

R.H.S. of the Eqn. (2.1) has (a) an active contribution due to the ability of filaments to

move with respect to the background fluid with a velocity proportinal to n, (b) a symmetry

allowed curvature-orientation coupling via phenomenological 4th-rank tensor Λkl
ij , where κjk

is the curvature tensor specifying the geometry of the cell, and (c) diffusive current with
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the isotropic diffusion coefficient D. The coupling via coefficients Λ renormalizes the active

current in Eqn. (2.1) resulting into anisotropic current and is a term of purely active origin.

Note that, the diffusion coefficient D can also depend upon the cell geometry which we have

ignored in our treatment, while retaining only the lowest order contribution involving the

coupling between the polar orientation and cell geometry.

Another slow variable, as described in the first chapter, is the polar orientaion of the actin

filaments denoted by n. The dynamics of polar orientation n of filaments is given by the

Toner-Tu equations [5],[6] generalized to include coupling between orientation and the cell

geometry

∂n

∂t
+ λ (n · ∇) n = K1∇2n +K2∇ (∇ · n) + ζ∇c+

(
α− β|n|2

)
n + γ κn

(2.2)

The term on L.H.S. with coefficient λ denotes advective non-linearity with λ 6= 1 as a result

of absence of Galilean invariance [5]. Terms on the R.H.S. are explained as follows: (a) K1,2

are active torques promoting alignment of neighboring filaments, (b) active motor driven

contractility re-orienting n along the concentration gradients, (c) a term governing the tran-

sition from orientationally disordered to polar ordered phase and, (d) a phenomenological

coupling between the curvature and polar orientation via coefficient γ. Note that the cou-

pling via parameters γ can be present even in an equilibrium membrane with tilt field [7].

The fourth rank coupling parameters Λ and γ will have 16 components in two dimesions.

However the number of non-zero independent contributions of these coupling constants is

restricted by the symmetries and the substrate geometry.

As stated in the previous chapter, the hydrodynamic velocity v is not a slow variable and is

determined by the local force balance Γv = ∇·σ where σ has contibutions from viscous and

active stresses. We work in the limit of high friction so that the momentum density does

not correspond to a conservation law.
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Figure 2.2: Polar active filaments on the surface of a cylindrical cell; The dimensions correspond to
Fission Yeast cell.

2.3 Patterns on the Cylindrical Cell

The dynamical Eqns. (2.1) and (2.2) in the previous section are proposed on the surface of a

cell of arbitrary geometry. We now take the case of cylindrical geometry which is appropriate

for the Fission Yeast and obtain the dynamical equations for c and n (Fig. 2.2) explicitly.

First step towards this is to obtain the non-zero and independent components of Λ and γ.

We now present the symmetry arguments that restrict the number of non-zero independent

components of Λ and γ for cylindrical geometry.

• Invariance of dynamical equations under z → −z and θ → −θ : The requirement that

the dynamical equations be invariant under z → −z (reflection about a plane perpen-

dicular to cylindrical axis), and θ → −θ (right/left handedness), forces 8 components

of Λ and γ (with indices appearing an odd number of times) to be zero. This leaves 8

non-zero components each : 2 of the form
(
Λzz
zz,Λ

θθ
θθ

)
and 6 of the form Λij

ij, Λii
jj, Λij

ji ,

with i, j = θ, z and i 6= j, where each index appears twice (similarly for γ).

• Symmetry of κij : The fact that the curvature tensor κij is symmetric under interchange

of i, j further restricts the number of independent components of Λ and γ; only 4 of

components which have each index (θ, z) appearing twice, are independent (similarly

for γ); thus along with the 2 components Λii
ii, this leaves the net number of independent

components to be 6 (similarly for γ).
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• Form of κij for cylinder : Finally, upon contracting Λ and γ with the curvature tensor

for the cylinder, κ =

(
1/R 0

0 0

)
, we find that the number of independent compo-

nents of Λ and γ appearing in the dynamical equations are only 2, viz.,
(
Λθθ
θθ,Λ

zθ
θz

)
and(

γθθθθ , γ
zθ
θz

)
, which we denote as (Λθ,Λz) and (γθ, γz), respectively.

As mentioned in the previous section, the coefficients Λ lead to the anisotropic advective

current by renormalizing v0 to vi = v0 + Λi
R

. The anistropic current is explicitly dependent

on the radius R of the cell. Similarly γ coefficients renormalize the coefficient of linear term

in Eqn. (2.2) to αi = α + γi/R− δiθK1/R
2 where δij is the Kronecker delta.

Using above arguments the final equations for c and n are obtained as

∂tc = D

(
1

R2

∂2c

∂θ2
+
∂2c

∂z2

)
− vθ

1

R

∂cnθ
∂θ
− vz

∂cnz
∂z

(2.3a)

∂tnθ = −λ (n · ∇)nθ +K1

(
1

R2

∂2nθ
∂θ2

+
∂2nθ
∂z2

)
+K2

(
1

R2

∂2nθ
∂θ2

+
1

R

∂2nz
∂θ∂z

)
+ζ

1

R

∂c

∂θ
+
(
αθ − β|n|2

)
nθ (2.3b)

∂tnz = −λ (n · ∇)nz +K1

(
1

R2

∂2nz
∂θ2

+
∂2nz
∂z2

)
+K2

(
∂2nz
∂z2

+
1

R

∂2nθ
∂θ∂z

)
+ζ

∂c

∂z
+
(
αz − β|n|2

)
nz (2.3c)

The symbols vθ,z and αθ,z are symbols for renormalized parameters and should not be treated

as components of a vector.

2.4 Parameters and Units

The dynamical equations are non-dimensionalized by choosing appropriate units for length,

time and order parameter,

1. Unit of length, l = R
5

. TakingR = 2µm for fission yeast [2], this translates to l = 0.4µm.

All length scales are measured in units of l.
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Parameters Physical values Scaled values

R 2 µm [2] 5 (l)
L 15 µm [2] 37.5(l)
D 0.1− 1µm2s−1 [8] 0.625− 6.25(l)
v0 0.4 µms−1 [9] 1 (l/τ)
K1 0.16 µm2s−1 1(l2/τ)
K2 0 µm2s−1 0(l2/τ)
α 10 s−1 10(τ−1)
γi −20− 10µms−1 −50− 25(l/τ)
Λi −0.8− 1.2µm2s−1 −5− 7.5(l2/τ)

Table 2.1: Parameter ranges in physical and scaled units

2. Unit of time, τ = R
5v0

. Taking v0 = 0.4µms−1 for fission yeast [9], this translates to

τ = 1 s. All time scales are measured in units of τ .

3. Unit of magnitude of polarization, n =
√
α/β. The values of α and β have been chosen

to be large (= 10) and equal so as to ensure that the magnitude of n is 1 almost

everywhere in ordered phase.

To obtain the values of parameters in real units, the number used in the simulation should

be multiplied by its appropriate dimension in units of `, τ and n. The values of other pa-

rameters chosen for the numerical integration are enlisted in the table.

Note that in the Table (2.1), K1 has been chosen to be of the same order as D. For simplic-

ity, one constant approximation has been taken, thus K2 = 0. In the analysis that follows

we have taken K1,2 to be positive thus favoring parallel alignment of filaments. However

the steady states that we obtain also admit anti-parallel filament orientations if K1,2 < 0;

we then need to augment Eqn.(2.2) by a symmetry allowed 4th-order spatial derivative for

stability. Values of γi and Λi are chosen such that γi
R

and Λi
R

are of same order as α and v0.

The parameter α is a linear function of mean filament concentration c0 and governs the tran-

sition from orientationally disordered to polar ordered phase. The critical value at which

this transition takes place is now curvature dependent. ζ > 0 describes the tendency of

contractile filaments to reorient towards the gradient of concentration [10]. Due to activity,

the filaments move relative to the solvent in the direction of n, thus reorientation is accom-

panied by movement of filaments towards each other for ζvi > 0 and can be enhanced by
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increasing the motor activity. The Eqns 2.3a, 2.3b and 2.3c have large number of param-

eters, but we restrict ourselves only to the parameters which are both representative and

accessible to experimental manipulation. We explore the steady state patterns of active fila-

ments on a cylindrical cell as a function of (i) c0, (ii) ζ and (iii) cell size R. Having specified

the dynamics of cortical actin in terms of the local concentration and polar orientation of

filaments we now proceed to determine the stability of homogeneous phases as a function of

the parameters mentioned above.

2.5 Spinodal Instability of Homogeneous phases

We first study the spinodal instability of the homogeneous configuration with concentration

c0, which is stable when ζ = 0. At high mean concentration of the actin filaments the uniform

phase is orientationally ordered. This transition from orientationally disordered to ordered

phase happens when either of αi becomes positive. Let us write the bare α as α = α0 (c0 − c∗)

i.e. a function of deviation of mean concentration c0 from c∗ where c∗ is the Onsager value

of mean density at which disordered to ordered phase transition takes place in planar ge-

ometry. Because of the anisotropic renormalization of α as αi (i = θ, z), the transition from

orientationally disordered to polar ordered phase takes place at different densities and is

governed by either of αi becoming positive. Solving αi = α0 (c0 − c∗) +γi/R− δiθK1/R
2 = 0

gives the values of mean density at which αi become positive. These values of c0 are plotted

as functions of R in the Fig. 2.3 for both the signs of γθ and γz.

When the filament concentration is low such that αi(c0, R) < 0, the stable homogeneous

phase has no orientational order, 〈n〉 = 0. As the mean concentration is increased so that

either of αi(c0, R) becomes positive the homegeneous phase acquires polar orientational or-

der. When αθ > max(αz, 0) (αz > max(αθ, 0)) the direction of polar order is along θ(z).

To analyze the stability of homogeneous configurations, perturbations to the homoegeneous

states are added which are of the form c(r, t) = c0 + δc(r, t) and n(r, t) = n0 + δn(r, t).

The dynamical equations are then expanded to the linear order in perturbation . The

perturbations are then decomposed into fourier modes as δc = Σqcqe
iq·x and δn = Σqnqe

iq·x,
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Figure 2.3: Phase boundaries for transition from homogeneous disordered phase to uniformly polarized
phase oriented along (a) θ̂ and (b) ẑ for γ1,2 > 0 (solid red line) and γ1,2 < 0 (solid blue line). c0 is in the

units of c∗.

where q = (mθ, 2πl
L

), m, l are integers and L is the length of Fission Yeast cell. Eqns. 2.1

and 2.2 can be written in the following matrix form

∂t


cq

nθ,q

nz,q

 =M


cq

nθ,q

nz,q

 (2.4)

Depending on the sign of the real part of eigenvalues of the stability matrixM, the pertur-

bations grow (positive) or decay (negative). A non-zero imaginary part of the eigen values

suggests travelling solutions with the amplitudes that again can be unstable or decaying

depending on the sign of real part of the corresponding eigen value. The eigen vectors sug-

gest the nature of pattern towards which the homogeneous phase is unstable but does not

confirm the final steady state. To obtain the steady state configurations we numerically

integrate the dynamical equations for c and n using an ‘implicit and alternating direction

method [11]. This is explained in more detail in a later section of this chapter.

The finite wavevector instability seen in the linear analysis shows up as a density clumping

along a specific direction. For the parameter ranges which result in only one maxima in the

dispersion surface, the direction of the density clumping is set by direction of the fastest

growing wavevector qm. When qm is along z, we obtain rings, while when qm is along θ, we
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Figure 2.4: Schematics of the steady state patterns characterizing the phases obtained as numerical
solutions of the dynamical equations : (a) stationary rings, (b) stationary cables, (c) moving rings, (d)
moving cables and (e) asters/nodes. Small arrows (black) show texture and thick arrow (blue) denotes the

direction of movement of the rings/cables.

get cables. For the parameter range where the dispersion surface shows two maxima (along

both qz and qθ), the final configurations correspond to asters or nodes. Stationary rings or

cables are different from the moving rings or cables in the steady state arrangement of the

orientation vector. Schematic diagrams of all these steady states are shown in the Fig. 2.4.

We now examine the instabilities of homogeneous phases.

2.5.1 Low Mean Concentration of the Actin Filaments

We fix the mean concentration c0 such that αi(c0, R) < 0 and determine the stability of

this state as the contractility ζ is increased. Using linear stability analysis we find that for

ζ > ζc({αi}; {vi}) homogeneous disordered phase is unstable. The stability matrix for the

perturbations about homegenous disordered phase has the following expression

M =


−Dq2 −ic0vθqθ −ic0vzqz

iζqθ αθ −Kq2 − δKq2
θ −Kqzqθ

iζqz −δKqzqθ αz −Kq2 − δKq2
z

 (2.5)

As mentioned in the previous section, dispersion surface shows single maxima along (a) qz

direction, when
∣∣∣Dαθvθ

∣∣∣ = ζ1 > ζ > ζ2 =
∣∣∣Dαzvz

∣∣∣ and along (b) qθ direction, when
∣∣∣Dαzvz

∣∣∣ = ζ2 >

ζ > ζ1 =
∣∣∣Dαθvθ

∣∣∣. When ζ > max(ζ1, ζ2) the dispersion relation shows two maxima parallel

to each qθ and qz directions (Fig. 2.5(a)). Since the fastest growing wave vector is either
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Figure 2.5: (a) Dispersion surface showing two maxima; one on qθ and other on qz axis, (b) magnitude
of fastest growing wave vector with ζ and R(inset).

parallel or perpendicular to the long axis of the cylinder we give the expression of dispersion

surface only along qθ (qz = 0) and qz(qθ = 0) axes.

1. Along qz axis i.e. qθ = 0 :

Ω =
αz −D+q

2
z

2
+

1

2

√
(αz −D−q2

z)
2 + 4c0vzζq2

z (2.6)

2. Along qθ axis i.e. qz = 0 :

Ω =
αθ −D+q

2
θ

2
+

1

2

√
(αθ −D−q2

θ)
2

+ 4c0vθζq2
z (2.7)

where D+ = D+K1 +K2 and D− = D−K1−K2. Other two modes do not show instability

in any parameter regime for K1,2 > 0. The magnitude of the most unstable wavevector is

determined by the maxima of Ω, and is plotted as a function of R and ζ in (Fig. 2.5(b)).

This takes a simple form when we set D− = 0,

qm =
1

2D+

√
c2

0ζ
2v2
z − α2

zD
2
+

c0vzζ
. (2.8)

To know the behaviour of qm with R and ζ, it is instructive to look at the asymptotic forms

of qm :
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1. As R→∞, qm ∼ 1
2D+

√
c20ζ

2v20−α2
0D

2
+

c0v0ζ
+O( 1

R
).

2. qm ∼
√
ζ −

∣∣∣Dαzvz

∣∣∣, for ζ close to the threshold ζ2 =
∣∣∣Dαzc0vz

∣∣∣.
3. qm ∼ c0vz

2D+

√
ζ, for large ζ.

Figure 2.6: (a)-(b) Phase diagrams in ζ −R at low filament concentration, αi < 0, corresponding to zero
mean orientation 〈n〉 = 0. The final steady state configurations obtained from a numerical solution of the
dynamical equations for c and n, correspond to (c) rings, (d) cables and (e) nodes. (a) When ζ1 > ζ2,
the homogeneous phase is unstable to rings and nodes as ζ increases, (b) When ζ2 > ζ1, the homogeneous
phase is unstable to cables, at large R. As R is lowered, the phase boundaries cross and the sequence of
transitions resembles (a).(c)-(e) show schematic diagrams of steady state patterns as obtained from the

numerics with (c) rings, (d) cables and (e) nodes.
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Figure 2.7: Dispersion surface showing (a) one maximum on qz axis, (b) two maxima; along qθ as well as
qz axes.

The steady state patterns are obtained from numerical integration as mentioned in the pre-

vious section. The phase diagram exhibiting various instabilities and corresponding steady

state patterns are displayed in the Fig. 2.6. In the next section we proceed to determine

the instabilities of homogeneous phase with macroscopic polar order.

2.5.2 High Mean Concentration of the Actin Filaments

In this section we apply perturbation about a uniform phase with mean polar orientation

along θ direction which is stable when the mean concentration is such that αθ > max(0, αz)

(in absence of any contractile activity). This homogeneous polar phase becomes linearly

unstable to the formation of spatial structures, when ζ is increased beyond a threshold.

This result is different from the case of planar geometry where a uniform polar oriented

phase is unstable for any non-zero activity [5], [10]. The nature of instability is the same

whether αθ > αz or vice versa and hence we discuss only the former case, where we perturb

the system around n0 =
√

αθ
β
θ̂. The instabilities about this homogeneous ordered phase are

obtained as follows :

1. when ζc2 > ζ > ζc1, where ζc1 = D(αθ−αz)
c0vz

and ζc2 = 2Dαθ
c0vθ

, the dispersion surface has

only one maxima on qz axis (Fig. 2.7(a)). The steady state structure obtained in

this case consists of periodically separated rings that are stationary. The magnitude of
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Figure 2.8: Phase diagram in ζ − R at high filament concentration and net mean orientation, obtained
from linear stability analysis, for (a) αθ > 0 and αθ > αz and (b) αz > 0 and αz > αθ. The steady state
patterns corresponding to these phases are depicted in Fig. 2.4. Uniform phase refers to homogeneous,
oriented phase along (a) θ̂ and (b) ẑ. The phase boundaries in (a) correspond to ζc1 = D(αθ−αz)

c0vz
(thick

line) and ζc2 = 2Dαθ
c0vθ

(thin line), and in (b) correspond to ζc1 = D(αz−αθ)
c0vθ

(thick line) and ζc2 = 2Dαz
c0vz

(thin line). (c) Scaling of the inverse of the fastest growing wavevector qm with ζ (for fixed R = 10) and
(inset) with R (for fixed ζ = 20), corresponding to the ‘ring’ phase in (a)

fastest growing wave vector in this case has following expression in D− limit, is given

by

qm =
1

2D+

√
c2

0v
2
zζ

2 −D2
+ (αθ − αz)2

c0vzζ
(2.9)

The corresponding growth rate is given as

Ω =
αz − aθ −D+q

2
z

2
+

1

2

√
(αz − aθ −D−q2

z)
2 + 4c0vzζq2

z

(2.10)
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The magnitude of fastest growing wave vector has the following asymptotic forms,

qm ∼
√
v0ζc0
2D+

(
1 + Λz

2v0R
+ . . .

)
, as R→∞, and

qm ∼ 1
2D+

√
c0vzζ + . . ., for large ζ (Fig. 2.8(c))

2. when ζc1 > ζ > ζc2, the dispersion surface has again only one maxima on qθ axis. The

steady state pattern obtained in this case consists of moving cables. Fastest growing

wave vector is given by (again for D− = 0 )

qm =
1

2D+

√√√√√(αθβ (vθ − λ)2 − 4c0ζvθ

)2

− 16D2
+α

2
θ

4c0vθζ − αθ
β

(vθ − λ)2
(2.11)

with growth rate given by

Ω =
−2αθ +D+q

2
θ − i

√
αθ
β

(vθ − λ)

2

+
1

2

√(
−2αθ +D−q2

θ + i

√
αθ
β

(vθ − λ)

)2

+ 4c0vθζq2
θ

(2.12)

3. When ζ > max(ζc1, ζc2), the dispersion surface shows two maxima (Fig. 2.7(b)). The

steady state pattern in this case generically consists of asters.

The corresponding phase diagram is shown in Fig. 2.8(a). For the case when mean density of

filaments is such that the uniform phase is polarized along z direction i.e. αz > max(αθ, 0)

we find that uniform polarized phase is unstable towards formation of stationary cables,

moving rings and asters. This phase diagram is shown in the Fig. 2.8(b). The Phase

boundaries correspond to the onset of instabilities obtained from linear stability analysis.

The steady state patterns are obtained from numerical integration of the dynamical PDEs

as before.

The magnitude of q−1
m corresponds to the periodic separation between rings, as verified from

a numerical solution of the equations. This quantity has been plotted in Fig. 2.8(c) as
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a function of contractility ζ and inverse radius 1/R. The bahaviour of magnitude of qm

with ζ and R leads to two testable predictions : (i) the separation between rings increases

monotonically with R and saturates to a constant which depends on ζand (ii) for fixed R ,

the separation decreases with contractility as 1/
√
ζ (Eqns.(2.9,2.11)).

While periodicity of the rings and cables is set by the fastest growing wave vector, the

size of stationary rings and cables is set by the anisotropic Peclet length, obtained from

balancing diffusive and anisotropic advective parts of the current. The velocity of the moving

rings or cables is set by the vθ,z to lowest orders. We present an account of the numerical

technique used to integrate the PDEs before going on to study the steady state features of

the stationary and moving rings and cables.

2.5.3 Numerical Integration of the Dynamical Equations

As stated earlier, to ascertain the nature of steady state solutions predicted from the lin-

ear stability we perform numerical integration of the dynamical equations. We choose the

discretization time step ∆t = 0.01 and grid size ∆z ∼ R∆θ = 0.3. The units of length

scale and time scale are same as chosen in the table 2.1. We then use ‘implicit scheme with

alternating direction method’ to evolve the PDEs. In addition to confirming the nature of

steady states in various parameter regimes, we use numerics to explore the axi-symmetric

solutions and observe coarsening dynamics.

2.5.4 Axi-symmetric Solutions

In this section, we study the two axi-symmetric solutions, the stationary and moving rings.

We determine the width and profile of stationary rings and the velocity of moving rings

using simple approximations and motivations from the numerics.

(a) Stationary rings : The profiles of concentration and the z-component of polar order for

a stationary ring, as obtained from the numerics, are plotted against z-axis in Fig. 2.9. The

stationary ring solution can be parametrized as c (r) = c (z − z0) and n = n (z − z0). In
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this section, we solve for the profiles of c and nz using an ansatz for nz motivated from the

numerics. Integrating the continuity equation once gives,

c = c0 exp

(
vz
D

∫
nzdz

)
(2.13)

where c0 is the value of c at the center of ring denoted by z0. Appropriate boundary

conditions on nz for a stationary ring are nz = 1 at z−z0 = −∞ and nz = −1 at z−z0 = +∞.

Ansatz for nz consistent with this is nz = n0 tanh
(
z−z0
ξn

)
where ξn is a length scale fixed by

the dynamics of n.

c = c0

[
cosh

(
z − z0

ξn

)]− vzξn
D

(2.14)

consistent with the condition ∂zc = 0 at z = z0. We have matched these profiles with the

numerical profiles of c and cnz by fitting the parameters c0 and ξn for 3 values of Peclét

length (Fig. 2.9 (a),(b)). The fitted values of ξn for the 3 curves are 3.6, 5.44 and 9.72. Dif-

ferent values of ξn show that ξn is not entirely determined by the dynamics of n. This can

be due to the strong coupling between the dynamics of c and n and indicates that the time

scales of the two are not simply separated. The approximate functional form of Eqn. 2.14

however fits well with the numerical profile. We plot the full ring-width at half maximum

against the Peclet length (Fig. 2.9(c)), which shows a linear increase with D/vz.

Case 2 (Moving rings) : We obtain the speed of moving rings in a simplified description.

The profiles of c and nz for a moving ring, as obtained from numerics, are shown in Fig.

2.10. Let us consider the equations for c and nz. Since the magnitude of nz is unity almost

everywhere we drop the non-linear term fixing the magnitude of n. We also keep only the

terms that are responsible for pattern formation i.e. we do not include the diffusive terms

which go into setting the length scales of the patterns. With these major simplifications

and using the ansatz for moving rings, c = c (z − z0(t)) and nz = nz (z − z0(t)) (z0(t) is the
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Figure 2.9: concentration (a) and orientation profile (b) for a stationary ring for three values of Peclét
length. (c) The width of the ring is proportional to the Peclét length.

instantaneous position of moving rings (defined as the location of concentration maximum

within the ring), we obtain the following equations

ż0(t)c′ = vz (cnz)
′ (2.15a)

ż0(t)n′z = −ζc′ + λ

2
(n2

z)
′ (2.15b)

Since nz is unity almost everywhere except at the edge of ring (Fig. 2.10), as first step

we assume that nz is uniformly unity everywhere. This gives, using Eqn. 2.15b, the ring
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velocity ż0(t) = −vz to lowest order. Since vz = (v0 +γz/R) increases with decreasing radius

as 1/R, this suggests that the velocity of rings should be higher in smaller rings for fixed

value of the coupling parameter γz.

Figure 2.10: Profiles of c and nz for a moving ring.

2.5.5 Coarsening and Ring Merger

The uniform homogeneous phases self assemble into multiple rings or cables as a result of

spinodal instability separated by a distance determined by the fastest growing wave vector.

In non-linear regime, the proximal rings are observed to merge into each other via a coars-

ening process, while maintaining the initial ring width (Fig. 2.11). Since the ring width is

still primarily being determined by the ratio of diffusive and advective currents, the mecha-

nism of merger is active contractile pulling. Numerical quanitification of the process of ring

merger via coarsening is not covered in the present thesis and is taken up elsewhere [12].

2.6 Nucleation and Growth

In the context of fission yeast, assembly of the acto-myosin rings typically proceeds by the

nucleation of actin filaments by formin nucleators in the form of nodes at non-medial regions
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Figure 2.11: Time evolution of the configurations starting from an (a) initial homogeneous, orientationally
ordered configuration along θ, which shows an (b) early time spinodal instability toward ring formation,
followed by a (c) slow coarsening regime. Colorbar denotes the concentration of actin filaments, in units

of mean concentration c0

[1]. Cables then grow from these nodes which are finally incorporated in the acto-myosin

ring in myosin-II and myosin-V dependent manner. We study the transition between these

domain-shapes (aster→ring or cable-segment, Fig.2.12(c)) using a variational calculation.

Actin nucleation is modeled by a source term in the c-equation. Assuming that the con-

centration is uniform at c0, this nucleation leads to increase in area A. The aster size is

completely fixed by A, while the dimensions of the ring or cable segments are fixed by A

and the width. The width of ring or cable segment is obtained from current balance, and

is given by the active Peclét length D/vθ,z. To obtain the texture within the domain S,

we note that when λ → 0, the steady state solutions of n, Eqn. (2.2), can be obtained as

minimizers of an “energy” functional (strictly, a lyapunov functional [13]),

E [c,n] =

∫
S

[
(K1 +K2) (∇ · n)2 +K1 (∇× n)2 + ζc (∇ · n)

]
(2.16)

together with a local constraint on the magnitude, n ·n ≡ n2
0 = αθ,z/β. The magnitude of n

is assumed to relax fast to unity and hence the configuration of n can described by an angle

field Φ(r). In one constant approximation K1 = K2 = K

E[c,n] =

∫
S

[
K(∇Φ)2 + ζc∇ · n

]
(2.17)
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We now calculate “energies” for the three configurations (a) aster (Ea) (b) ring segment

(Eθ) and (c) cable segment (Ez).

1. Aster : − For an aster configuration, the angle field Φ(r) can be parametrized by

Φ = φ + π where φ is the angle measured from the cylindrical long axis. For uniform

concentration in the aster, c = c0

(
1−H(r −

√
A
π

)
)

where r is the distance measured

from the core of aster, A is the area and H(r) denotes the heaviside function. Because

of the uniform concentration, the second term in Eqn. 2.17 has contributions only from

the edge. The functional E for an aster then is computed as follows :

Ea = K

∫ √A/π

ξ

(∇Φ)2rdrdφ+ ζ

∫
S
c∇ · n

= πK log
A

πξ2
+ ζ

[∫
c0n ·Ndl −

∫
n · ∇c

]
= πK log

A

πξ2
− 2πζc0

√
A

π
− 2πζ

∫
c0δ

(
r −

√
A

π
rdr

)

= πK log
A

πξ2
− 4πζc0

√
A

π
(2.18)

where ξ and εc are the core size and energy, respectively. Note that Ea is the same as

in a planar geometry, as expected since the gaussian curvature of a cylinder is zero [14].

2. Ring/Cable segment : − The width of ring(cable)-segment is fixed by the anisotropic

Peclét length D
vz

(
D
vθ

)
, as mentioned earlier. The angle field Φ within a ring segment with

the texture shown in Fig. 2.12(c) will only be a function of z and can be parametrized

as Φ(z) = π
2

+ π
w

(z−z0), where w is the width of ring segment. The lyapunov functional

for the ring segment is then computed to be
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Figure 2.12: Phase diagram in ζc0 versus (a) R (at constant A=30 ) and (b) A (at constant R=10)
showing asters (nodes), ring-segment and cable-segment. Insets show the “energy” branches (units of K)
of the 3 configurations, Eqns.(2.18,2.19,2.21). The energy branches in the insets have been plotted for
(a) ζc0 = 25, and (b) ζc0 = 40. Note that the form of Eθ in Eqn. (2.19) is valid for a ring-segment of
width D/vz, which does not encircle the cylinder. For smaller values of R (below the kink in (a)), the
ring-segment completely encircles the cylinder, its width is now set by A/2πR and the “energy” functional

is now given by Eqn. (2.20). The orientation of n in these configurations are shown in (c).

Eθ = K

∫
S
(∇Φ)2Rdθdz + ζc0

∫
S

n ·Ndl

= K
π2

w2
A− 2ζc0

A

w

=

[
K
π2

D2

(
v0 +

Λz

R

)2

− 2ζ
c0

D

(
v0 +

Λz

R

)]
A (2.19)

Note that, this expression is valid only for a ring segment which does not encircle

the cylinder. For a ring segment that has grown into a ring enclosing the cylinder,
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increasing the area further will lead to the increase in width (since the ring length is

now same as the perimeter of the cylinder). The width is no longer determined by the

balance of currents but by the ratio of total number of filaments and the perimeter of

cylinder. In this case the relative contributions from bulk and surface terms will be

different and the functional in this case is computed as

Eθ = 4K
π4

A
R2 − 4πζc0R (2.20)

On similar lines “energy” of a cable segment is calculated as

Ez =

[
K
π2

D2

(
v0 +

Λθ

R

)2

− 2ζ
c0

D

(
v0 +

Λθ

R

)]
A (2.21)

The “energy” branches Ea, Eθ and Ez are plotted as function of cylinder radius R and the

area A in insets of Fig. 2.12 (a) and (b). The phase diagrams based on this are displayed in

Fig. 2.12. A typical nucleation and growth scenario would correspond to a trajectory in the

(ζc0, A) plane and shows the transition between node→cable-segment→ring-segment seen

in the experiments [1].

2.7 Helices on the Cylinder

Figure 2.13: Circumferential and helical movements of MreB filaments during the cell growth in the
bacteria B.Subtilis (Courtesy : [17]).

Cellular shape in the baterial systems is determined by the rigid cell wall which is crosslinked

meshwork made up of peptidoglaycan (PG) and MreB-cytoskeleton. MreB filaments are the

homologues of actin filaments in bacterial systems and are intimately linked to cell-wall

synthesis enzymes during cell growth [15]. MreB filaments are strongly coupled with the cell
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Figure 2.14: (a) Orientation of tilted segment ψ, schematically represented in (b), with (short) arrows
showing n within the segment. The steady state tilt plotted as a function of k1

4k2
shows a continuous

transition from a ring-segment (ψ = ±π
2

) to a tilted segment (see text) at k1
4k2

= 1. The symmetries of a
cylinder allow for 4 stable solutions, the two shown above have a net orientation of n along ψ, while two

more have a net orientation of n along −ψ.

wall synthesis enzymes and appear to rotate around the cell wall circumferentially and some-

times along helical tacks (Fig. 2.13)[17]. Anisotropies of the cell wall synthesis can provide

“easy-directions” for anchoring of the segments of MreB filaments [16]. This possibility can

be included in our framework by allowing the parameters accompanying the nonlocal terms

in (2.2), namely K1, K2 and ζ, to have anisotropies consistent with cylindrical symmetry.

We demonstrate that including such dependence will lead to inclination of segments differ-

ent from ψ = 0 (cable-segment) and ψ = π
2

(ring-segment) where ψ is the angle between

segment and the long axis of the cylinder.

Consider a tilted segment at an angle ψ to the cylinder axis (ψ = cos−1(m̂‖ · ẑ), where m̂‖

is the unit vector along the segment boundary, Fig. 2.14(b), having a uniform width w(ψ)

and length l(ψ) such that the area A = wl is fixed. For simplicity, we assume that within

the tilted segment, the filament concentration c = c0 is uniform. The texture within the

tilted segment is shown in Fig. 2.14(b), the orientation of n changes by π on a length scale

w(ψ). The width of the tilted segment w(ψ) is set by a balance of the net current J · m̂⊥,

where m̂⊥ is a unit vector normal to the boundary. In the equal constants approximation,

K1 = K2 = K, the “energy” (Eqn. 2.16) of this tilted segment is given by,

E(ψ) = K(ψ)
π2A

w(ψ)2
− 2ζ(ψ)c0

A

w(ψ)
(2.22)

and the steady state inclination of the tilted segment is obtained by setting ∂E
∂ψ

∣∣
A

= 0.
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The Eqn. 2.22 will in general have non-trivial solution for the steady state inclination of

the segment ψ. To prove this point, it suffices to look at the anisotropy of K(ψ) alone.

Cylindrical shape of the cell requires the parameters to be a function of cos 2ψ because of

ψ → π−ψ → π+ψ → −ψ symmetry. Thus, K can be written as K(ψ) =
∑

m km cos (2mψ).

Just retaining first two modes m = 1, 2 shows that inclination of segment which is differ-

ent from ring and cable segments is possible. Taking this form of K and miminizing Eqn.

2.22 as a function of ψ gives the solution ψ0 = cos−1

√
1
2

(
1− k1

4k2

)
, where k1,2 are the co-

efficients of first two modes in expansion of K. The phase diagram in Fig. 2.14, shows

a continuous transition from a ring-segment with ψ = ±π/2, to a tilted segment with

ψ = ± cos−1

√
1
2

(
1− k1

4k2

)
, as k1/4k2 is varied. Because the net polarization of these active

tilted segments is along ψ, short segments will appear to move on helical tracks while longer

tilted segments will appear as moving helices.

2.8 Summary and Future Directions

To summarize, we have studied in detail, the instabilities of an active fluid of polar acto-

myosin filaments on a cylindrical surface. Rings, cables and nodes(asters) emerge as the

generic steady state patterns as a result of this analysis. These steady state structures can

be stationary or moving depending on the arrangement of polar order in them. Spontaneous

formation of rings starting from a uniform density of FtsZ filaments has been seen in the

experiments on reconstituted liposomes [4] where FtsZ filaments assemble into rings and

sometimes short-pitched helices. We observed phase transitions in the steady state patterns

upon changing cell diameter or motor driven activity. This work also studies the transitions

between different steady states as new actin filaments are nucleated. The corresponding

phase diagram has been obtained by comparing an “energy functional” for the three con-

figurations viz. nodes, cable-segment and ring-segment. We predict the transition between

these three configurations as the cell radius R,the contractility parameter ζ and the domain

area A are changed. Transition from the nodes to rings via the growth of cables is relevant

to the assembly of acto-myosin rings in Fission Yeast cells. Strong coupling between the

cell wall synthesis machinery and MreB, main component of bacetrial cytoskelaton sets the
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track for dynamics of MreB and thereby further cell growth. The effect of this coupling on

the organization of MreB filaments is studied by incorporating additional anisotropies in the

parameters of the theory.

We have predicted the spontaneous formation of rings, cables and asters of acto-myosin

filaments on cylindrical surface. However an interesting question will be to ask how does

the transition from one phase to another takes place. This can be answered by following

the quenches numerically from one parameter regime to the other. This will also enable

a closer contact to the experimental observations on Fission yeast. Having obtained rings,

cables and nodes as steady state solutions on the cylindrical surface next question would

be to ask what patterns one obtains when the cell has spherical shape and are they stable.

As motivated in chapter 1 we would also like to understand the patterns of active polar

filaments on the composite surfaces. Next chapter addresses some of these questions.
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Chapter 3

Stability of the Axi-symmetric

Patterns of Active Polar Filaments on

Other Geometries

In the last chapter, we proposed the dynamical equations for acto-myosin filaments on a

general curved surface with explicit coupling of the polar orientation to cell geometry. We

studied in detail, the spontaneous formation of rings, cables and nodes of actin filaments on

the surface of a cylindrical cell. In the present chapter we extend the analysis to the surfaces

of spherical, saddle shaped and conical geometry. We will be interested in classifying the

stable steady state patterns of acto-myosin filaments on these curved surfaces. We will

largely restrict ourselves to the formation and dynamics of axi-symmetric patterns on these

curved surfaces.

3.1 Patterns of Actin Filaments on Spherical Cells

Before proceeding to the analysis of steady state patterns of acto-myosin filaments on various

geometries, we display the general dynamical equations for the concentration and polar

orientation of the filaments proposed in the last chapter. The equation for concentration

of the acto-myosin filaments followed a continuity equation with the current involving an

49
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Figure 3.1: Spherical co-ordinate system showing polar and azimuthal angles.

explicit coupling between the curvature and polar orientation.

∂tc = −∇ · J, where Ji = v0cni + Λkl
ijκ

j
kcnl −D∇ic (3.1)

Equation for the polar orientation was proposed as

∂n

∂t
+ λ (n · ∇) n = K1∇2n +K2∇ (∇ · n) + ζ∇c+

(
α− β|n|2

)
n + γ κn (3.2)

where ∇ is differential operator on the surface of sphere [1]. The interpretation of each of

these terms is same as that in the previous chapter. Analysis in the last chapter was re-

stricted to the cylindrical geometry. We now proceed with the similar analysis on spherical

geometry. We first show that, similar to the cylindrical geometry, the curvature-orientation

coupling leads to the renormalization of parameters.

Symmetry arguments discussed in the section 2.3 remain valid for the present case except

that the form of curvature tensor is now changed. This increases the independent and non-

zero components of Λ and γ to four, of the forms (a) Λii
ii with i = {θ, φ}, and (b) Λij

ji with

i 6= j and i, j = {θ, φ}. Spherical co-ordinate system is displayed in Fig. 3.1 illustrating the

polar and azimuthal angle denoted by θ and φ respectively. Curvature tensor for spherical
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geometry is κ =

(
1/R 0

0 1/R

)
, where R is the cell radius. Using the symmetry arguments

and the form of curvature tensor the parameter v0 gets renormalized to vθ = v0 + Λθ/R and

vφ = v0 + Λφ/R, leading to the anisotropic active current. Similarly, the parameter α now

gets modified to αθ = α− K1

R2 sin2 θ
+ γθ

R
and αφ = α− K1

R2 sin2 θ
+

γφ
R

. Renormalization of these

parameters along with the form of derivatives in the spherical geometry has been provided

in Appendix A.

As a result of the anisotropy induced by the curvature-orientation coupling we obtained,

rings, cables and asters as steady state patterns on the surface of a cylindrical cell. We now

ask what happens to these patterns when the cellular shape is made spherical. As declared

earlier in this chapter, we focus mainly on the axi-symmetric patterns of the active polar

filaments on the surface of sphere. This implies that the derivatives with respect to φ vanish

reducing the Eqns. (3.1) and (3.2) to one-dimensional equations. In the following section,

we first numerically integrate one dimensional equations to find that the rings are unstable

solutions and then obtain the dynamics of rings.

3.2 Rings on Sphere

3.2.1 Rings as Unstable Solutions

With the derivatives along azimuthal direction going to zero, Eqns. 3.1 and 3.2 get reduced to

the following one-dimensional equations (complete equations are displayed in the Appendix

A)

∂tc = − 1

R sin θ

[
∂

∂θ

(
sin θ

(
vθcnθ −

D

R

∂c

∂θ

))]
(3.3a)

∂tnθ =
K1

R2 sin θ

∂

∂θ

(
sin θ

∂nθ
∂θ

)
+
ζ

R

∂c

∂θ
+
(
αθ − β|n|2

)
nθ (3.3b)

∂tnφ =
K1

R2 sin θ

∂

∂θ

(
sin θ

∂nφ
∂θ

)
+

ζ

R sin θ

∂c

∂θ

(
αφ − β|n|2

)
nφ (3.3c)
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For simplicity we have taken one constant approximation i.e. K2 = 0. To numerically

integrate these equations, we choose the units and parameter values similar to those enlisted

in the table 2.1 in previous chapter. Since we are not interested in studying the transition

from disordered to polar ordered phase, we choose the same (positive) numerical value of

αθ and αφ. The radius of spherical Fission yeast cells in [4] is in the range 3− 6µm. We fix

the value of R at 4µm. We choose the implicit method to evolve the Eqns. (3.3a),(3.3b),

(3.3c) with the boundary conditions clamped to (nθ, nφ) = (0, 0) and ∂θc = 0 at θ = 0 and

π/2. Starting from the uniform concentration with some randomness as initial condition,

we find that the ring is quickly assembled. Profiles of the concentration and texture within

the ring are shown in the Fig. 3.2 . We also find that when the ring forms at equator it is

perfectly balanced and does not move (Fig. 3.2(a)). On the other hand, if the ring forms

slightly away from the equator it slips towards the nearest pole (Fig. 3.2(b)).

Having obtained the rings as unstable solution on the surface of the sphere, we now follow

the dynamics of ring as it moves on the frictional substrate of spherical geometry.

3.2.2 Dynamics of Acto-myosin Rings

To find the dynamics of the angular position of ring, we first note that the numerical solution

described in the previous section shows clear separation between (a) a ‘fast’ process of the

formation of ring during which the concentration and polar orientation profiles are set within

the ring, and (b) a ‘slow’ process during which the acto-myosin ring slips towards the poles

and whose dynamics we wish to follow.

Since the dynamics of ring texture is ‘fast’ and is slaved to the dynamics of concentration, it

is sufficient to look at the dynamics of the latter. The concentration is non-zero only within

the width w << R of ring which is centered at θ0(t). In the following, we implicitly assume

that the ring width does not change during the ring slippage. As we will see in the next

chapter, experiments performed on the spherical Fission yeast cell show that the width of

the acto-myosin rings does not significantly change as the ring slips.

For a moving ring solution

c(θ, t) = c(θ − θ0(t)) (3.4)
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(a)

(b)

Figure 3.2: Profiles of c and cnθ plotted against the polar angle θ for a ring formed at, (a) the equator
and, (b) ring displaced away from the equator.

Using this in the continuity equation Eqn. 3.1 gives

c′θ0(t) = ∇ · Jtot (3.5)

where c′ is derivative of c with respect to its argument, θ − θ0(t). Since the ring is moving

against a frictional substrate, where the friction comes from the Fission yeast cortex, we

include the contributions due to the active stress generated flows in Jtot (Section 1.2.1), in

addition to the active currents of Eqn. 3.1. Jtot thus can be written as Jtot = cv + J, where

J is given by Eqn. 3.1. v is the hydrodynamic velocity which, in the limit of high friction,

is determined by



Chapter 3. Stability of the Axi-symmetric Patterns of Active Polar Filaments on Other Geometries 54

(a) (b)

Figure 3.3: Geometry of the slipping ring on the spherical surface : (a) The ring represented by the
shaded strip Ω and bounded by the two circles C+ and C+ at angular positions θ+ and θ−, respectively, has
a constant width w. The centre of the ring (dashed green line) has angular coordinate θ0(t), and slips in
the direction indicated in the figure. (b) A blown-up version of the same ring, showing the unit (outward)

normal and tangent vectors at C+ and C+.

Γijvj = ∇jσ
a
ij (3.6)

σaij is the active stress given as σaij = −Wcninj and Γij is the anisotropic effective friction

offered by the Fission yeast cortex. Inverting the Eqn. 3.6 to solve for v we get

vi = µij∇kσ
a
jk (3.7)

where µij is the anisotropic mobility of the ring and is given by the inverse of friction matrix

Γij.

To obtain the dynamics of ring position, we integrate both sides of the Eqn. 3.5 across the

ring whose centre is at θ0(t) and width is w. Let us call this region of integration Ω (Fig.

3.3(a)) and the curve bounding the region C ≡ C+ ∪ C−. To evaluate these integrals, we

make use of two integration formulae for vector fields on a spherical surface, which we state

here without proof [1].
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1. For a scalar field f ∫
Ω

∇f · êi d a =

∫
C
f êi · n̂ d l (3.8)

2. For a vector field ~A ∫
Ω

∇ · ~A d a =

∫
C

~A · n̂ d l (3.9)

where the area element d a ≡ R2 sin θdθdφ and the line element d l = R sin θdφ = r dφ

evaluated along the boundary C. The vector n̂ denotes unit outward normal to the boundary

(Fig. 3.3(b)). Making use of the expressions given by Eqns. (3.8) and (3.9) and noting that,

~∇ = êθ
1

R

∂

∂θ
(3.10)

we find the final formula for the angular velocity of the ring,

θ̇0(t) = − 1

R

Jtot

∣∣∣
C+
− Jtot

∣∣∣
C−

N
∣∣∣
C+

+N
∣∣∣
C−

(3.11)

where Jtot

∣∣∣
C±

is the magnitude of the total current evaluated at the boundaries C±. Also,

N
∣∣∣
C±

is the total number of filaments, at the boundaries C±. The form of the above equation

is independent of the precise texture of the orientation density within the ring, as long as

it is contractile. The current Jtot has contributions from both, (a) the active forces, and (b)

the active currents. In the limit of high friction Eqn. 3.11 can be written as the following

force balance

Angular velocity of the ring = Mobility× Force (3.12)

In case of a ring which is perfectly placed at the equator, the total currents Jtot on both the

edges are same and balance out each other. However, when the ring is slightly displaced

away from the equator, the total currents at the two edges are no more the same and there

is a net force acting on the ring, resulting in the polewards sliding of the ring.
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3.3 Asters on Sphere

Another plausible solution on the surface of sphere are asters. The scale of these asters is

set by the ratio of Diffusion constant D and v0 [2]. In the limit when D
v0
<< R, the effect

of curvature of the spherical cell will be neglible and locally the geometry will be planar. In

[2],[3], Gowrishankar et al. found that the inward pointing asters were steady state solutions

of the dynamical equations for concentration and polar orientation. At high contractility,

these asters formed a square lattice. Now, let us decrease the radius of the spherical cell so

that the curvature effects are no longer negligible. It will now be interesting to ask what is

the most favored arrangement of these asters on the surface of a sphere. In the context of

arrangement of N electrons on the surface of sphere interacting with each other by Coulomb

repulsion, this problem is known as the Thomson problem. Answering this question in the

context of asters will require the knowledge of the specific nature of interactions between

the asters and is not taken up in the present work.

3.4 Mechanical Model

We now come back to the implications of Eqn. 3.12 in the context of an acto-myosin

ring placed on the surface of sphere. Eqns. 3.11 and 3.12 predict that such a ring will

(a)

Figure 3.4: Direction of the contractile force density fr due to the acto-myosin ring.
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be unstable in its position and will slide towards the poles. These predictions indeed are

observed in the experiments performed on spherical Fission Yeast cells which acquire their

spherical shape due to removal of the rigid cell wall. Using our model based on the coupling

between acto-myosin contractility and cell shape we make comparisons between the theory

and experimental observations [4] in next chapter. Acto-myosin contractility is the driving

force for the ring dynamics. We denote this active contractile force density by fr and infer

the features of fr by analyzing the fluorescence images of myosin-II intensity during the ring

slippage (Fig. 3.4). This discussion follows in the next chapter. Here we just state the

features of the force density fr that we use to write (and later verify) a simple mechanical

model for the ring dynamics. The mean force density is (a) uniform along the ring and, (b)

constant in time as the ring slips [4]. Direction of the contractile force density fr due to the

acto-myosin ring is shown in the Fig. 3.4. Noticing that the tangential component of fr is

responsbile for the ring slippage, ring dynamics can be written as

Rθ̇0(t) = Λfr cos θ0 (3.13)

where θ0 is instantaneous position of the ring and Λ is mobility per unit length. This simple

mechanical model can be solved to give time dependence of angular position of the ring as

θ0(t) =
π

2
− 2 arccot

[
e−

t
τs cot

(
π

2
− θ0(0)

2

)]
(3.14)

Where θ0(0) is the initial position of the ring and τs = R
Λfr

is the time scale of ring slippage.

In the next chapter we compare this expression with the experimental trajectories of the

acto-myosin rings on spherical Fission yeast cells.

We now extend the mechanical model of Eqn. 3.13 to the conical and saddle shaped geome-

tries.

3.5 Other Geometries

Likewise, axi-symmetric solutions solutions on the surfaces of cones and saddles can be

obtained and similar mechanical model can be proposed for the dynamics of acto-myosin
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(a)

(b)

Figure 3.5: Contractile acto-myosin rings placed on non-deformable (a) cone and (b) saddles shaped
surfaces. The direction of contractile force density fr and the tangential component responsible for ring

dynamics are shown in both.
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rings in the limit of small width of the ring.

3.5.1 Cone

With the similar assumptions about the nature of contractile force density, we now write

down the dynamics of a ring placed on the surface of a cone (Fig. 3.5(a)). A right angled

cone is specified by its height h and the vertex angle 2α (Fig. 3.5(a)). For an acto-myosin

ring on the surface of a cone the force balance (Eqn. 3.13) will read

ḣ0(t) = −Λfr
2

sin 2α (3.15)

where h0(t) is the instantaneous position of the ring and α is half vertex angle of the cone.

This can be easily solved to give time dependence of ring location as

h0(t) = h0(0)− Λfrt sin 2α (3.16)

The characteristic velocity of ring sliding on the surface of a cone scales as sin 2α.

3.5.2 Saddle-shaped Geometry

A Saddle shaped surface is parametrized by the two radii Rα and Rβ (Fig. 3.5(a)). Polar

angle is denoted by α while the azimuthal angle is denoted by β. Ring like solution on the

surface of a saddle will be independent of the angle β. Location of the ring is specified by

the instantaneous angular position α0(t) (Fig 3.5(b)). The force balance will now read

α̇0(t) = −Λfr
Rα

cosα0 (3.17)

Note that the Eqn. 3.17 is very similar to the Eqn. 3.12. Characteristic time scale of the

slipping will also show linear scaling with the radius Rα.

Table 3.1 summarizes the results of [3] and present work and lists the stable steady state

patterns on planar, cylindrical, spherical, cone shaped and saddles-shaped geometries.
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Substrate Geometry Stable patterns

Planar Asters (vortices are unstable)

Cylindrical Rings, Cables, patches

Spherical Asters(rings are unstable)
Saddle-Shaped Rings, Asters

Table 3.1: Patterns of acto-myosin filaments on the substrates of various geometries

3.6 Composite Shapes : Examples and Predictions

Having obtained the stable steady state patterns of acto-myosin filaments on the surface

of various geometries, we now use these results to speculate the steady state patterns on

the composite surfaces. These composite surfaces can be obtained by combining the simple

planar, cylindrical, spherical, cone shaped and saddle shaped geometries. We combine vari-

ous shapes to obtain the composite shapes that are relevant to (a) endocytic buds and, (b)

dividing cells.

3.6.1 Endocytic Buds

The process of endocytosis involves the invagination of plasma membrane. Endocytic buds

can take various shapes and sizes depending on the cargo that they internalize and the

specific pathway. Shape of the endocytic buds before the scission resembles the shape of a

sphere joined to the flat membrane by a neck which can be of saddle or cylindrical shape

(a) (b)

Figure 3.6: Shape of endocytic buds obtained as composite of simple shapes. (a) spherical cap attached
to plane via saddle-shape neck, (b) spherical cap attached to plane via a cylindrical region.
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(Fig. 3.6) [5]. Following the analysis and as depicted in the Fig. 3.6, a ring of acto-myosin

filaments, if formed on the spherical regions will be unstable. Such ring will slip towards the

poles or towards the neck (Fig. 3.6). When the ring reaches the neck, it will stabilize and it

can lead to the constriction as a result of the active contractile force generated in the ring.

3.6.2 Shape of the Dividing Cells

Cytokinesis is the final stage of cell division during which the cell is separated into two

daughter cells. In animal cells, during cytokinesis the formation of the acto-myosin rings

happens at the equatorial region which then initiates the constriction by formation of cleav-

age furrow [6]. The placement of acto-myosin ring in equatorial region is guided by specific

proteins (e.g. Mid1p in fission yeast cells). Contractile acto-myosin ring initiates the cleav-

age furrow leading to the locally saddle-shaped region. Shape of the dividing cell (Fig.

3.7(a)) can again be achieved by combining two spheres or cylinders by a cone or saddle

shaped neck (Fig. 3.7(b)). If the ring forms on the tense spherical region it is unstable while

when it forms in the saddle shaped region it stabilizes.

One of the predictions from this analysis indicates that the acto-myosin rings on spheri-

cal cells do not stably maintain their position and slip towards the poles and resulting in

failed cytokinesis. Indeed, M. Balasubramanian et al. have observed that the Fission Yeast

cells which were not of proper shape i.e. cylindrical shape, the fidelity of cytokinesis was

compromised [7]. With the predictions made from the analysis presented in this chapter,

these experiments were further pursued, in order to determine the role of cellular shape in

stable maintenance of the acto-myosin ring. We discuss these experiments and present a

comparison between the theoretical predictions of the simple mechanical model introduced

in this chapter and experimental observations in the next chapter.
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(a)

(b)

Figure 3.7: (a) Dividing cell in anaphase and telophase with the cleavage furrow, (b) Shape of the dividing
cell as a composite of two spherical regions connected by a saddle shaped neck.
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Chapter 4

Stability of the Acto-myosin Rings in

Fission Yeast Cells

In the previous chapter, we found that the cellular shape plays an important role in deter-

mining the stability of steady state patterns of the polar active filaments. Specifically we

found that the acto-myosin rings formed on the spherical surfaces were unstable and slipped

towards poles. This dynamics of ring slippage was also obtained from a force balance in

high friction limit. These predictions on instability of rings on spherical surfaces have been

confirmed by the experiments on spherical Fission Yeast cells where the stable positioning

of acto-myosin rings has been observed to be affected by the cellular shape. In addition,

these experiments provide important cues about the nature of the active contractile stresses

responsbile for ring slippage. In this chapter we describe these experiments and present a

comparison between the theoretical predictions and experimental observations.

4.1 Introduction

Cytokinesis is the final step of the cell division during which a medial ring consisting of actin

filaments, myosin-II and many other proteins is assembled at the division site. This ring then

constricts and leads to the separation of the two daughter cells. For a successfull cell division,

accurate spatio-temporal regulation of the positioning, assembly and contraction of the acto-

myosin rings is required. A signature that the cellular shape can be an important factor
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in determining stable positioning of the ring was indicated in [1], where the experiments

on Fission Yeast cells with non-cylindrical morphology, showed misplaced division septa.

This highlighted an interplay between the cellular shape and cytokinesis. Cell geometry

was also found to be crucial in determining the site and orientation of cell division axis in

experiments on Sea Urchin [2]. Continuing with this, we investigate the role of cell shape

and active mechanical stresses in stable positioning and contraction of the acto-myosin rings

assembled on Fission Yeast cells [3].

4.2 Stability of the Acto-myosin Rings in Fission Yeast Cells

Wildtype(WT) Fission Yeast cells are cylindrical in shape with hemispherical end caps. To

study the effects of the cellular shape on the stability of rings, the shape of Fission Yeast

cells needs to be altered. This is achieved by removal of the cell wall using an enzyme

cocktail [3]. These cells without the cell wall are stabilized osomotically using an appro-

priate medium (0.5 M Sorbitol). Cells without the cell wall acquire a spherical shape and

are referred to as spheroplasts in the rest of this chapter. To visualize the actomyosin ring

in these cells, a GFP-fused version of myosin II regulatory light chain, Rlc1p-GFP, or the

Calponin-Homology-Domain of IQGAP-related protein Rng2p is expressed in the wild-type

cells that were later used for the generation of spheroplasts. To correlate the dynamics of

acto-myosin ring slippage with the cellcycle, mCherry-tubulin is also imaged (Fig. 4.1(a)).

Spheroplasts without the cell wall were found to successfully assemble the actomyosin rings.

In most cases, these actomyosin rings in spheroplasts were mechanically unstable and slid

along the cortex, towards the poles while the integrity of the ring was maintained (Fig.

4.1(a)-(b)) [3]. The sliding instability occurred even when the spheroplasts were not exactly

spherical (Fig. 4.1(b)-i).

Based on these observations, ring slippage on the spheroplasts can be attributed to (a)

non-cylindrical cellular shape or, (b) lack of the cell wall which can also lead to the desta-

bilization of acto-myosin ring position. To rule out the second possibility, the behaviour of

actomyosin rings formed on the hemispherical end caps of cylindrical Fission Yeast cells was

observed. If non-cylindrical shape were responsible for the ring instability, as opposed to the
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Figure 4.1: Acto-myosin ring slippage in spheroplasts and conical cells expressing (a) Rlc1p-GFP and
mCherry-Atb2p and (b)chd1-GFP. Spheroplasts were imaged using spinning disc confocal microscopy. 39
of the 68 observed rings slipped towards the pole of the cell instead of constricting centripetally (Scale bar

5µm) [3].
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Figure 4.2: (a) Acto-myosin ring slippage on end caps of WT Fission Yeast cells, (b) Ring constriction
when it is formed in the medial region of the cell [3].

absence of cell wall, acto-myosin rings formed at the hemispherical end caps of cylindrical

cells should also exhibit the same sliding instability (Fig. 4.2). This was achieved on the cells

which were defective in Mid1p protein. Mid1p protein localizes in the medial region of the

Fission Yeast cells and is important for the division plane positioning. In the cells defective

of the mid1p protein, acto-myosin rings, if formed at the hemispherical end caps slide to-

wards the poles (Fig. 4.2(a)). In the instances where the rings were formed in the cylindrical

region of the Fission yeast cell, normal ring constriction and septation followed (Fig. 4.2(b)).

The behaviour of actomyosin rings in the cells lacking Myo52p (a non-essential type V

myosin) was also studied. Morphology of these cells shows sections of cell cortex bulging

out as a sphere in medial regions. Consistent with the observations in spheroplasts and cell

ends, acto-myosin rings assembled medially but due to the local spherical geometry, they

were not stable in positions and slipped. As soon as these rings reached cylindrical regions

they became stable and constricted [3].
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These experiments on the spheroplasts, spherical mutants and WT Fission Yeast cells estab-

lished that cell geometry is an important factor in determining the stability of the cortical

ring [3]. The driving force for the ring contraction is identified to be the acto-myosin con-

tractility [3], [4]. We now propose a simple mechanical model where the dynamics of ring

slippage is obtained as a balance of active mechanical stresses generated by acto-myosin

contractilility and the dissipation generated by the effective friction of the substrate.

4.3 The Mechanical Model

Figure 4.3: Contractile ring on the surface of spherical cell of radius R. fr cos θ0 is the tangential com-
ponent of contractile force per unit length fr, resulting in the poleward sliding of the ring. θ0(t) is the
instantaneous position of the ring and can take values from π

2
to 0 corresponding to ring placed at the

equator and the poles respectively.

Fig.4.3 schematically shows an acto-myosin ring placed on the surface of a sphere. Active

contractile stress due to acto-myosin filaments in the ring has normal as well as tangential

components. Normal components of the stress are balanced by elastic stress of the osmoti-

cally tense membrane of spheroplasts while tangential components of the active mechanical

stress are balanced by dissipative stresses. In order to be able to describe the ring slippage

using only the angular position of the ring we need to ascertain that the force density is

uniform along the length of the ring. This we test by analyzing the fluorescence intensity
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I of myosin II along the circumference of the ring. The intensity I is computed by first

integrating the myosin II intensity over the ring width and then binning over 5 pixels along

the circumference of the ring. I is then normalized by its maximum value along the ring for

each individual cell. The resulting plots are shown in the Fig. 4.4 (a) for four spheroplast

cells. Uniformity of the myosin intensity along the ring allows us to describe ring using

its instantaneous angular position. This uniformity has intersting implications about the

assembly of acto-myosin to which we return in later part of this chapter. In addition, the

mean intensity of myosin is also constant in time. This is seen in the myosin II fluorescence

images where we plot mean intensity in time Fig. 4.4(b)(blue lines) and implies that mean

force per unit length due to acto-myosin contractility is constant in time. We also plot mean

ring width calculated as the full width at half maximum in time. This also remains roughly

constant in time. This implies that the acto-myosin component of the ring turns over as the

ring slides. A later experiment confirmed this and put the turnover time scale to ∼ 16s for

these experiments (see discussion).

4.3.1 Predictions and Comparison with the Experiments

Having made these quantifications about myosin II intensity, we can write down the force

balance as, γvθ = fr cos θ0. vθ = Rθ̇0, where θ0(t) is instantaneous position of the ring, R

is the radius of cell and γ is the effective friction. This equation gives a characteristic time

scale τs = R
Λfr

for sliding, where Λ is mobility (inverse friction) per unit length. This can be

solved to give time dependence of the angular position of the ring

θ0(t) =
π

2
− 2 arccot

[
e−

t
τs cot

(
π

2
− θ0(0)

2

)]
(4.1)

This equation immediately implies that the ring dynamics depends only on the instantaneous

position of the ring. This fact is verified by making relative shifts of experimentally obtained

data of angular position versus time for different cells along time axis. Angular position of

the ring versus time curves for 15 cells without this time shift are shown in Fig. 4.6 (a)

and (c) for cell ends and spheroplasts respectively. After time shifts these curves collapse

on a master curves when plotted against scaled time t
τs

shown in Fig. 4.6 (b) and (d)

for cell ends and spheroplasts respectively. Fig. 4.6(e) and (g) show comparison between



Chapter 4. Stability of Acto-myosin Rings in Fission Yeast Cells 71

Figure 4.4: (a) Plot of Myosin II fluorescence intensity along the circumference of the ring parametrized
by the azimuthal angle (in radians) for 4 spheroplast cells. The intensity I is computed as is described
in the text. These images show that the Myosin II fluorescence intensity is uniform along the ring. The
higher intensity at the two ends is a result of projection effects. (b) (i)-(iv) Myosin II intensity (I) averaged
over the ring circumference (blue) and the average ring width w (red) as a function of time (min) for 4
spheroplast cells. The time series is plotted by normalizing to its mean (represented by the horizontal black
lines). These images show that the Myosin II fluorescence intensity I per unit length of the ring and the

ring width w are roughly constant in time.
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Figure 4.5: (a) and (c) show angular positions (in radians) of the ring versus time (in minutes) for cell
ends and spheroplasts (for 15 events each), respectively, obtained from the fluorescence images. We use the
Eqn. 4.1 to reorganize the data in (a) and (c). We make relative shifts along the time axis so as to obtain
a smooth profile of θ0 versus t. Each data set is fitted to the expression for the angular position versus
time (Eqn. 4.1) using τs as parameter. This value of τs is then used to replot the data with the scaled

time t
τs

, resulting into a master curve shown in (b) and (d) for cell ends and spheroplasts respectively.

trajectories obtained from the experiments (data points) and the analytic expression 4.1

using τs as parameter. The distribution of Λfr = R
τs

has been plotted in the insets of Fig.

4.6(a)-(c), which is peaked at 0.12µm/min and 0.17µm/min for spheroplasts and cell ends.

The characteristic velocity Λfr is thus independent of the cell size. Finally, the characteristic

time for the ring slippage scales linearly with the cell size. This is also verified from the

experimental data. We plot the time taken to traverse a fixed angular distance on the surface

of spheroplasts with the the radii of spheroplasts. The slippage time T shows linear scaling

with the cell radius R reinforcing the validity of assumptions of this simplified model.
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Figure 4.6: Angular position versus time plots are shown for (a) cell ends and (c) spheroplasts from
the experiments (data points) and from the theory (Eqn. 4.1) using τs as parameter. Distribution of
the characteristic velocity Λfr = Rτs is shown in insets for both (a) cell-ends and (c) spheroplasts. The
narrowly peaked distribution implies that the velocity is independent of cell size and the time scale of
slipping scales linearly with R. (b) and (d) show linear scaling of time taken to traverse a fixed angular

distance on the surface of cell with the cell size.

4.4 Discussions and Future Directions

To summarize, we have shown that the cellular shape plays an important role in determin-

ing the stability of acto-myosin rings. If these rings are formed on cylindrical regions of the

WT Fission Yeast cells then they are stable in position and constrict leading to successfull

cytokinesis. On the other hand, if they are formed on spherical or conical shaped cells

(spheroplasts/spherical mutants/end-caps of WT Fission Yeast cells), they do not stably

maintain their position and slide polewards. This sliding instability of actomyosin rings on



Chapter 4. Stability of Acto-myosin Rings in Fission Yeast Cells 74

locally spherical and conical geometries can be quantitatively understood using a mechan-

ical model based on contractile forces exerted by the ring at the cell surface. We verify

several predictions from this model, in particular the scaling of the ring slippage time with

cell radius. We now highlight the implications of good agreement between our model and

experimental observations.

1. Uniformity of the contractile force density along the ring :- A key assumption

of our model is that the contractile force per unit length is uniform along the ring

verified by the fluorescence images of myosin II. A uniform force density is required

for the integrity of the ring since if it were not, different parts of the ring would have

slipped with different angular velocities, leading to a disruption of the ring. Since the

ring assembly proceeds by local recruitment of F-actin and Myo-II an interesting ques-

tion to ask is, how this uniformity is established and maintained. One possibility could

be that there are molecular checkpoints which trigger the constriction only after the

uniformity of force density is established. Another explanation could be that inhomo-

geneities in myosin recruitment lead to inhomogeneities in active contractile forces along

the ring circumference, driving circumferential currents. These currents then quickly

re-establish the homogeneity of the ring.

2. Constancy of the mean force density in time :- Analysis of the Myo-II fluorescence

images also shows that the mean intensity per unit length is constant in time during

ring sliding. The fact that force per unit length is constant in time also reflects in the

linear scaling of slippage time with cell radius. Good agreement between the simple

mechanical model and the experiments indicates that the turnover kinetics of myosin

II is not the rate limiting for ring shrinkage. This can only happen if the filament and

myosin turnover rate is high. To confirm if this is the case, Fluorescence Recovery

After Photobleaching (FRAP) experiments to estimate the turnover rate of myosin II

in slipping rings spheroplasts were carried out. Myo-II was found to be highly dynamic

with a t1/2 of 16±3s and is much smaller than the ring slippage time. Our analysis shows

that the Myo-II concentration levels remain constant throughout the constriction while

a previous work has shown that myosin II concentration increases during constriction

in cells [5]. The difference between the two may be rooted in the fact that in our case
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cytokinesis is decoupled with the septation. It will be an interesting question to ask if

this is the case. If the difference between the two is significant, it will imply that the

septation itself affects the recruitment and turnover of the components of acto-myosin

ring.

The role of cellular shape is established to be crucial factor in determining the stability of

acto-myosin rings. Experiments with the spheroplasts, cylindrical yeast cells and physical

description of the actomyosin dynamics on spherical geometries imply that the cytokinetic

ring would inherently be unstable in a spherical region and the cylindrical geometry of the

wild type cell facilitates maintenance of the actomyosin ring position for maximal fidelity of

cytokinesis.

In previous and present chapter we have seen that the cellular geometry has important role in

patterning the active polar fluid as well as stability of the patterns. Thus far we encountered

tense membranes so that the cellular shape was non-deformable. As mentioned in Chapter

1, when the plasma membrane is deformable, active stresses and currents generated in the

cortical actin can give rise to interesting shape instablities of the plasma membrane as well

as patterning of acto-myosin in cortical actin. In the next chapter we study the consequences

of this interplay between the cellular shape and acto-myosin contractility.
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Chapter 5

Active Deformation of an Active

Composite Membrane

Cells regulate their shape dynamically in order to engage with the extracellular environment

and to bring about various cellular processes e.g. cell locomotion, cell division. Cell shape

changes invariably involve an intimate coupling to the deformation of acto-myosin meshwork

just beneath the plasma membrane. A number of experiments, as we discuss in this chapter,

provide evidence for the interplay between the dynamic active cortical actin and cell shape

deformation in a variety of cell types which can either be stationary, spreading or motile.

In this chapter we study the interplay between cortical actin and the plasma membrane.

Our aim is to understand the consequences of such interplay on the emergence of self or-

ganized actin and membrane waves,ruffles and budding. Apart from engaging in the actin

polymerization that leads to the steady propulsion, actin nucleation at the PM also leads

to formation of cortical actin meshwork which provides both elastic stresses and frictional

resistance to the flow and comprises of a rigid, active, elastic meshwork and dynamic, active

filaments.

We start by quoting some examples of the acto-myosin and membrane waves and ruffles

observed in experiments. We then briefly review the existing theoretical models that have

been proposed to understand the emergence of these dynamic patterns.
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Figure 5.1: Maps of the normal velocity of the membrane for (a) mouse embryonic fibroblasts, (b) fly
wing disk cells andc (c) mouse T-cells. y-axis corresponds to the arclength along the leading edge and
x-axis is the time. The diagonal patterns in the maps indicate lateral membrane waves (Courtesy: [1]).

5.1 Membrane Waves and Ruffles in Spreading and Motile cells

Actin and membrane waves as well as ruffles are generically observed patterns at the leading

edge of motile and spreading cells. Sheetz et al. observed lateral waves of protrusion and

retraction on the cell membrane in Mouse Embryonic Fibroblasts, T-cells and wing disk

cells from fruit flies using TIRF microscopy (Fig. 5.1) [1]. Determination of the velocity of

these waves and the spatio-temporal correlations of the protrusion and retraction indicated

that the contractility of acto-myosin gel is the underlying mechanism for generation of wave

like behaviour. Another study by Mogilner et al. shows that the self organized waves of

acto-myosin coupled with the adhesive properties of substrate play crucial role in determin-

ing the shape as well as in regulating the migration pattern of the motile fish keratocyte
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Figure 5.2: Left panel : Normal velocity map of the leading edge for XTC cell spreading on a substrate
(Courtesy : [6]). Right panel : fluorescence intensity of Life-act indicating the dynamics of concentration

of F-actin at the leading edge (Courtesy : [6]).

cells [2]. A large number of similar experimental studies have provided evidence for the

strong coupling between the dynamics of actin at the leading edge and the shape dynamics

of plasma membrane [2],[3],[4],[5].

Cells spreading on a substrate also exhbited similar actin and membrane waves e.g. XTC

cells spreading on a substrate (poly-L-lysine) [6]. In these cells, the changes in the F-actin

concentration were simultaneously imaged which correlated with the normal velocity pat-

terns of the plasma membrane at the leading edge (Fig. 5.2). Tavelling actin waves generated

due to the acto-myosin contracility induced by Myosin-II have also been observed in the re-

constitued actin structures [7]. A recent article by Mogilner et al. gives an overview of

experiments as well as the theoretical models on actin travelling waves in motile, spreading

and stationary cells [5].

5.2 Existing Theoretical models

Several models have been proposed to understand the formation of acto-myosin and mem-

brane waves. These models broadly fall into the categories of (a) curvature based models

and, (b) reaction-diffusion based models. We now briefly discuss these models highlighting

the mechanisms in each model that give rise to waves.
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5.2.1 Curvature-based Models

To explain the membrane waves generated due to actin and myosin, Gov et al. proposed

the curvature based models. These models utilize the curvature sensing properties of the

proteins regulating the actin dynamics at the plasma membrane (e.g. actin nucletors or actin

polymerizing proteins) and the membrane proteins [8],[9]. The mechanism that gives rise to

the formation of waves is described as follows. Curvature sensing membrane proteins activate

actin polymerization to which myosin motors attach producing a contractile normal force.

This creates a local depression in the membrane leading to the seggregation of activators

away from the region of the dip. This is followed by the myosin motors resulting into the

propagating waves [8]. Similarly, in [9], the density fluctuations and thermal diffusion of

the curved activators of actin polymerization coupled with the the dynamics of membrane

shape lead to waves, while the activators themselves get activated in response to an extarnal

stimulus. Wavelike response in these models crucially depends on the sign of spontaneous

curvature preferred or induced by the activator proteins.

5.2.2 Reaction-Diffusion based Models

In a variety of systems, autocatalytic reaction-diffusion based mechanism has been used to

explain the dynamics of membrane at the leading edge. Common ingredients in these mod-

els are the autocatlytic activators of actin polymerization at the plasma membrane. These

activators lead to polymerization of actin at the plasma membrane. These activators are in

turn inhibited by the F-actin thus leading to waves [6]. Likewise, in [10] the system of actin

nucleators interacting with the F-actin also exhibits travelling wave solutions. A relevant

example for this mechanism is the dynamics of Hem-1 and F-actin in neurtophils. Hem-1 is

a component of SCAR/Wave complex that acts as actin regulatory proteins near the plasma

membrane. Studies in [11] show that the actin polymerization is stimulated by this complex

but at high concentration of F-actin this complex is removed from the membrane. Activa-

tion of the actin assembly combined with the delayed inhibition by F-actin constitutes an

excitable system which exhibits generation of actin-waves [6].
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To understand the spontaneous formation of actin and membrane waves as well as membrane

instabilities, we now propose a coarse grained model for the coupled dynamics of plasma

membrane shape and the cortical actin for spreading and motile cells. As has been discussed

in the previous chapters, form of the dynamical equations are determined by the generic

symmetry arguments.

5.3 Theoretical Framework : Coupled dynamics of Plasma Mem-

brane and Cortical Actin

Actin nucleators, such as Arp2/3, polymerize actin at the leading edge and result in actin

polymerization based steady cell propulsion. In addition to this, actin nucleation at the PM

also leads to the formation of cortical actin meshwork which comprises of a rigid, active,

elastic meshwork and dynamic, active filaments. As stated in the Chapter 1, at time scales

longer than the binding/unbinding time scales of the crosslinkers, cortical actin behaves

effectively as an active fluid.

At the leading edge of motile and spreading cells two main cellular structures containing

actin are filopodia and lamellipodia (Fig. 5.3). These two structures are predominantly

nucleated by ‘ formin’ and ‘Arp2/3’ respectively. Arp2/3 nucleates a branched structure of

filaments where new filaments grow at a preferred angle from the existing filaments. formin’

Figure 5.3: Fluorescently labelled growth cones showing (a)filopodial, (b) lamellipodial structure at the
leading edge (Courtesy: http://en.wikipedia.org/wiki/Growthcone).
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based nucleation leads to the elongated structure of actin filaments. We call the filaments

that exert normal forces to the plasma membrane as vertical filaments. While the filaments

that produce ‘in-plane’ active stresses are termed horizontal filaments. Fig. 5.4(a) schemat-

ically depicts the two kind of filaments motivated by the EM pictures of the cortical actin

shown in Fig. 5.4(b).

We denote the two dimensional concentrations of the horizontal and vertical actin by c(r, t)

and ρ(r, t) respectively (referred as ‘H-actin’ and ‘V-actin’ hereafter). Steady state of

(de)polymerization of the former leads to a constant total number of horizontal actin fila-

ments while steady state of (de)polymerization of the vertical actin filaments pushing against

the membrane leads to steady state cell propulsion [9]. We describe the shape of PM in

Monge gauge which will be the appropriate description for the flat lamellipodium. Membrane

shape is described by the height field h(r, t) with the local normal N = (−∇h, 1)/
√

1 + (∇h)2,

where ∇ is the two-dimensional derivative. The cortical actin is described using P = (p, pz),

where p is the projection of P on local tangent plane, defined as pi = (δij −NiNj)Pj.

There are two ways to derive the dynamical equations. Starting from an effective free energy

functional the equations of motion can be derived from a detailed Poisson bracket formalism

(a) (b)

Figure 5.4: (a) Cryo-electorn micrograph image of the cortex in Normal Rat Kidney cells show-
ing a static crosslinked meshwork showing actin filaments with the orientations normal (blue rectan-
gle) and horizontal (green rectangle), (Courtesy : Morone et al, http://www.nanobio.frontier.kyoto-
u.ac.jp/lab/slides/4/e.html), (b) Decomposition of the cortical actin stresses at the plasma membrane

in tangential and normal components.



Chapter 5. Active Deformation of an Active Composite Membrane 85

for a passive permeable membrane coupled to an active orientable fluid in three dimensions.

These equations can then be averaged along the z direction to obtain effective equations for

the dynamical variables. This procedure is carried out in detail in [12]. Another approach

consists of proposing the dynamical equations for the slow variables using general symmetry

based arguments. The final form of the equations obtained using both these methods is

same. It is the later approach that we adopt in this chapter.

5.3.1 Symmetries and the Dynamical Equations

The dynamical equations for a membrane subjected to the active stresses and currents due

to both, H-actin and V-actin are constructed by appealing to the symmetry arguments. We

list the symmetry arguments that we use to construct the dynamical equations and which

give rise to new couplings between the cortical actin and the membrane shape.

1. The pressence of actin nucleators on the inner side of the membrane gives rise to the

formation of cortical actin leading to a well defined ‘inside’ and ‘outside’ of the mem-

brane. The nucleation of V-actin at the leading edge results in pushing the membrane

‘outward’ shown by the direction ~V in the Fig. 5.5(a) [9]. This implies that the h→ −h

symmetry is broken for the motile or spreading cells.

2. The dynamical equations should be invariant under the simultaneous rotations of the

local membrane normal N and the three-dimensional polar orientation vector P (Fig.

5.5(b)).

Taking these symmetry considerations into account, we now propose the coupled dynamical

equations for the cortical actin described by the concentration fields c(r, t), ρ(r, t) and the

polar orientation vector P, and the membrane height h(r, t).
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Figure 5.5: (a) Schematic of a motile cell. (b) Schematic diagram of a blown up part of the leading edge
of the membrane, depicting the symmetry of the system under simultaneous rotation of membrane normal

N and the vector P = (p, pz).

5.3.1.1 Dynamics of Filament Concentration

The concentration of horizontal actin filaments follows a conservation law on the time scales

smaller than the actin turnover time scales.

∂tc = −∇ · [v0cp + µ1c∇h−D∇c] (5.1)

The current for concentration consists of an active advection by the in-plane polar order

p, a slope dependent current and a contribution form diffusive current with diffusion con-

stant D. As we will see later, the slope dependent current is a coupling allowed by symmetry.

The dynamics of concentration of vertical actin filaments to the lowest orders is given by

∂tρ = −koffρ+ kon −∇ ·
[
l1ρ

2∇h+ l2ρp + l3∇(cp · ∇h)− l3∇(∇2h)−Dρ∇ρ
]

(5.2)
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where koff/onare the rates of (un)binding of nucleators of vertical actin and l1,2,3 are phe-

nomenological coupling parameters.

5.3.1.2 Dynamics of Filament Orientation

The three-dimensional polar orientation vector P can be resolved in the in-plane component

p and a normal component pz. As we have mentioned earlier, the normal component is

associated with the V-actin which pushes against the membrane. We assume that this

component relaxes fast in comparison to the in-plane vector p. This can be physically

achieved by having an anisotropic friction coefficient at the plasma membrane of the form

Γm = δij + γmNiNj. For large and positive values of γm, pz relaxes fast. The dynamics of

in-plane polar order p is given as

∂tp = −Λ1p · ∇p + µ2ρc∇h+K1∇2p +K2∇(∇ · p) + ζ∇c+ (A−B|p|2)p (5.3)

Eqn. 5.3 has contributions from a) non-linear self advection, b) symmetry allowed coupling

to height field via µ2 which reorients p along ∇h, c) active torques resulting in relative

alignment of filaments, c) anchoring of p along concentration gradients due to contractile

activity and d) local non-linearity leading to a fixed non-zero magnitude of p beyond a

threshold mean density c∗ of actin filaments.

5.3.1.3 Dynamics of Membrane Shape

Membrane shape in the Monge Gauge is described by the height h(r, t) over a reference

plane (Fig. 5.5(b)). The dynamics of height field is given by

∂th = −µ3p · ∇h− Λ2∇ · (ρcp) + Λ3∇c · ∇h+ Σ∇2h− κ∇4h

−κ1(ρ)∇2c− κ2∇2ρ+ aρ+ bρ(∇h)2 (5.4)
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The R.H.S. of this equation contains following contributions, a) advection of the height field

by n via coupling parameter µ3, b) membrane buckling due to active stresses ∇ · cn,(c) a

symmetry allowed coupling between gradients of c and slope, c) membrane elasticity terms

with surface tension Σ and bending rigidity κ (d) spontaneous curvature due to horizontal

and vertical actin and, (e) symmetry allowed couplings to ρ.

The parameters µ1,2,3 are phenomenological parameters which appear in the dynamical equa-

tions as the coefficients of membrane slope. At first glance, the dependence on membrane

slope via terms like p ·∇h seems to break the rotational invariance. In next section we show

that these new coupling terms obey the required invariance stated in the beginning of this

sectio.

5.3.2 Discussion of Coupling to the Membrane Slope

As stated earlier, the dynamical equations are required to obey the invariance under si-

multaneous rotations of the local membrane normal N and P implying that the vari-

ation δ (N ·P) = 0. Also, there is no ‘up-down’ symmetry which allows for a linear

term in δ (N ·P) to be included in the dynamical equations. Further in Monger Gauge,

N ≈
(
−∇h,

√
1− (∇h)2

)
and P = (p, pz) where pz = N · P and p⊥i = (δij −NiNj)Pj.

Using these, the term δ (P ·N) produces following terms to the lowest orders

δ (P ·N) = δP ·N0 + P0 · δN

= δP · ẑ + p0⊥ · ∇⊥h+ pz
√

1− (∇⊥h)2 (5.5)

where N0 = ẑ. This implies that the terms of the form p · ∇h in the dynamical equations

are consistent with the symmetry arguments.

Before proceeding further, we make a note of the other non-equlibrium driven systems

where such coupling is present. In sedimenting lattice under the effect of gravity similar

coupling between the in-plane diplacements and the vertical displacements gives rise to the

clumping instability [13]. Similarly a slope dependent coupling is present in case of the
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drifting polymers under the effect of an external field [14]. The common point in all these

examples is the broken rotational invariance because of pressence of an external direction

which in our case is provided by actin based cell propulsion on a substrate.

5.3.3 Mechanisms of Instabilities

Figure 5.6: Mechanisms of instabilities and waves : (a) Λ2µ2 > 0 (Left Panel) : A long wavelength
perturbation to an initially flat membrane (i) re-orients the filaments (brown arrows) along the height
gradient (ii). This creates non-zero divergence ∇ · cn which further pushes membrane in the direction of
blue-dotted making an initially flat membrane unstable (iii). (b) Λ2µ2 > 0 (Right Panel): Figure illustrates
the case when Λ2 < 0 and µ2 > 0. A long wavelength perturbation will re-orient filaments along the height
gradient as (a)(i-ii). However this will now pull the membrane in the direction shown by blue-dotted arrows
reaching (iii). The arrangement of arrows in (iii) will give rise to instabilities as shown in (iv) giving rise

to wave like behaviour.

Before analyzing the instabilities exhibited by a membrane coupled to cortical actin we

ask the question : what mechanisms can give rise to the instabilities and waves ? There

are various active mechanisms in the proposed framework which can lead to instabilities.

The feedback between active current which is proportional to the polar orientation and the

reorientation of filaments along the concentration gradients gives rise to density clumping

and formation of asters [15]. Other mechanisms that can give rise to instabilities of a

deformable membrane coupled with active fluid are listed below :

1. Coupling between h and p : This coupling is incorporated in the parameters Λ2

and µ2 of Eqns. 5.3 and 5.4 respectively and is explained in Fig. 5.6. Λ2µ2 > 0 makes
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the membrane unstable while Λ2µ2 < 0 leads the membrane to develop ‘kinematic

waves’.

2. Coupling between h and c : Coupling between height and concentration of horizontal

actin filaments is via an active current proportional to the height gradient and the

spontaneous curvature terms incorporated in the parameters µ1 and κ1 respectively.

The fact that the current for actin filaments is proportional to the height gradients

introduces interesting new and lower order instabilities and can lead to the membrane

instabilities or waves of the acto-myosin concentration as well as of membrane height

with growing amplitudes. The mechanism by which these are obtained is same as the

situation depicted in Fig. 5.6 where the brown arrows now denote active current.

We now look at the differnt limits of the proposed dynamical equations.

5.4 Active Membrane

Integrating out the dynamics of in-plane concentration of horizontal actin and in-plane polar

order parameter p gives rise to following set of coupled equations for shape and the vertical

actin filaments concentration.

∂th = g1∇2h−∇4h− g2∇2ρ+ g3ρ+ g4ρ(∇h)2 (5.6a)

∂tρ = −∇ ·
[
B1ρ

2∇h−B2∇(∇2h)−∇ρ
]

(5.6b)

Where new parameters are effective parameters obtained by integrating out the two fields

and then rescaling. These equations are same as the equations for an active membrane

with active forces normal to the membrane [16]. Thus the dynamics of an active membrane

emerges from a passive membrane coupled to this active cortical fluid.

5.5 Instabilities of the Plasma Membrane and Cortical Actin

We now analyze the instabilities of a flat membrane with in-plane polar order parameter.

In this section we work in the limit where the dynamics of concentration of vertical actin
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is fast giving rise to a steady state concentration ρ0 of vertical actin. This leads to steady

state propulsion of the cell with a mean |V| ∝ ρ0. With this, we are left with membrane

height h over a reference plane and concentration c and polar orientation p of the horizontal

actin. We apply perturbation of the form c = c0 + δc(x, t) , p = p0 + δp(x, t) and h =

h0+δh(x, t) to the dynamical equations. We then expand these equations upto linear order in

perturbation. Perturbations are then decomposed into fourier modes using δc =
∫
dqcqe

ıq·x

δp =
∫
dqpqe

ıq·x and δh =
∫
dqhqe

ıq·x. The linearized equations for fourier amplitudes are

given as

∂tδc = −v0c0∇ · δp− v0p0 · δc− µ1c0∇δh+D∇2δc (5.7a)

∂tδp = −Λ1p0 · ∇δp +K1∇2δp +K2∇(∇ · δp) + µ2c0∇δh+ ζ∇δc+ (A− 3Bp2
0)δp

(5.7b)

∂tδh = −µ3p0 · ∇δh− Λ2c0∇ · δp + Σ∇2δh− κ1∇4δh

(5.7c)

5.5.1 Shape and Polar Order

5.5.1.1 Low Mean Concentration

As first step we first ignore the dynamics of concentration and focus on the instabilities that

arise due to active dynamics of a membrane with in-plane vector field. Before proceeding

with the analysis, note that the parameter A in Eqn. 5.7b is function of deviation of mean

density of actin filaments from the Onsager value, denoted by c∗, at which transition from

orientationally disordered to polar ordered phase takes place. We measure the concentration

of actin filaments in units of c∗ so that this transition takes place at c0 = 1 where c0 is the

mean concentration of actin filaments. The parameter A changes its sign at c0 = 1 and can

be phenomenologically writtten as A = A0(c0−1). We first fix c0 < 1 so that A < 0. For this

range of mean concentration the membrane is orientationally disordered. We ask whether a

flat membrane with no orientational order is stable by applying perturbation to this state.
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For this range of mean concentration the linearized equations for fourier amplitudes are

∂tpq = −Kq2pq + Apq + iµ2c0hqq (5.8a)

∂thq = iΛ2c0q · pq − Σq2hq − κq4hq (5.8b)

The eigenvalues of the stability matrix are given as (upto 4th order in wavevector)

Ω1 = A−K1q
2 (5.9a)

Ω2 = A− q2

(
K1 +

Λ2µ2c
2
0

A

)
+ q4 Λ2µ2c

2
0

A
(AK1 − AΣ− Λ2µ2) (5.9b)

Ω3 = −q2

(
Σ +

Λ2µ2c
2
0

A

)
− q4

(
κ− Λ2

2µ
2
2c

4
0

A3
+ (K1 − Σ)

Λ2µ2c
2
0

A2

)
(5.9c)

For A < 0 the flat and disordered phase is stable when Λ2µ2c
2
0 < Σ|A|. For Λ2µ2c

2
0 > Σ|A|,

the growth rate Ω3 becomes positive for a band of wave vectors becomes unstable with

fastest growing wave vector given by

qmax =
A√
2

√
AΣ + Λ2µ2

Λ2
2µ

2
2c

4
0 − κA3 − AΛ2µ2c2

0(K − Σ)
(5.10)

The growth rate showing instability is plotted in Fig. 5.7. This instability is expected to

drive the membrane to form the tubules separated by a distance give by inverse of q−1
max and

is labelled in the phase diagram shown in Fig. 5.9.

5.5.1.2 High Mean Concentration

The mean concentration till now was such that A < 0 and the membrane did not have

orientational order. Increasing mean concentration c0 so that A > 0, leads to a zero wave

vector instability in Ω1 and the membrane develops macroscopic polar order with |p0| =
√

A
B

.

To analyse the stability of this phase we introduce perturbation to the flat membrane with

polar order as p = p0 + δp and h = h0 + δh. Without loss of generality the direction of

uniform polar order is taken to be parallel to x−axis. Linearized equations of motion for
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Figure 5.7: Low mean concentration of filaments : The unstable mode Ω3 for three values of Λ2µ2. The
values of other parameters are selected as explained in the text.

the fourier amplitudes are given as

∂tpxq = −

(
2A+ iΛ1

√
A

B
qx −K1q

2 −K2q
2
x

)
pxq −K2qxqypyq + iµ2c0qxhq (5.11a)

∂tpyq = −

(
iΛ1

√
A

B
qx −K1q

2 −K2q
2
y

)
pyq −K2qxqy∂xq + iµ2c0qyhq (5.11b)

∂thq = −iΛ2c0 (qxpxq + qypyq)−

(
Σq2 − iµ3

√
A

B
qx − κq4

)
hq (5.11c)

We denote a general perturbation q = (qx, qy) ≡ (q, θ) in polar co-ordinates where θ =

arccos
(

p0·q
|p0·q|)

)
. Analyzing the instability of a general perturbation we find that the fastest

growing wave vector is either parallel or perpendicular to the direction of order (Appendix

B). Hence we analyze the cases of purely parallel and purely perpendicular perturbations.

The growth rates of perturbations perpendicular to the ordering direction are given as

Ω1 = −2A−K1q
2
y (5.12a)

Ω2,3 = ±qy
√
c2

0Λ2µ2 −
K1 +K2 + Σ

2
q2
y + . . . (5.12b)

For A > 0 uniformly polarized phase is stable for Λ2 = 0. For Λ2µ2 < 0 stability analysic pre-

dicts a pair of ‘kinematic waves’ transverse to ordering direction with velocities ±
√

Λ2µ2c2
0.

For Λ2µ2 > 0 , Ω2 becomes positive with maximum growth rate occuring for a wave vec-

tor qmax =

√
Λ2µ2c20

K1+K2+Σ
. This instability is expected to drive the membrane to develop ridges

parallel to the direction of order. The mode showing instability is Ω2, which is plotted as a
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(a) (b)

Figure 5.8: Dispersion relation showing instability of flat membrane with polar order (A > 0). Growth
rates when fastest growing wave vector is (a) perpendicular and (b) parallel to the direction of polar order.

function of qy in Fig. 5.8(a). The corresponding region of instablity is labelled as stationary

ridges in the phase diagram of Fig. 5.9.

The growth rates of perturbations parallel to ordering direction are given as

Ω1 = −iΛ1qx

√
A

B
−K1q

2
x (5.13a)

Ω2 = −iµ3qx

√
A

B
+ q2

x

(
Λ2µ2c

2
0

2A
− Σ

)
(5.13b)

Ω3 = −2A− iΛ1qx

√
A

B
− q2

x

(
K1 +K2 +

Λ2µ2c
2
0

2A

)
(5.13c)

Ω1 and Ω3 do not exhibit any instability when A < 0. The mode Ω2 is positive when

Λ2µ2c
2
0 > 2AΣ (Fig. 5.8(b)). This growth rate has non-zero imaginary part implying

that the instability travels as it grows. Within linear regime this instability will drive the

membrane towards formation of waves whos amplitude grows as they travel. This instability

occurs in the shaded region of the phase diagram displayed in Fig. 5.9. In the shaded region

of the phase diagram the growth rates of Eqns. (5.12b) and (5.13b) both are positive. While

linear stability analysis will predict that the a wave vector with faster growth rate will be

picked up in this regime, the final steady state will be determined by non-linearities. The

phase diagram based on the stability analysis in this part is displayed in Fig. 5.9 which we

explain in following section.
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5.5.2 Phase Diagram

The results from linear stability analysis using coupled dynamics of height and polar order

parameter are summarized in phase diagram fig 5.9 in space of mean density c0 of actin

filaments and the parameter λ2µ2. As stated earlier, increasing mean density of actin fila-

ments beyond a critical density c∗ leads to transition from orientationally disordered state

to ordered state with uniform polar order. This boundary is plotted as black vertical line in

the phase diagram. Below c0 = 1 , A is negative and the orientationally disordered state of

the flat membrane is stable. For low values of mean cocentration, membrane with no polar

order is unstable beyond Λ2µ2 >
A0|(c0−1)|Σ

c20
. This boundary is plotted as a solid-green line.

Beyond c0 = 1 membrane develops uniform polar order. In this regime of mean concentra-

tion Λ2µ2 < 0 region exhibits ‘kinematic waves’. For Λ2µ2 > 0 the membrane with uniform

polar order is unstable and develops ridges parallel to the direction of order. Increasing Λ2µ2

further leads to another instability. For Λ2µ2 >
2A0(c0−1)Σ

c20
(solid red line) the instability cor-

responding to the waves with growing amplitude appears. In the shaded region both these

instabilities exist and the one with the faster growth rate is picked up.

5.5.3 Shape and Acto-myosin Concentration

To study the effects of concentration of acto-myosin on the instabilities we now include

the dynamics of concentration of horizontal actin filaments. For simplicity, we include the

dynamics of concentration in the regime of high mean concentration of filaments so that the

amplitude fluctuations decay with a time scale of A−1 and p =
√

A
B
x̂ + δpyŷ. Linearized

equations for the fourier amplitudes of perturbations in concentration, angle fluctuations

and height are given as following

∂tcq = −

(
Dq2 + iv0

√
A

B
qx

)
cq − iv0c0qypyq + µ1c0q

2hq (5.14a)

∂tpyq = iζqycq −

(
K1q

2 + iΛ1

√
A

B
qx

)
pyq + ic0µ2qyhq (5.14b)

∂thq =

(
κ1q

2 − iΛ2

√
A

B
qx

)
cq − ic0Λ2qypyq −

(
iµ3

√
A

B
qx − Σq2

)
hq (5.14c)
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Here again we follow the similar analysis of looking at the perturbations with wave vector

parallel and perpendicular to the ordering directions separately. If fastest wave vector is

perpendicular to the ordering direction the growth rate Ω2 of Eqn. (5.12b) gets modified

to
√
v0ζ + c2

0Λ2µ2qy upto linear order. Thus any non-zero contractility ζ or Λ2 makes the

flat homogeneous membrane unstable. If the fastest wave vector is parallel to the ordering

direction the growth rates are modified as follows

Ω1 = −

(
K1q

2
x + iΛ1

√
A

B
qx

)
pyq (5.15a)

Ω2 = −iqxv0

√
A

B
+ q2

x

(
−D +

c2
0Λ2µ1

v0 − µ3

)
+ . . . (5.15b)

Ω3 = −iqxµ3

√
A

B
+ q2

x

(
Σ− c2

0Λ2µ1

v0 − µ3

)
+ . . . (5.15c)

Figure 5.9: Phase diagram obtained from linear stability analysis about flat membrane with no orien-
tational order. The phase boundaries have been obtained from linear stability analysis as explained in
the text, and the corresponding phases are predicted from the nature of dispersion relations. The phase
diagram shows interesting instabilities including : tubules, kinematice waves, ridges and waves with growing

amplitude.
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First mode Ω1 does not show instability. If v0 > µ3, second mode is unstable when c2
0Λ2µ1 >

D(v0 − µ3), while if v0 < µ3 third mode Ω3 is unstable when c2
0Λ2µ1 > Σ(µ3 − v0). In the

former case the instability competes with diffusion coefficient to build while in the latter case

instability competes with the surface tension Σ. These instabilities travel as they grow and

suggest travelling waves of the acto-myosin concentration and membrane height, a situation

realized in various experiments described in the beginning of this chapter. Note that for v0 =

µ3 the lowest order expansion in powers of qx gives ±q3/2
x

√
c0

√
A
B

Λ2µ1− iµ3

√
A
B
qx− D+Σ

2
q2
x.

5.6 Current and Future Directions

In this chapter, we have explored in detail, long wavelength instabilities of a membrane

coupled to the cortical actin. Our model does not make any assumption about the nature

of specific interactions between the membrane proteins and the cortical actin, which go into

setting the parameters of the theory. Under the influence of active currents and stresses

active composite membrane self organizes into tubules, kinematic waves, ridges, ruffles and

unstable waves. This analysis sets the stage for a diverse array of possible directions.

5.6.1 Direct Numerical Simulations

The results in this study have been obtained from linearized treatment of the dynamical

equations. Although these results suggest the existence of travelling solutions and waves,

these need to be confirmed from the direct numerical simulations to be as the steady states. A

one mode Galerkin- truncated version of the dynamical equations also suggests the existence

of waves [12]. Numerical simulation of these equations appears in [12] and confirms the

existence of spontaneous oscillations. In addition, solutions with growing amplitudes drive

the system to a state which will lead to spontaneous generation of waves and acts as a

‘wave generator’ state. This result has significance in the context of the ruffles and waves

generated in the lamellipodia that we described in the beginning of this chapter.
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Figure 5.10: Out of plane buckling of the membrane under radial contractile stresses.

5.6.2 Travelling Actin Waves

The non-steady actin travelling waves (t-waves) are observed in a variety of systems, as

discussed in the beginning of this chapter [5]. Various theoretical models have been proposed

to explain these waves.The work discussed in this chapter provides a generic framework to

obtain actin and membranal waves. However, in order to make closer contact to experiments

the parameters of our theory are to be obtained from context-specific microscopic models.

5.6.3 Membrane Buckling Under Horizontal Stress

Asters emerge as steady state pattern as a result of coupled dynamics of concentration and

polar orientation describing cortical actin fluid [15]. Inhomogeneities in concentration field

act as source of asters since in steady state K1∇2p = −ζ∇c leading to non-zero density

of asters defined as ρaster = −c∇ · p. The density of asters can be altered by modifying

contractile activity ζ by changing local acto-myosin concentration. The size of these asters is

fixed by balance of current in Eqn. 5.1. An aster configuration has radial contractile stresses

and active currents towards the aster core. This can lead to the out of plane buckling of

membrane via the term −Λ2∇· cp when the composite membrane is in the regime of elastic

response.

5.6.4 Active Elastomeric Membrane

Throughout this thesis, we have treated the cortical actin as an active fluid. This treatment

is valid for the time scales that are large than the remodelling time scale of the cortical actin

(typically of the order of 10s). However, in addition, the cortical actin consists of a static

crosslinked meshwork. On time scales larger than the time scales of cross-linker dynamics,
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we assumed that the dynamics of this elastic crosslinked meshwork is fast and averages out

to give renormalize values of the parameters. However, the effect of contractile stresses on

the crosslinked meshwork can be explicitly taken into account and is a natural direction to

take following the analysis presented in this thesis.
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Appendix A

Dynamical Equations in the Spherical

Geometry

A.1 Form of the Dynamical equations in Spherical Geometry

Figure A.1: Spherical co-ordinate system

Fig. A.1 shows the spherical coordinate system. Position of a point on the surface of sphere

with radius R is characterized by polar and azimuthal angles denoted by θ and φ respectively.

Expressions for the first and second order differential operators on the surface of a spherical

cell are provided below [1].

103



Appendix A. 104

1. Gradient of the concentration c

∇c = êθ
1

R

∂c

∂θ
+ êφ

1

R sin θ

∂c

∂φ
(A.1)

2. Divergence of the vector field n

∇ · n =
1

R sin θ

[
∂

∂θ
(sin θnθ) +

∂nφ
∂φ

]
(A.2)

3. Scalar Laplacian

∇2c =
1

R2 sin θ

[
∂

∂θ

(
sin θ

∂c

∂θ

)
+

1

sin θ

∂2c

∂φ2

]
(A.3)

4. Vector Laplacian acting on the vector n

∇2n|θ = ∇2nθ −
1

R2 sin2 θ
nθ −

2 cos θ

R2 sin2 θ

∂nφ
∂φ

(A.4)

∇2n|φ = ∇2nφ −
1

R2 sin2 θ
nφ +

2 cos θ

R2 sin2 θ

∂nφ
∂φ

(A.5)

Using above expressions for the differential operators form of the dynamical equation for

concentration is obtained as

∂tc = − 1

R sin θ

[
∂

∂θ
(sin θJθ) +

∂Jφ
∂φ

]
, where (A.6)

Jθ = vθcnθ −
D

R

∂c

∂θ
, and

Jφ = vφcnφ −
D

R sin θ

∂c

∂φ

Similarly the equation for polar orientation is given as
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∂tnθ =
K1

R2 sin θ

∂

∂θ

(
sin θ

∂nθ
∂θ

)
− K1nθ
R2 sin2 θ

− 2 cos θ

R2 sin2 θ

∂nφ
∂φ

+
ζ

R

∂c

∂θ
+ (α +

γθ
R
− β|n|2)nθ

(A.7)

∂tnφ =
K1

R2 sin θ

∂

∂θ

(
sin θ

∂nθφ

∂θ

)
− K1nφ
R2 sin2 θ

+
2 cos θ

R2 sin2 θ

∂nθ
∂φ

+
ζ

R sin θ

∂c

∂θ
+ (α +

γφ
R
− β|n|2)nθ

(A.8)

Clubbing together the linear terms in nθ and nφ we obtain the renormalization of α to αθ

and αφ as αθ,φ = α−K1/(R
2 sin2 θ) + γθ,φ/R
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Appendix B

Instabilities of flat membrane with

uniform polar order

B.1 Analysis of a general perturbation

In this section we analyze the instability of a general peturbation as mentioned in Sec. 4.5.

The general perturbation applied to a flat membrane with uniform polar order along x-axis

can be represented by magnitude q and an angle θ where θ = arccos( p0·q
|p0·q|), where p0 =

√
A
B
x̂

(The notations are same as those used in the chapter 4). Since we are concerned with only

the angle dependence of the unstable wave vector and its growth rate we choose values of of

other parameters corresponding to stable polar ordered phase. Out of the three modes one

has non-zero zeroth order term and does not become unstable. Dispersion relation for other

two modes are given below (upto linear order in q) :

Ω1,2 = − i
2

(1 + µ3) q cos θ +Bq (B.1)

where,

B =
q

2
√

2

√
4λ2µ2 (1− cos 2θ)− (µ3 − 1)2 (1 + cos 2θ)

(B.2)
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For θ < θc where θc = 1
2

arccos 4λ2µ2−(µ3−1)2

4λ2µ2+(µ3−1)2
B is imaginary and contributes to the velocity of

travelling wave. In this case the growth of instability is determined by quadratic order term

in the expansion. For θ > θc second term is real and one of the modes becomes unstable.

However the fastest growing wave vector has maximum along θ = π
2

(Fig. B.1). A plot of

B for θ > θc and the wave velocity for θ < θc is given in Fig. B.1.

(a) (b)

Figure B.1: Coefficient of linear term in Eqn. with θ for (a) θ > θc and (b) θ < θc



Appendix B. 111


	1 Introduction
	1.1 Active Matter
	1.2 Cell Cortex as an Active Fluid
	1.2.1 Active Stresses and Currents in the Cortical Actin
	1.2.2 Mechanisms of Dissipation : Viscosity and Friction

	1.3 Theoretical Framework : The Active Hydrodynamic Approach
	1.3.1 Hydrodynamic Description
	1.3.2 Patterning of Cortical Actin : Substrate Geometry

	1.4 Migrating and Spreading Cells
	1.4.1 Lateral Membrane Waves and Ruffles
	1.4.2 Endocytosis 

	1.5 Active Membranes
	1.6 Theme of the Thesis

	2 Polar Active Fluid on a tense cylindrical membrane
	2.1 Shape is Important
	2.2 General Framework : Curvature Orientation Coupling
	2.3 Patterns on the Cylindrical Cell
	2.4 Parameters and Units
	2.5 Spinodal Instability of Homogeneous phases
	2.5.1 Low Mean Concentration of the Actin Filaments
	2.5.2 High Mean Concentration of the Actin Filaments
	2.5.3 Numerical Integration of the Dynamical Equations
	2.5.4 Axi-symmetric Solutions
	2.5.5 Coarsening and Ring Merger

	2.6 Nucleation and Growth
	2.7 Helices on the Cylinder
	2.8 Summary and Future Directions

	3 Stability of the Axi-symmetric Patterns of Active Polar Filaments on Other Geometries
	3.1 Patterns of Actin Filaments on Spherical Cells
	3.2 Rings on Sphere
	3.2.1 Rings as Unstable Solutions
	3.2.2 Dynamics of Acto-myosin Rings

	3.3 Asters on Sphere
	3.4 Mechanical Model
	3.5 Other Geometries
	3.5.1 Cone
	3.5.2 Saddle-shaped Geometry

	3.6 Composite Shapes : Examples and Predictions
	3.6.1 Endocytic Buds
	3.6.2 Shape of the Dividing Cells


	4 Stability of the Acto-myosin Rings in Fission Yeast Cells
	4.1 Introduction
	4.2 Stability of the Acto-myosin Rings in Fission Yeast Cells
	4.3 The Mechanical Model
	4.3.1 Predictions and Comparison with the Experiments

	4.4 Discussions and Future Directions

	5 Active Deformation of an Active Composite Membrane
	5.1 Membrane Waves and Ruffles in Spreading and Motile cells
	5.2 Existing Theoretical models
	5.2.1 Curvature-based Models
	5.2.2 Reaction-Diffusion based Models

	5.3 Theoretical Framework : Coupled dynamics of Plasma Membrane and Cortical Actin
	5.3.1 Symmetries and the Dynamical Equations
	5.3.1.1 Dynamics of Filament Concentration
	5.3.1.2 Dynamics of Filament Orientation
	5.3.1.3 Dynamics of Membrane Shape

	5.3.2 Discussion of Coupling to the Membrane Slope
	5.3.3 Mechanisms of Instabilities

	5.4 Active Membrane
	5.5 Instabilities of the Plasma Membrane and Cortical Actin
	5.5.1 Shape and Polar Order
	5.5.1.1 Low Mean Concentration
	5.5.1.2 High Mean Concentration

	5.5.2 Phase Diagram
	5.5.3 Shape and Acto-myosin Concentration

	5.6 Current and Future Directions
	5.6.1 Direct Numerical Simulations
	5.6.2 Travelling Actin Waves
	5.6.3 Membrane Buckling Under Horizontal Stress
	5.6.4 Active Elastomeric Membrane


	A Dynamical Equations in the Spherical Geometry
	A.1 Form of the Dynamical equations in Spherical Geometry

	B Instabilities of flat membrane with uniform polar order
	B.1 Analysis of a general perturbation


