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Preface

Smectics are layered systems with liquid crystalline order. The analogy of smectics with su-
perconductors, first established by de Gennes, has proved to be immensely useful. One of the
most striking consequences of this analogy has been the prediction and subsequent observation
of the twist grain boundary (TGB) phases in smectic liquid crystals, which are analogues of the
Abrikosov vortex phase in superconductors. Here, we study the structure of the TGBA and the
TGBC phases, and also predict a new modulated phase in smectic-C liquid crystals.

Chapter 1 introduces continuum linear elasticity theories of liquid crystals, and discusses the
smectic-superconductor analogy and its consequences. We discuss previous theoretical studies
and review experimental results on TGBA and TGBC phases.

In Chapter 2, we show that dislocation arrays with certain geometries do not form grain
boundaries in smectics. In an earlier work by Bluestein et al., construction of the dislocation
complexion of the TGBA phase involves dislocation arrays which do not form grain boundaries.
We propose a consistent construction for the dislocation complexion of the TGBA phase and
calculate the structural parameters of the TGBA phase within linear theory.

In Chapter 3, we show that the covariant elasticity of SmC admits a transition into a novel
modulated phase. Working with the single-wavevector ansatz, we calculate the wave-vector that
minimizes the free energy in the modulated phase and find that it lies in the plane containing
the layer normal and the director. We discuss an earlier experimental observation which shows
a periodic stripe pattern consistent with this structure. We also discuss other thermotropic and
lyotropic smectics known to exhibit modulated structures, and examine how the modulated phase
we predict is different from these.

In Chapter 4, we study the energetics and interaction of dislocation lines in Smectic-C ma-
terials. We find that the lowest energy dislocation line in SmC is a mixed dislocation line. The
interaction between dislocation lines in SmC turns out to be very anisotropic, and attractive (for
distances much larger than the twist penetration depth) along the direction orthogonal to the
c-vector. We calculate the lower critical chiral field hc1 for the formation of the TGBC phase.
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Modelling low angle grain boundaries as arrays of dislocation lines, we find that a grain boundary
made of the minimum energy (mixed) dislocation line is energetically favourable over one that
is made of screw dislocation lines. We minimize the Gibbs free energy for a rectangular TGBC

“reference lattice”, and find that a lattice made of screw dislocation lines (Renn-Lubensky struc-
ture) forms the lowest energy structure. Further work on the detailed evaluation of the structural
parameters of the TGBC phase using arbitrary oblique lattices, is in progress.
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Chapter 1

Introduction

1.1 Liquid crystals

Liquid crystals are a class of materials that exhibit order between that of a liquid phase and a
solid phase. The molecules which make up liquid crystals are often highly anisotropic. Since
their discovery by Reinitzer and Lehman in the late nineteenth century, a large number of meso-
genic compounds which exhibit liquid crystalline phases with varied symmetries have been syn-
thesized.

1.1.1 Nematics

The nematic phase typically is formed by anisotropic rod-like or disc-like molecules. At a higher
temperature, the system exhibits the symmetry of liquids (symmetry under continuous transla-
tions and rotations). This phase is called the isotropic phase. Upon cooling, the system breaks
rotational symmetry and forms the nematic phase. The nematic phase is characterized by the
presence of orientational order (see Fig. 1.1): the positions of the molecular centres of mass
remain uniformly distributed as in the liquid phase, but the direction of the long axes of the
molecules has a nonzero average (given by the apolar unit vector n (n ≡ −n), called the direc-

tor). The system has C∞ symmetry about n.
The broken symmetry elastic variable for the nematic phase is n, and therefore, local changes

of n from its equilibrium value cost energy. For small distortions, the elastic free energy for the
nematic phase was first given by F. C. Frank [9] in 1958. The Frank free energy is

Fn =
1

2

∫
d3x {K1(∇ · n)2 +K2 [n · (∇× n)]2 +K3 [n× (∇× n)]2}. (1.1)

12



Figure 1.1: Orientation of the molecules in the nematic phase. The average direction of alignment
of molecules is denoted by n (adopted and modified from [1]).

The K1- term is the splay term, the K2- term is the twist term and the K3- term is the bend term.
Since n is dimensionless, the dimensions of the Frank elastic constants K1, K2 and K3 are [E/L]
and their value is typically of the order of 10−7 dynes [10].

1.1.2 Cholesterics

The cholesteric phase is formed if the molecules making up the liquid crystal are intrinsically
chiral, or if chiral mesogenic molecules are added to a nematic liquid crystal. The director n
then rotates in a helical fashion (see Fig. 1.2). The pitch of the helix is typically of the order of a
thousand angstroms.

Figure 1.2: Orientation of the director in the cholesteric phase. P is the pitch of the helix, over
which the director rotates by π (since n ≡ −n) (adopted and modified from [1]).

The elastic free energy in the cholesteric phase is [1]

Fch = Fn − h

∫
d3x n · (∇× n). (1.2)

13



This energy is minimized when n is given by

n(x) = (0, sin k0x, cos k0x), (1.3)

where k0 = h/K2 because n · (∇ × n) = k0. We have taken the pitch axis to be along the x−
axis. The pseudo-scalar coefficient h is allowed in the free energy, since the cholesteric liquid
crystal is chiral.

1.1.3 Smectics-A

If a nematic liquid crystal is cooled further, it may undergo a phase transition to the smectic
phase. The Smectic-A (SmA) phase is made up of fluid layers of the molecules, stacked one on
top of the other. In SmA, the director n and the layer normal N are parallel. This structure is
periodic in the direction normal to the layers (see Fig. 1.3), i.e., in the SmA phase, translational
symmetry is broken along the direction given by N. The broken symmetry elastic variable in
the SmA phase is the field u(x), which measures the local displacement (along N) of the layers.
Therefore the linear elastic free energy in this phase can be written in terms of the gradients of
the u- field as [11]

FA =
1

2

∫
d3x

[
B(∇∥u)

2 +K1(∇2
⊥u)

2
]

(1.4)

where ∇∥ = N · ∇ and ∇⊥ = ∇− (N · ∇)N.

Figure 1.3: Layer structure and orientation of the molecules in the SmA phase. The average
direction of alignment of molecules is denoted by n. Layer normal is denoted by N (adopted
and modified from [1]).

1.1.4 Smectics-C

In the Smectic-C (SmC) phase, in the absence of elastic distortions, the director n0 makes a
constant angle A0 with respect to the layer normal N0 (see Fig. 1.4). The projection of n0

14



Figure 1.4: Layer structure and orientation of the molecules in the SmC phase. Layer normal
is denoted by N. The direction of average alignment of molecules, denoted by n is tilted with
respect to the layer normal (adopted and modified from [1]).

onto the plane of the layers is the vector c0. The system is invariant under the simultaneous
transformations c0 → −c0 and N0 → −N0. The N0-c0 plane is a mirror plane.

The elasticity theory for the SmC phase can be written in terms of the following fields:
1. The layer displacement field u, measuring the displacement of the smectic layers along the
direction perpendicular to the smectic planes.
2. The rotation of the director tilt direction (which can also be described using the c-director)
given by the (small) angles Ωx, Ωy and Ωz.
We can write

Ωx =
∂u

∂y
, Ωx = −∂u

∂x
, (1.5)

which implies that
∂Ω

∂x
+
∂Ω

∂y
= 0. (1.6)

Since a uniform rotation of the entire system does not cost energy, the elastic free energy must
be a function of the gradients of Ω. The small rotation angle Ω = (Ωx,Ωy,Ωz) is a psuedovector,
and hence the elastic free energy will contain only terms in (∇Ω)2. In addition, a change in the
layer spacing has an associated energy cost which depends on

γ =
∂u

∂z
. (1.7)

There will a be term proportional to γ2 in the free energy density which measures the changes
from the equilibrium layer spacing.
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We can write the elastic free energy for the smectic-C phase as

Fel = Fc + Fs + Fcs, (1.8)

where

Fc =
B1

2

(
∂Ωz

∂x

)2

+
B2

2

(
∂Ωz

∂y

)2

+
B3

2

(
∂Ωz

∂z

)2

+
B13

2

(
∂Ωz

∂x

)(
∂Ωz

∂z

)
(1.9)

is associated with the distortions of the c-director [12],

Fs =
A

2

(
∂Ωx

∂x

)2

+
A12

2

(
∂Ωy

∂x

)2

+
A21

2

(
∂Ωx

∂y

)2

+
B̄

2
γ2, (1.10)

in which the terms A, A12, A21 are associated with the curvature of the smectic layers, and the B̄
term is the layer compression term, and

Fcs = C1

(
∂Ωx

∂x

)(
∂Ωz

∂x

)
+ C2

(
∂Ωx

∂y

)(
∂Ωz

∂y

)
(1.11)

couples the layer distortions with the distortions in the c-director [13]. The coefficients A, A12

, A21, B1, B2, B3, B13, C1 and C2 have the dimensions of energy per length. The coefficient B̄
has the dimensions of energy per volume.

1.2 Analogy of smectics with superconductors

The analogy of the Nematic to Smectic-A transition with the normal metal to superconductor
transition was first pointed out by de Gennes [14]. At the transition from the nematic phase to
the smectic phase, the system breaks continuous translational symmetry along a single direction.
Thus, smectics are one dimensional “solids” which are periodic along a single direction. As
shown by Landau and Peierls [11], such systems cannot have true long range order, unlike solids.
Also, the density correlations in the broken symmetry direction die out algebraically, rather than
exponentially as for liquids [15]. The order parameter for the N-SmA transition is the complex
amplitude of the first harmonic ψeiq0·x of the complex mass density wave ρ(x) = ρ0+(ψeiq0·x+

c.c) + . . ., where q0 = 2π/dn0 = 2π/dez, and ψ = |ψ| e−iq0u . The Ginzburg-Landau Free
energy for the transition can be written as [1]

F = Fψ + Fn (1.12)
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TGB phase : Liquid crystals Abrikosov phase : Superconductors
Complex amplitude ψ of the mass density wave Order parameter ψ of the

superconductor-normal metal transition
Nematic director n Magnetic vector potential A

Twist field h = K2 (n0 · ∇ × n0) Magnetic field H
Average twist k0 = V −1

∫
d3xn · ∇ × n Magnetic induction = V −1

∫
d3x∇×A

Smectic A phase Meissner phase
Nematic phase Normal metal

Cholesteric phase Normal metal in a magnetic field
Twist Expulsion Meissner effect

Twist penetration depth λ2 London penetration depth λ
Smectic correlation length ξ Coherence length for superconducting order ξ

Twist Ginzburg parameter κ = λ2/ξ Ginzburg parameter κ = λ/ξ
Smectic layer spacing d Magnetic flux quantum Φ0 = h/2e

Screw dislocation Magnetic flux tube (vortex)
Twist grain boundary phase Abrikosov vortex lattice phase

Chiral line liquid Melted vortex phase

Table 1.1: Analogy between the TGB phase in smectic liquid crystals and the Abrikosov phase
in superconductors (Courtesy: [2]).

where,

Fψ =

∫
d3x

[
r |ψ|2 + c∥

∣∣∇∥ψ
∣∣2 + c⊥ |(∇⊥ + iq0δn)ψ|2 +

1

2
g |ψ|4

]
(1.13)

and, and Fn is the Frank free energy for the director given in Eq. (1.1). The (∇⊥ + iq0δn)ψ term
is a covariant derivative, which ensures the invariance of the Eq. (1.12) under rigid rotations of
the whole system. The N-SmA transition occurs when r = r0(T − TNA) changes sign.

The free energy Eq. (1.13) is mathematically identical to the free energy describing the nor-
mal metal - superconductor transition. This leads to a very useful analogy between the normal
metal - superconductor transition and the N-SmA transition (see Table 1.1). Importantly, the
deviation of the nematic director from its equilibrium value, δn, is the analogue of the electro-
magnetic vector potential A in superconductors.

The analogy of smectics with superconductors can be taken further. Superconductors expel
magnetic field. This is known as Meissner effect [16]. In a superconductor placed in a magnetic
field, the magnetic field penetrates into the superconductor only upto a certain characteristic
length, known as the London penetration depth. The Ginzburg parameter is defined as κ =

λ/ξ, where λ is the the magnetic field penetration depth and ξ is the coherence length of the
superconducting order parameter. For κ < 1/

√
2, the superconductor is labelled as type-I and
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for κ > 1/
√
2, as type-II. The response of a superconductor to the presence of a magnetic

field depends on its nature (type-I or type-II). In type-I superconductors, as the magnetic field
is increased, beyond a critical value of the magnetic field hc, the superconducting order breaks
down and the system becomes a normal metal. In type-II superconductors, as the magnetic field
is increased beyond a critical value hc1, the the magnetic field penetrates the superconducting
medium as flux tubes. These flux tubes arrange as a two dimensional triangular lattice, and give
rise to the Abrikosov vortex lattice phase. As the magnetic field is increased further, beyond a
value hc2, superconducting order completely breaks down and the system turns into a normal
metal. The phase diagram is shown in Fig. 1.5.

Figure 1.5: Phase diagram in the h-T plane for type-I and type-II superconductors. h is the
magnitude of the magnetic field and T is the temperature. For type-II superconductors, there is
an intervening Abrikosov vortex lattice phase in between the superconductor and normal metal
phases (Courtesy: [2]).

de Gennes [14] noted that like in superconductors, there are two important length scales in
smectics: (i) The smectic correlation length ξ, which is the analogue of the coherence length
in superconductors, and, (ii) The penetration depth λ, which is the analogue of the London
penetration depth in superconductors. The Ginzburg parameter κ for smectics is given in terms
of these characteristic lengths, by κ = λ/ξ. In analogy with superconductors, we can then
define type-I (κ ≤ 1/

√
2) and type-II (κ > 1/

√
2) smectics. This allows for the possibility

of there being an analogue of the Abrikosov vortex phase in smectics. de Gennes suggested a
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structure made of a lattice of edge dislocations. Although it was de Gennes who first realized this
possibility, the exact structure of the of this phase was first predicted by Renn and Lubensky [17].
They argued that the proper analogue of the magnetic field in the case of smectics is the twist
n · (∇ × n), and that the analogue of the London penetration depth is the twist penetration
depth λ2 = K2/D, where K2 is the modulus of twist deformations of the director, as defined in
Eq. (1.1), andD is the coefficient of the covariant term in Eq. (1.13). In this picture, the analogue
of a flux tube is a screw dislocation line, and that of the Abrikosov vortex phase is the twist grain
boundary phase in smectics.

A low temperature elasticity theory (r < 0) of Smectics can be developed by taking the am-
plitude of the order parameter to be a constant and considering only the fluctuations in its phase.
The deviations of the phase from its equilibrium value can be taken into account by introducing
the layer displacement field u(x), defined through the equation ψ = |ψ| ei(q0·x−q0u(x)). When u-
is independent of x, it defines the set of uniformly spaced smectic layers. Deviations from the
uniform smectic ground state are characterized by a spatially varying u(x). Thus, in the smectic
phase, u(x) is the broken symmetry elastic variable. In this limit, the Eq. (1.12) reduces to [1]

Fel =
1

2

∫
d3x

[
B(∇∥u)

2 +D(∇⊥u+ δn)2
]

+
1

2

∫
d3x

[
K1(∇ · n)2 +K2 (n · (∇× n))2 +K3 (n× (∇× n))2

] (1.14)

where B = c∥q
2
0 |ψ|

2 and D = c⊥q
2
0 |ψ|

2.

1.3 Covariant Elasticity of Smectic-C

Hatwalne and Lubensky [18] gave a unified description of the covariant elasticity of both SmA
and SmC liquid crystals. To understand their procedure, it is useful to parametrize the quanti-
ties of interest the following manner. In SmA liquid crystals, the Frank director n0 is spatially
uniform and parallel to the layer normal N0 (n0 · N0 = 1), whereas in SmC, n0 is tilted at an
angle to N0, i.e., n0 ·N0 = cosA0 = α, where A0 is the equilibrium tilt angle between the Frank
director and the layer normal. The equilibrium c-vector c0 is defined as the projection of n0 onto
the plane of the layers. Therefore, c0 · N0 = 0. We will take N0 to be along the z− axis. The
layer normal can be written in terms of ∇u as

N ≃ (−∇⊥u, 1) (1.15)
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In the SmA phase, the distortions of n0 from its equilibrium value can be characterized by
δn (to the linear order in deviations δn) as

n ≃ (δn, 1), (1.16)

and in the SmC phase, we can write

n = (c,
√
1− c2), (1.17)

where
c = (c0 + δc)(sinϕ, cosϕ, 0). (1.18)

The linear deviations of c from its equilibrium value c0 = c0(1, 0, 0) is given by

δc = (δc, c0δϕ, 0), (1.19)

and thus,

δn = (δc, c0δϕ,−
c0δc

cosA0

). (1.20)

Starting from the premise that the elastic free energy in both the SmA and the SmC phase can
depend only on change in the relative angle, δ(n ·N), between n and N, the inverse layer spacing
qs in the smectic phase, and the rotationally invariant gradients of u, [18] derive the elastic free
energy density in the SmA phase as

fA =
1

2
B (∇zu)

2 +
1

2
D (δn+∇⊥u)

2 +
1

2
Ku (∇2

⊥u)
2 + fn (1.21)

where fn is the Frank free energy density for nematics (see Eq. (1.1)), and the elastic free energy
density in the SmC phase as

f = (1/2)[B (∂zu)
2 +D (δc+ α ∂xu)

2

− 2L (δc+ α ∂xu)(∂zu) +Ku (∇2u)2

+Kc (∇δc)2 +Kϕ (∇δϕ)2], (1.22)

The terms with coefficients B and Ku are familiar from the Landau-Peierls elastic free energy
for SmA [11]. These account for layer-compression and layer-bend energies respectively. The
Frank free energy for distortions in the director field is represented via terms with coefficientsKc

and Kϕ in the one-constant approximation [10]. The D− and L terms involve the covariant form
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(δc+α ∂xu) which measures the deviation δ(n ·N) from its equilibrium value α. The term with
the coefficient L is allowed by the symmetry of SmC, and couples the covariant form to changes
in the equilibrium layer spacing. The elastic constants B,D,Ku, Kc and Kϕ have to be positive
for stability. Stability conditions do not restrict the sign of L. Notice that the term involving δϕ-
field is not coupled to the u- and δc- fields.

1.4 Scale dependence of elastic constants

Calculations by de Gennes [19] and Jahnig and Brochard [20] have predicted that the Frank
elastic constants K1 and K2 diverge as the correlation length ξ, as one approaches the Nematic-
SmA transition temperature TNA, whereas K1 remains well behaved. For the Nematic-SmC
transition, they have predicted that all the three Frank elastic constants diverge near TNC . In the
calculation by de-Gennes, these diverge as ξ

3
2 .

Chen and Lubensky [21] proposed a Ginzburg-Landau theory to describe both N-SmA and
N-SmC transitions, with the phase boundaries meeting at a Lifshitz point. The order parameter
they work with is m(r) =

∫
D

d3k
(2π)3

eik·rρ(k), where ρ(k) is the Fourier transform of the density
ρ(r), and D is a two-part domain (excluding k = 0), centred around (q||, 0, 0) and containing the
circles k|| = ±q||, |k⊥| = |q⊥|. They work with a Ginzburg-Landau Hamiltonian H which can
be written as sum of three parts:

βH = βHm + βHel + βH4 (1.23)

where βHel is the elastic Frank free energy of nematics given in Eq. (1.1), and βHm and βH4

are given as

βHm =
1

2

∫
d3r βhm, (1.24)

with

βhm =
(
am2 +D|| [(n · ∇)2m]2 − C|| [n · ∇m]2 + (C2

||/4D||)m
2

+ C⊥ δ
T
ij ∇im∇jm+D⊥ (∇2

⊥m)2
)
, (1.25)

and,

βH4 = u

∫
d3r m4(r) (1.26)

where n is the Frank director. δTij = δij − ninj is the projection operator onto the plane perpen-
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dicular to n, ∇2
⊥ = δTij∇i∇j and a = a′(T − TNA) changes sign at the Nematic-SmA transition

Their calculation predicts the critical exponents for both the N-SmA transition and N-SmC
transition. A perturbative renormalization group calculation is done to show that the Frank elastic
constants K2 and K3 diverge as TNA is approached, whereas K1 is well-behaved. As TNC is
approached, and all three Frank elastic constants diverge as ξ2.

Grinstein and Pelcovitz [22] have performed a renormalization group calculation including
anharmonic terms. They have shown that the layer compression modulus B vanishes and that
the modulus of layer bend Ku diverges logarithmically, with system size. However, the length
scale over which these effects become relevant is very large. They are not of any relevance at
laboratory lengthscales.

1.5 Dislocations

Deformations of an elastic medium can be described by a displacement field u(x) that measures
the displacement of each point in the medium from its original undistorted position. In an elastic
medium, strains can be produced not by external forces alone, but also by the presence of internal
defects, such as dislocations, in the periodic structure of the medium.

1.5.1 Dislocation lines in crystals

The elastic variable in a periodic crystal is the vector displacement field u(x). A dislocation line
in a crystal is defined by [1] ∮

du =

∮
du

ds
ds = R = b, (1.27)

where R is a direct lattice vector, and the Burgers vector b belongs to the set of direct lattice
vectors. The integral is over a closed loop which encircles the dislocation line and s is the
arclength. The Burgers vector and the direction of the dislocation core uniquely specify the
type of the dislocation line. For an edge dislocation line, b is perpendicular to the core of the
dislocation line, and for a screw dislocation line, b is along the direction of the core. Dislocation
lines with both an edge and a screw component are called mixed dislocation lines. For a mixed
dislocation line, the Burgers vector is at an angle to the core.
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1.5.2 Dislocations in smectics

In smectics, deformation from the regular periodic structure is given by the displacement field
u(x), which measures displacement along the direction of the layer normal (chosen here to be
along the z- axis). The deformed smectic planes are defined by [1]

z − u(x) = k d =
2π k

q0
. (1.28)

The dislocation line in a smectic medium is defined by the relation∮
du = b = k d ez. (1.29)

The above equation implies that, if we sum over the displacements on a closed loop encircling
the dislocation line, the layers undergo a net displacement of k d. The vector b = k d ez is called
the Burgers vector of the dislocation line. The set of Burgers vectors is equivalent to the direct
lattice specifying the equilibrium positions of the smectic planes. Since the smectic is periodic
only along a single direction, the b always points along the layer normal.

In the core of a dislocation line, the layer displacement field is singular, which means that the
u- field cannot be uniquely defined. In this region, smectic order vanishes and the medium is in
a higher symmetry state, i.e., a nematic.

(a) Screw (b) Edge

Figure 1.6: Layer structure in the presence of a (a) screw and (b) edge dislocation line in smectics.
(a) shows the displacement of the layer over one circuit of the dislocation core. (b) shows a half-
layer that has been inserted, so as to form an edge dislocation line.
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The nature of the dislocation line depends on the relative orientation of the dislocation core
(specified by the vector l) and the Burgers vector b. If l is parallel to b, the dislocation line
is called a screw-dislocation. If l is perpendicular to b, the dislocation line is called an edge-
dislocation. A screw dislocation can be thought of as a being formed by a set of smectic planes
which go around the defect core in a screw-like manner (see Fig. 1.6(a)). The smectic layer
displacement field in this configuration is given by

z − d

2 π
arctan

y

x
= k d. (1.30)

For a right handed screw, b·l = b and for a left-handed screw, b·l = −b. An edge dislocation can
be thought of as being produced by inserting (or equivalently, removing) a half plane from the
periodic one-dimensional lattice (see Fig. 1.6(b)) . If the core of the edge dislocation lies along
the x- axis, the singular part of the displacement field can be written as (d/2π) arctan(z/y)

[1]. For an edge dislocation, b · l = 0. Dislocation lines for which l is neither parallel nor
perpendicular to b, but makes an angle γ with respect to b, are called mixed dislocation lines.

1.6 Grain boundaries

Grain boundaries are interfaces between stress-free regions with different orientation [3], in a
system with discrete translational symmetry (e.g., crystals, smectic liquid crystals, quasicrystals).
At large distances from the grain boundary, the lattice vectors on either side of the grain boundary
are related to each other by a pure rotation.

1.6.1 Grain Boundaries in crystals

A grain boundary in a three dimensional crystal has five degrees of freedom: three corresponding
to the relative orientation of the two adjacent grains, and two describing the orientation of the
grain boundary with respect to these two grains. The angle by which the adjacent grains are
rotated relative to each other, Ω, lies in the plane of the grain boundary for a tilt grain boundary
(made of edge dislocation lines). For a twist grain boundary (made of screw dislocation lines),
Ω is perpendicular to the plane containing the grain boundary. A grain boundary can have mixed
character, with both tilt and twist components. A symmetric grain boundary is one for which the
surface of the boundary is oriented symmetrically with respect to the two grains.

A small-angle grain boundary (Ω small) can be modelled as an array of the appropriate kind
of dislocation line. A large-angle grain boundary, though, cannot be modelled as an array of
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dislocations. This is because the dislocation density in the plane of the grain boundary would
need to be large in order to produce the large relative rotation of the grains. At such large
dislocation densities, the cores of the dislocations making the grain boundary would overlap,
and the concept individual dislocation lines would become meaningless. A symmetric tilt grain
boundary is the simplest in terms of structure. It can be modelled as an array of edge dislocations.

Frank’s formula gives the dislocation content in a small-angle grain boundary. Consider a
grain boundary composed of parallel, equally spaced dislocation lines between two adjoining
grains A and A′. Let L be a lattice vector in the plane of the boundary with indices [h,k, l]

referred to the lattice A. Let L′ be another lattice vector with the same crystallographic indices
[h,k, l], referred to the grain A′ (see Fig. 1.7). The difference btot(L) = L−L′ can be expressed
as an integer linear combination of the Burgers vectors bi :

btot(L) =
∑
i

ai(L)bi, (1.31)

where ai(L) is the number of dislocations with Burgers vector bi cut by L. If the rotation angle
between the grains is Ω, then

btot(L) = L×Ω, (1.32)

for small angles of rotation. This equation shows that the Burgers vector content of the grain
boundary increases with length, and is known as Frank’s formula. For a small angle symmetric
tilt grain boundary, |Ω| = b/ld, where ld is the separation between the dislocations in the grain
boundary.

A twist grain boundary in a crystal is more complicated, consisting of two sets of mutually
perpendicular arrays of dislocation lines [18].

1.6.2 Grain boundaries in smectics

Smectic liquid crystals are characterized by fluid order in the plane of the layers. This has
consequences for the structure of grain boundaries in smectics. For instance, unlike in crystals,
a twist grain boundary in smectics does not involve a mutually orthogonal pair of dislocation
arrays. It is composed of a single array of screw dislocation lines. We will discuss the topology
and geometry of grain boundaries in smectics in detail, in Chapter 2.
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L '

L

Figure 1.7: L and L′ point in the same crystallographic direction (h,k,l) in the tow adjoining
grains. The difference L − L′ is the sum of the Burgers vectors of the dislocations enclosed by
the closed triangle in the figure. Dislocations are shown by ⊥ (adopted and modified from [3]).

1.7 The TGBA Phase

Although the possibility of an analogue of the Abrikosov vortex phase in smectics was suggested
by de Gennes, the exact structure of such a phase, the twist grain boundary phase, was predicted
by Renn and Lubensky in 1988 [17]. However, unlike the Abrikosov vortex lattice, the structure
of the TGB-A phase is not that of a two-dimensional lattice of screw-dislocations, since such a
structure has an energy that diverges with system size and is not stable in the thermodynamic
limit (as pointed out by Sethna [17]). Instead, the structure of the TGB phase is as shown in
Fig. 1.8: slabs consisting of smectic planes, separated by grain boundaries made up of screw
dislocations.

The experimental discovery of the the TGBA phase was almost concurrent with its theoreti-
cal prediction by Renn and Lubensky. Goodby and co-workers [23] observed the TGBA phase
in the homologous series of the compound nP1M7. Optical measurements showed a helical
structure and x-ray diffraction confirmed the existence of smectic layering. The detailed nature
of the grain boundaries was shown in a later paper [24], where they performed freeze fracture
microscopy and found that the grain boundaries were formed by screw dislocations and were
oriented perpendicular to the helical axis.

The ratio of the lb (distance between the grain boundaries) to ld (distance between individ-
ual dislocation lines in a grain boundary) (see Fig. 1.8) was calculated within linear theory by
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Figure 1.8: Structure of the TGBA phase. lb is the distance between grain boundaries, and ld is
the distance between dislocation lines in a grain boundary. Adjacent smectic slabs are rotated
with respect to each other by an angle ∆θ (Courtesy: [4]).

Bluestein, Kamien and Lubensky [4]. They used the harmonic elastic free energy

F =
1

2

∫
d3x

[
B (∇zu)

2 +D (∇⊥u− δn)2 +K1 (∇⊥ · δn)2 +K2 (∇⊥ × δn)2 +K3 (∇zδn)
2
]

(1.33)
Under the assumption that the grain boundaries are made of screw dislocations, the above equa-
tion reduces to

F =
1

2

∫
d3x

[
D (∇⊥u− δn)2 +K2 (∇⊥ × δn)2

]
(1.34)

They take v = ∇⊥u to be the non-analytic part of the gradient of the u− field, and using the
fact that ∇ × v = b(x) where b(x) = ez

∑
µ kµd

∫
ds δ(x −Rµ(s)) is the dislocation density,

with d being the layer spacing and kµ the strength of the dislocation source at position Rµ(s)

parametrized in terms of the arclength s. They derive the Fourier space expression for the elastic
free energy per unit length in the case of an arbitrary dislocation density as

F

L
=

∫
d2q

(2π)2
1

q2
⊥ + λ−2

|b(q⊥)|2 (1.35)

Working within the linear theory, [4] used the principle of superposition to calculate the energy
per unit area for an array of screw dislocation lines (a low angle grain boundary). Their result
closely resembles that of parallel vortices in a superconductor in the London limit. [4] also cal-
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culated the interaction between two small-angle grain boundaries, which they considered to be
rotated by an angle θ with respect to each other. They found that this interaction energy dies off
exponential with the distance between the grain boundaries. They then proceeded to calculate
the energetics of the TGBA phase, and found that within the TGBA phase, lb/ld ≈ 0.95 for a
wide range of values of the chiral field h.

Dozov [25] has suggested an alternative structure for grain boundaries in the TGBA phase.
In this picture, called the molten grain boundary phase (MGB phase), the smectic order vanishes
at the grain boundaries. This structure has not been experimentally observed.

Kamien and Lubensky have predicted a chiral line liquid phase [26], which can be thought
of as a liquid of screw dislocations in the cholesteric phase. Experimental studies on this phase
have been reported [27].

1.8 The TGBC Phase

The TGBC phase was predicted by Lubensky and Renn in 1990 [28]. The structure originally
proposed by Lubensky and Renn had layered smectic-C slabs separated by twist grain boundaries
(see Fig. 1.9). For this structure, the layer normal is perpendicular to the TGBC pitch axis and
rotates around it in the successive TGBC slabs. The electric polarization vector PS ∝ n × N

lies along the TGBC pitch axis. The structure factor is qualitatively identical to that of the TGBA

phase. In this section, the discussion of experimental results follows that reviewed in [29].
Nguyen et al. [30] and Bouchta et al. [31] synthesized new chiral liquid crystalline mate-

rials showing cholesteric to smectic transitions and SmA to SmC transitions in the same chiral
homologous compounds nF2BTFO1M7, which exhibited the predicted TGBC phase. The struc-
ture of this phase was studied using optical microscopy and x-ray diffraction, which revealed the
presence of a helical structure along with smectic layering. The detailed microscopic structure
was studied by Navailles et al. [6] using x-ray diffraction. The structure they found is shown in
Fig. 1.10. The SmC layers are tilted by an angle ωL with respect to the helical axis. Since this
angle ωL is approximately equal to the director tilt angle, the director n is roughly perpendic-
ular to the helical TGB axis, as in TGBA. The electric polarization vector PS ∝ n × N was
perpendicular to the TGBC pitch axis and the ratio lb/ld was observed to be between 7 and 8.5.

Kundagrami and Lubensky [5] later showed that close to the upper critical twist, either the
Renn-Lubensky Phase (Fig. 1.9) or the Bordeaux phase (Fig. 1.10) could become stabilized
depending on a certain parameter which characterizes the system. They considered a modified
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form of the Chen-Lubensky free energy F =
∫
d3x f + Fn, where

f =
[
r|ψ|2 +D||

∣∣(∇2
∥ + q20)ψ

∣∣2 +D⊥
∣∣(∇2

⊥ + q20)ψ
∣∣2 (1.36)

+ D∥⊥
[
(∇∥ + q20)ψ

∗(∇2
⊥ + q20⊥)ψ + c.c

]
+

1

2
g |ψ|4

]
(1.37)

and Fn is given in Eq. (1.1). Here, ψ is the complex mass density-wave amplitude defined
through ρ = ψ + ψ∗. They showed that cholesteric phase becomes unstable to the Bordeaux
phase when (D∥⊥/D∥) < (1/

√
2) and it becomes unstable to the Renn-Lubensky phase before

the Bordeaux phase if (D∥⊥/D∥) > (1/
√
2).

For the Frank elastic constants which have K1, K2 > K3, Renn [32] has predicted the exis-
tence of a TGB∗

C phase with SmC∗ like ordering within the smectic slabs. Reibero et. al. [33]
have found a TGBC phase (S-TGBC) exhibiting a square grid optical pattern in planar geometry
and a broad angular distribution of the layer normal relative to the TGB helix axis. Galerne [34]
proposed some modifications to the Renn model of the TGB∗

C phase to account for this observa-
tion.

Pullarkat et al. [35] have reported the discovery of a new undulated-TGB∗
C phase, which

shows a square grid pattern in the plane normal to the helix axis, and undulations of the grain
boundaries with displacements along the helix axis. A model [7] to explain these observations
has been suggested, which requires a helical arrangement of the molecules within the SmC∗-like
blocks.

In 1993, Shao et. al. [36] reported some new materials which exhibited the Renn-Lubensky
TGBC phase, as well as the square grid modulation at low temperatures. Fernsler et al. [37]
have studied a compound in the same series, that exhibits a TGBC phase with very large lb
(> 200nm). These ’giant-block’ TGB (GBTGB) phases exhibit very large changes in angular
orientation between adjacent slabs. Theoretical models [37] based on the fact that these are
formed by extreme type-II materials account for the observed features. The grain boundaries in
these materials have weak smectic ordering, and can the thought of as a melted (nematic-like)
wall.

Some other models of the TGBC phase have also been proposed. Dozov [25] has proposed
the melted grain boundary (MGB) phase, where the grain boundaries are are melted (nematic-
like) walls, rather than being made of dislocation lines. Luk’Yanchuk has proposed a TGB2q

phase [38] which appears as a superposition of two degenerate TGBC phases with different left
and right layer inclinations.
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Figure 1.9: The Renn Lubensky structure of the TGBC phase. lb is the distance between grain
boundaries, and ld is the distance between dislocation lines in a grain boundary. α is the angle
between n and N, p is the pitch axis of the TGBC helix and d is the spacing between the layers.
∆θ s the angle of rotation between the adjacent smectic slabs (Courtesy: [5]).
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Figure 1.10: The Bordeaux structure of the TGBC phase. lb is the distance between grain bound-
aries, and ∆Θ is the angle of rotation between the successive SmC slabs. The layer normal N
in the SmC slabs is tilted with respect to the axis of the TGB−C helix by an angle ωL which is
roughly equal to the angle between N and n (the SmC director tilt angle). PS ∝ n ×N is the
polarization and x̂ is the axis of the TGBC helix (Courtesy: [6]).
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Chapter 2

Dislocation arrays in SmA and the
structure of TGBA phase

Accounting for dislocation interactions within covariant linear elasticity theory of SmA, Bluestein
et al. [4] determined the structural parameters (the spacing ld of dislocations within grain bound-
aries and the inter- grain boundary spacing (the smectic block size) lb) of the TGBA phase. Their
principal result is that the ratio lb/ld is close to 0.95 over a wide range of parameter values. In
this chapter we show that the structure of the TGBA phase corresponds to a that of a triangu-

lar reference lattice of screw dislocations with lb/ld =
√
3/2, a result equivalent to that for

Abrikosov lattices in conventional superconductors. To address the structure and energetics of
the dislocation complexion of TGBA phase we (i) review the energetics of single screw dislo-
cations (Fig. 2.1(a)) in SmA, (ii) discuss the topology and geometry of dislocation arrays and
show that certain planar dislocation arrays composed of parallel dislocations do not constitute
grain boundaries, (iii) use the method developed in (i) above to obtain the energy per unit area
of small-angle twist grain boundaries composed of screw dislocations (Fig. 2.6), (iv) evaluate
the interaction potential for small-angle twist grain boundaries (Fig. 2.8), and (v) elucidate the
structure of the TGBA phase (Figs. 2.11 and 2.12). Our analysis is applicable near the lower
critical chiral field.
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2.1 Energetics of a single screw dislocation in SmA

In type-II SmA, layer distortions are screened by the Frank director. For small distortions the
elastic free energy is

F =

∫
f d3x =

1

2

∫ [
D (∇u+ δn)2 +K1 (∇ · δn)2 +K2 (∇× δn)2

]
d3x, (2.1)

where u is the displacement field, δn is the deviation of the Frank director from its undistorted
equilibrium value n0 = ez, and D, K1, and K2 are elastic constants (we have set the twist elastic
constant equal to the bend elastic constant). The Euler-Lagrange equations corresponding to the
free energy Eq. (2.1) are

δF

δu
= −D∇ · (∇u+ δn) = 0,

δF

δn
= D (∇u+ δn)−K1∇(∇ · δn) +K2∇×∇× δn = 0. (2.2)

In the presence of dislocations, the displacement field is continuous but multivalued. For a screw
dislocation (core along ez) the singular (topological) part of the displacement field is

us(x) =
d

2π
ϕ =

d

2π
arctan

y

x
, (2.3)

where d is the magnitude of the Burgers vector (Fig. 2.1).

(a) Screw dislocation (b) Mixed dislocation (c) Screw and mixed dislocations: a
comparison

Figure 2.1: Schematics of screw (blue) and mixed (red) dislocations. The mixed dislocation line
(the core) is tilted by π/4 with respect to the equilibrium layer normal.

For any loop enclosing the dislocation core
∮
dus = d. We treat us as a single-valued field

which is discontinuous across a cut surface containing the dislocation line. There is no topologi-
cal constraint on the δn field. The δn- field merely adjusts itself to lower the dislocation energy
by screening the topologically constrained displacement field. For a screw dislocation the u- and
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δn- fields satisfying the Euler-Lagrange equations Eq. (2.2) are given by [1]

u(x) = us(x) =
d

2π
arctan

y

x
,

δn(x) =
d

2π

[
1

λ2
K1

(
ρ

λ2

)
− 1

ρ

]
eϕ, (2.4)

where ρ =
√
x2 + y2, eϕ is the unit vector in the ϕ- direction, λ2 is the twist penetration depth

and K1(ρ/λ2) in the modified type-II Bessel function of order one. Note that (i) the singular part
of the displacement field is the solution to the Euler-Lagrange equation, and (ii) the δn- field is
divergence-free.

We use the standard technique for calculating the energy of topological defects [1] and write
the free energy density f as

f =
1

2
[D {∇i(u(∇iu+ δni))− u∇i(∇iu+ δni) + δni(∇iu+ δni)}

+K1 {∇i(δni∇jδnj)− δni(∇i∇jδnj)}

+K2 {ϵijk∇j(δnk ϵipq∇pδnq) + δni(ϵijkϵkpq∇j∇pδnq)}], (2.5)

where ϵijk is the completely antisymmetric Levi-Civita symbol, and repeated indices are summed
over.

Applying Gauss’s theorem and using the Euler-Lagrange equations (2.2), the elastic free
energy can be recast as

F =
D

2

∫
S

(∇iu+ δni)u dSi

=
D

2

∫
C

(∇u+ δn) · (N+u+ +N−u−)L dl

=
D

2

∫
(∇iu+ δni)Ni(u

+ − u−)L dx, (2.6)

where C is the cut line, Ni represent the components of the normal vector on the lips of the cut
line (Fig. 2.2). d = (u+ − u−) is the magnitude of the Burgers vector, and L is the length of the
dislocation line. It is convenient to define Q = ∇u+ δn. In particular, the energy per unit length
for a single screw dislocation is then given by(

F

L

)
=
Dd

2

∫ ∞

ξ

Qy dx, (2.7)
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Figure 2.2: The cut line for the calculation of the elastic energy of a single screw dislocation in
SmA. N+ and N− are the normals to the two lips of the cut line. u+ and u− are the displacement
fields on either side of the cut line.

where ξ is the smectic correlation length and the cut line is chosen to be along the x- axis.
Here we have ignored the contribution from the dislocation core energy which arises from the
destruction of smectic order within a region of order of the smectic correlation length ξ. Using
Eq. (2.5) the energy per unit length of a single screw dislocation is [1](

F

Lz

)
=
Dd2

4π
K0

(
ξ

λ2

)
, (2.8)

where K0(ξ/λ2) is the modified type-II Bessel function of order zero and λ22 = K2/D. This
result is analogous to that for the energy per unit length of a flux tube in type-II superconductors.
For small argumentsK0(ξ/λ2) ≈ − ln(ξ/λ2) and we regain the approximate result for the energy
of a screw dislocation in a type-II SmA(

F

Lz

)
=
Dd2

4π
ln

(
λ2
ξ

)
. (2.9)

We note that Eq. (2.6) applies to a general (mixed) straight dislocation line (see Fig. 2.1(b)) In the
later sections, we use this formula for calculating the energy per unit area of grain boundaries,
and the interaction potential of a grain boundary with a single dislocation.
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2.2 Geometry and topology of some dislocation arrays in smec-
tics

As discussed in Chapter 1, small angle grain boundaries can be modelled as arrays of dislocation
lines. In this section we obtain the singular, topological part of the displacement field for planar
arrays of straight, equidistant, edge- and mixed dislocation lines to show that certain arrays do
not qualify as small-grain boundaries.

2.2.1 Twist grain boundary

A twist grain boundary in smectics [1, 17] is composed of a planar array of screw dislocations
with inter-dislocation spacing ld, which we take to be along ey (Fig. 2.3). The displacement field
for this array of dislocations is

u(tw)(x) =
d

2π

∞∑
m=−∞

arctan

(
y −mld

x

)
, (2.10)

where the sum is over integers. It is simpler to sum the components of the gradient of the
displacement field (which gives the slope of the smectic layers) using the Poisson summation
formula (or other methods of complex analysis). The components of v(tw)(x) = ∇u(tw)(x) for a
twist grain boundary are [4]

v(tw)
x (x) = − d

2ld

sin(2πy/ld)

cosh(2πx/ld)− cos(2πy/ld)
,

v(tw)
y (x) =

d

2ld

sinh(2πx/ld)

cosh(2πx/ld)− cos(2πy/ld)
, (2.11)

with the limiting form for large |x| given by v(tw)(x → ±∞) = ±(d/(2ld)) ey. At large |x| the
layers undergo a pure rotation across the array. This array qualifies as a twist grain boundary.

Notice that v(tw)
y (x) and v(tw)

x (x) are respectively the real and imaginary parts of the function

f(ζ) =
d

2π

π

ld
coth

(
πζ

ld

)
=

d

2π

d

dζ
ln sinh

(
πζ

ld

)
(2.12)

of the complex variable ζ = x+ iy. The function π coth(πζ) has simple poles with unit residue
at all integers along the imaginary axis. Since Arg[ln sinh(ζ)] = tan y/ tanhx, the displacement
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Figure 2.3: Close-up of a twist grain boundary generated using Eq. (2.13) (see text).

field for a twist grain boundary is

u(tw)(x) =
d

2π

∞∑
m=−∞

arctan

(
y −mld

x

)
=

d

2π
arctan

(
tan(πy/ld)

tanh(πx/ld)

)
. (2.13)

2.2.2 A comment on planar arrays of straight dislocation lines

We now consider arrays of edge- and mixed, straight dislocation lines . The form of the displace-
ment field for such dislocation lines is somewhat complicated. For general, mixed dislocation
lines the singular “arctan”- form does not satisfy the Euler-Lagrange equation δF/δu = 0, and
it is essential to add an analytic part ua(x) to ensure stability. The displacement field of any
straight dislocation line can always be written as u(x) = us(x) + ua(x), with arctan- form for
the singular part. For screw dislocations in SmA, ua(x) = 0. To understand the geometry of
smectic layers at large distances from planar arrays of parallel, equidistant dislocation lines it is
sufficient to consider only the singular part of the displacement field. This is because the topo-
logical (singular) part solely determines the deformation (pure rotation, or otherwise) of smectic
layers at large distances from a planar dislocation array.

2.2.3 Tilt grain boundary

With us(x) = (d/(2π)) arctan(y/z) for a dislocation with core along the ex, we set up an array
of equidistant (spacing ld along ey) edge dislocations. The displacement field for this array can
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be read off using Eq. (2.13):

u(tl)s (x) =
d

2π
arctan

tan(πy/ld)

tanh(πz/ld)
. (2.14)

The slopes of the layers v(tl)(z → ±∞) = ±(d/(2ld)) ey. At large |z| the layers undergo a pure
rotation on both sides of this tilt grain boundary.

2.2.4 An array of edge dislocations

With us(x) = (d/(2π)) arctan(z/x) for a dislocation with core along ey, we stack edge dis-
location lines along the ez direction with inter-dislocation spacing ld. The singular part of the
displacement field for this array is

u(e−a)
s (x) =

d

2π
arctan

tan(πz/ld)

tanh(πx/ld)
. (2.15)

The limiting form for large |x| given by v(e−a)(x → ±∞) = ∓(d/(2ld)) ez. At large |x| the
layers do not undergo any rotation, but the layer compression attains a nonzero value. This
structure is that of an infinite array of half-layers stacked one on top of the other, which clearly
leads to the compression of the layers even at a large distance from the array. This structure is
therefore untenable.

2.2.5 Arrays of mixed dislocations

We now consider two types of planar arrays of equidistant mixed dislocation lines. Mixed dislo-
cation lines have the characteristics of screw- as well as edge dislocations. We show here that a
certain class of arrays of mixed dislocation lines do not form a grain boundary.

Grain boundary of mixed dislocations

The displacement field of mixed dislocation line tilted in the xz- plane, and passing through
the origin has the singular part us(x) = (d/(2π)) arctan(y/x̃), where x̃ = x cos γ + z sin γ.
The singular part of the displacement field for a planar array of such dislocation lines with inter-
dislocation spacing ld along ey is obtained via the replacement x 7→ x̃ in the expression Eq. (2.10)

38



for a twist grain boundary:

u(mx−gb)
s (x) =

d

2π
arctan

(
tan(πy/ld)

tanh(πx̃/ld)

)
(2.16)

The slopes of the layers v(mx−gb)(x̃ → ±∞) = ±(d/(2ld)) ey. At large |x̃| the layers undergo
a pure rotation on both sides of this tilt grain boundary. For the special cases γ = 0, π and
γ = ±π/2, the mixed grain boundary reduces to twist- and tilt grain boundaries respectively.

An array of mixed dislocations

Figure 2.4: Decomposition of the array of mixed dislocation lines into mutually orthogonal
screw- (s) and edge (e) lines with Burgers vector b = bez. The black lines represent the tilted
dislocation lines, and the grey arrows indicate the separation between edge le ⊥ b, and screw
ls ∥ b lines.

We now consider an array of mixed dislocations lines that are tilted in the plane of the array.
With the replacement y 7→ ỹ = y cos γ − z sin γ, we get

u(mx−a)
s (x) =

d

2π
arctan

(
tan(πỹ/ld)

tanh(πx/ld)

)
(2.17)

for a planar array of mixed dislocation lines with inter-dislocation spacing ld along eỹ. Thus the
components of the displacement gradient

v(mx−a)(x̃→ ±∞) = (0,±
(
d

2ld

)
cos γ,±

(
d

2ld

)
sin γ). (2.18)

In addition to a rotation, the smectic layering attains a nonzero compression at large |x|. Note that
the dislocation array discussed above can be decomposed into two mutually orthogonal arrays
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of pure screw- and edge dislocation lines (Fig. 2.4). The separation between neighbouring edge
lines le = ld/ cos γ, and that between screw lines ls = ld/ sin γ. This array is the superposition of
a twist grain boundary and the edge dislocation array (see previous section), and does not qualify
as a grain boundary.

2.2.6 Geometry of two twist grain boundaries

Figure 2.5: Two grain boundaries situated at x = ±7.5 d. The dislocation complexion consists
of pure screw dislocations lines parallel to the z- axis placed at y = 10nd (ld = 10d), where n
is an integer.

The TGBA structure consists of parallel twist grain boundaries separated by a fixed distance.
A proper description of the dislocation complexion of several twist grain boundaries is therefore
essential for analysing the geometry as well energetics of the TGBA phase. In the discussion
that follows, we restrict ourselves to small-angle grain boundaries separated by a distance much
larger than d, so that linear elasticity and superposition principle are valid. Figure 2.5 shows two
twist grain boundaries comprising pure screw dislocations b = dez. The dislocation sources in

both grain boundaries are consistently defined with the same fiducial choice: n0 = N0 = ez.
Note that (i) as required, this dislocation complexion leads to the correct rotations of smectic
blocks obtained via Eq. (2.13), and (ii) the dislocation sources retain their character, i.e., have
no edge component. In the discussion above, we have seen that arrays of sources with an edge-
component lying in the plane of the array do not constitute grain boundaries. The dislocation
complexion of TGBA phase is described in the later sections. The nature of the dislocation
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complexion that we use is at variance with that of [4]. In calculating the interaction energy
between two grain boundaries, [4] erroneously choose the geometry discussed in the previous
section for arrays of mixed dislocation lines which do not form a grain boundary. The only
consistent way of calculating interactions between grain boundaries within linear theory is to
consider them as being composed of screw dislocation lines in the “reference lattice”. This is
the geometry we use while calculating the Gibbs free energy for the TGBA phase, in the later
sections.

2.3 Energetics of a Single Twist Grain Boundary

The method described for calculating the elastic energy of a single dislocation line can be ex-
tended to evaluate the energy per unit area of a small-angle twist grain boundary. The components
of the Q- field for a twist grain boundary with dislocation lines along the y- axis are

Qx(x, y) = − d

2πλ

∞∑
m=−∞

(
ym
rm

)
K1

(rm
λ

)
,

Qy(x, y) =
d

2πλ

∞∑
m=−∞

(
x

rm

)
K1

(rm
λ

)
, (2.19)

where rm =
√
x2 + y2m, ym = (y −mld), and we have set λ = λ2 to simplify notation.

The elastic energy per unit area of a single twist grain boundary is

E/A =
Dd

2
lim
Ly→∞

1

Ly

∞∑
m=−∞

∫
Cm

Qy(x, ym) d dx

=
Dd

2

d

ld

∫ ∞

x0

∞∑
m=−∞

Qy(x,mld) dx

=
Dd

4π

d

ld

∞∑
m=−∞

K0

(ρm
λ

)
, (2.20)

where Ly is the length of the grain boundary, Cm are cut- planes y = mld, x0 (which we set
equal to ξ, see below) is the lower limit of integration, and ρm =

√
x20 + (mld)2. It should be

noted that in the above expression we have neglected the contribution from the core energy of
dislocations.
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(a) E/A as a function of θ (in degrees), for κ = 0.5
(dashed), 1 (continuous), and 2 (dotted).

(b) E/A as a function of κ, for θ = 5 (dashed), 10
(continuous), and 20 (dotted) degrees.

Figure 2.6: Energy per unit area E/A of twist grain boundaries (in units of Dd/(4π))

To evaluate the sum in Eq. (2.20) above, we use the integral representation (see [39])

K0(z) =
1

2

∫ ∞

0

e−t

t
e−z

2/(4t) dt, (2.21)

and the identity
∞∑

m=−∞

exp[(x−m)2] =
√
π ϑ3(−πx, exp[−π2]), (2.22)

where ϑ3(z, q) represents the type-III theta function with nome q (the identity follows from the
definition of ϑ3(z, q), see [40]). With z = rm/λ the energy per unit area Eq. (2.20) is

E/A =
Dd

4π

d

ld

λ

ld

∫ ∞

0

√
π

t
exp

[
−t− (ξ/λ)2

4t

]
ϑ3(−π(y/ld), exp[−4π2 (λ/ld)

2 t]) dt, (2.23)

where, as in Eq. (2.20), we have used the smectic correlation length ξ as the lower cutoff. Setting
y = 0, κ = λ/ξ, ξ ≃ d, and θ = d/ld gives

E/A =
Dd

4π
κ θ2

∫ ∞

0

√
π

t
exp

[
−t− 1

4κ2t

]
ϑ3(0, exp[−4π2 κ2θ2 t]) dt. (2.24)

The elastic energy per unit area of twist grain boundaries as functions of the grain boundary
angle θ and κ are plotted in (Fig. 2.6).
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For small θ, Eq. (2.24) reduces to

E/A ≈ Dd

4π
θ

∫ ∞

0

1

t
exp

[
−t− 1

4κ2t

](
1

2
+ exp

[
− 1

4κ2θ2t

])
dt

=
Dd

4π
θ
(
K0(1/κ) +

√
2π κ θ exp[−1/(κ θ)]

)
, (2.25)

where we have extracted the asymptotic behaviour of ϑ3(0, exp(−4π2 κ2θ2 t)). (Fig. 2.7) com-
pares Eq. (2.25) to the exact result Eq. (2.24).

Figure 2.7: Approximations to E/A (in units of Dd/(4π)), θ in degrees. Exact result
Eq. (2.24)(continuous), linear approximation from Eq. (2.25) (dotted), the full expression
Eq. (2.25) (dashed). (a) κ = 1, (b) θ ≃ 12◦.

For small angle grain boundaries, the contribution to the energy per unit area from the core
energy is proportional to θ. Including this contribution gives the total energy per unit area of a
twist grain boundary

E/A = Aθ +
Dd

4π
θ
(
K0(1/κ) +

√
2π κ θ exp[−1/(κ θ)]

)
, (2.26)

where we have introduced a phenomenological parameter A to account for the core energy of
dislocation lines arising from destruction of smectic order.
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(a) Eint as a function of x̃0 = x0/ld.

(b) Eint as a function of ỹ0 = y/ld for x̃0 = 1 .

Figure 2.8: Eint (in units of Dd/(4π)) between a twist grain boundary and a screw dislocation.
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2.4 Interaction of a twist grain boundary with a single screw
dislocation

The interaction energy per unit length of a screw single dislocation situated at (x0, y0) with a
twist grain boundary with screw dislocations at x = 0, y = nld is

Eint =
Dd2

4π

(
λ

ld

) ∫ ∞

0

√
π

t
exp

(
−t− x20

4λ2t

)
ϑ3(−π(y0/ld), exp(−4π2 (λ/ld)

2 t)) dt.

(2.27)
We evaluate this integral numerically (Fig. 2.8). We find that the interaction energy is minimum
for a dislocation which is situated mid-way between grain boundary dislocations (at y = mld/2)
for any x0.

This result suggests that the TGBA lattice may correspond to a triangular reference lattice in
the sense discussed in the following section.

2.5 Geometry of the TGBA phase

Figure 2.9: Smectic layering for TGBA structure that corresponds to a square reference lattice .
For clarity, only one layer is shown for each block.
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Figure 2.10: Smectic layering in a “unit reference cell” of triangular TGBA structure.

Let us construct a dislocation complexion by placing screw dislocations with Burgers vectors
d ez at x = mlb, y = n ld, where m,n are integers (Fig. 2.9). We note that in this complexion all
the dislocation lines are parallel to each other. In terms of the displacement fields of single grain
boundaries, the displacement field is

U(x) =
d

2π

∞∑
m=−∞

arctan

(
tan(πy/ld)

tanh(π(x−mlb)/ld)

)
. (2.28)

For the displacement field given above, the layer normals evaluated at x = (p + (1/2)) lb have
components −∇xU(x) = 0, −∇yU(x) = (2p + 1) d/(2ld)) for integer values of p, as expected
from the TGBA structure. This complexion comprises a rectangular reference lattice of paral-
lel screw dislocations with lattice parameters lb, ld. In real space, the smectic layers themselves
rotate from one grain to the next, but the dislocation lines in each grain boundary are screw dis-
locations (since they are oriented along the local layer normal). Therefore, within linear theory,
their interaction energies will be that between parallel screw dislocation lines, even though in
real space, they may be rotated with respect to each other. The smectic layering for a triangular
reference lattice of screw dislocations is shown in Fig. 2.10. In general, any oblique lattice of
parallel screw dislocations qualifies for the TGBA structure.
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2.6 Energetics of the TGBA phase

The presence of molecular chirality introduces an additional term in the free energy, of the form
−h

∫
d3x n · (∇× n). In the presence of a chiral field, the smectic phase may become unstable

to the formation of the twist grain boundary phase. The average chiral energy per unit volume is
given by h d/lbld [1]. The Gibbs free energy per unit volume of the TGBA phase in the presence
of a chiral field h is obtained by subtracting the chiral energy per unit volume from the energy
per unit volume (obtained via Eqs. 2.24 and 2.27) of the lattice of screw dislocation lines defined
in Section 2.5.

Gtgb

V
=
Flattice

V
− hd

lbld
. (2.29)

We numerically minimize the Gibbs free energy Gtgb per unit volume for rectangular as well
as triangular reference lattices. Our results are summarized in Fig. 2.11 and Fig. 2.12.

Figure 2.11 shows the variation of the lattice parameters for a rectangular reference lattice
(lattice parameters lb and ld), and a triangular reference lattice (lattice parameter a), as a function
of hd − E. Here, h is the chiral field, d is the layer spacing (the Burgers vector of a single
dislocation line) and E is the elastic energy cost of creating a single screw dislocation line. The
plot shows that for the rectangular lattice that minimizes the Gibbs free energy, the one with
lb = ld (a square lattice) has the lowest energy.

Figure 2.12 shows the difference in the Gibbs free energy per volume as a function of hd−E.
The difference is positive, indicating that the triangular reference lattice constitutes the minimum
energy TGBA structure, rather than the square reference lattice.

In conclusion, we emphasize the major differences in the treatment of [4] to that discussed in
this chapter: (i) In Section 2.2.5, we have shown that an array or mixed dislocations which are
tilted in the plane of the array, do not form a grain boundary. The dislocation complexion of [4]
involves arrays of this kind. (ii) We use the full interaction potential (Eq. (2.27)) as against the
exponentially decaying potential used by [4].
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Figure 2.11: The lattice parameters (lb (orange) and ld (dashed) for the rectangular lattice, and a
(blue) for the triangular lattice) in the minimum energy reference lattice, as a function of (h d−
E)/D d2, in the TGBA phase. For the rectangular lattice, the Gibbs free energy is minimized
when lb = ld (the square lattice). Distances are measured in units of λ.
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Figure 2.12: The difference of the Gibbs free energy per unit volume(measured in units of
Dd2/λ2) between a square lattice and a triangular lattice, as a function of (h d− E)/Dd2. The
difference is positive, indicating that a square lattice has a greater Gibbs free energy than a trian-
gular lattice, for the same value of the chiral field h.
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Chapter 3

An instability in SmC: The modulated
phase

3.1 Introduction

Covariant elasticity theories of smectics are obtained as “low-temperature” limits (in which the
modulus of the complex order parameter is fixed) of the Ginzburg-Landau-de Gennes theory
[1,14]. In the context of type-II chiral smectogens, theoretical investigations of TGB phases rely
on such covariant formulations of free energy [5, 17]. TGB phases are not feasible in achiral

materials, even if they are type-II in character. We propose a modulated instability which is a
manifestation of covariance in the unusual setting of achiral SmC materials. We show that the
linear, covariant elasticity theory of SmC [18] (introduced in Section 1.3) admits a transition to
a modulated structure with an oblique wavevector (in the xz- plane) as the ground state of the
smectic medium (see Fig. 3.3). Tilt order, the distinctive feature of SmC, introduces new elastic
couplings (that are absent in SmA) in the covariant elasticity theory. Modulated instability sets
in if the elastic constants discussed below satisfy the inequality L2 > BD. Here B is the layer
compression modulus, D is the coefficient of the covariant term which ensures that deviations
from simultaneous, global rigid rotations of the layer normal with the Frank director cost energy,
and L is the coefficient of the term that couples these two distortions in the elastic free energy
(see the discussion following Eq. (3.4)). Tilt order is essential for the instability; symmetry of
SmA prohibits a term analogous to the L- term in the elastic free energy. Previous formulations
of SmC elasticity, coupling molecular tilt to layer displacement (see, e.g., [10]), do not lead to
the instability discussed here. We point out that an earlier observation of a periodic pattern in a
SmC material [7] is consistent with the predicted structure.
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Figure 3.1: Schematic of SmC. The xz- plane is a mirror plane and O is a point of inversion.
n0 ≡ −n0 is the unit Frank director, and the unit layer normal N0 is along the z-axis. The polar
vector c0 = (c0, 0, 0) is the projection of n0 onto the plane of the layers. The equilibrium layer
spacing is d. In SmA, ∠A0 = 0 and the layered structure is uniaxial.

3.2 The elastic free energy: stability analysis

SmC is a biaxial phase (Fig. 3.1) in which the molecular director n0 is tilted with respect to
the layer normal N0 so that n0 · N0 = cosA0 ≡ α. The projection of the Frank director onto
the layers is denoted by c0. The plane spanned by n0 and N0 is a mirror plane with a centre
of inversion, and the structure is invariant under the simultaneous transformation N0 → −N0,
c0 → −c0. In the distorted SmC the director

n = n0 + δn = c+
√
1− c2 N, (3.1)

where c = (c0+δc)(cosϕ, sinϕ, 0), δc is the change in the magnitude of c, and ϕ is the azimuthal
angle. To the lowest order, the distortion in the director field is

δn ≃
(
δc, c0 δϕ, −c0 δc/

√
1− c20

)
, (3.2)

and the distorted layer normal is given by

N ≃ (−∂xu,−∂yu, 1), (3.3)
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where the field u(x) = u(x, y, z) measures the displacement of layers along the z- direction.
The broken symmetry elastic variables are u(x), δc(x) and δϕ(x). The covariant, harmonic

elastic free energy density is [18]

f = (1/2) [B (∂zu)
2 +D (δc+ α ∂xu)

2 − 2L (δc+ α ∂xu)(∂zu) +Ku (∇2u)2

+Kc (∇δc)2 +Kϕ (∇δϕ)2], (3.4)

with the elastic free energy functional given by F [u(x), δc(x), δϕ(x)] =
∫
f d3x. The terms with

coefficients B and Ku account for layer- compression and layer- bend energies respectively. In
principle, the symmetry of SmC allows for anisotropy in the bend modulus. In Eq. (3.4) above,
the anisotropy in the effective bend modulus is taken into account indirectly via the coupling to
the δc- field (see [18] for a detailed discussion). The Frank free energy for distortions in the
director field is represented via terms with coefficients Kc and Kϕ in the one-constant approxi-
mation [10]. The D- and L- terms involve the form (δc + α ∂xu) which measures the deviation
δ(n · N) = n0 · δN + δn · N0 from its equilibrium value α. For simultaneous, rigid rotations
of the Frank director and the layer normal, δ(n · N) = 0. The term with the coefficient L is
allowed by the symmetry of SmC, and couples δ(n · N) to changes in the equilibrium layer
spacing. This term is crucial for the proposed instability, and has no counterpart in the covariant
elasticity theory of SmA [1]. The elastic constants B,D,Ku, Kc and Kϕ have to be positive for
stability. Stability conditions do not restrict the sign of L. Notice that the B-, D-, and L terms
involve only x- and z- gradients of the broken symmetry variables. Furthermore, the δϕ- field is
not coupled to the u- and δc- fields. The term with coefficient Kϕ plays no role in the modulated
instability presented in this chapter (see the discussion following Eq. (3.15)), and will be ignored
in the following analysis.

We now recast the elastic free energy in a form which is suited for the analysis of the proposed
instability. In Fourier space the elastic free energy can be expressed as

F =
1

2

∫
d3q

(2π)3
Φ∗
a(q)G

−1
ab (q) Φb(q), (3.5)

where repeated indices are summed over, Φ1(q) = u(q), Φ2(q) = δc(q), and

G−1
11 (q) = B q2z + α2D q2x − 2αL qxqz +Ku q

4,

G−1
12 (q) = −G−1

21 (q) = i (L qz − αD qx),

G−1
22 (q) = D +Kc q

2. (3.6)

52



The Euler-Lagrange equations are

δF

δϕ∗
a(q)

= G−1
ab (q)ϕb(q) = 0; (3.7)

in particular, setting δF/δc(−q) = 0 gives

δc(q) = i
(L qz − αD qx)

D +Kc q2
u(q). (3.8)

Using Eq. (3.8) to eliminate the δc- field from the free energy (Eq. (3.5)) leads to the effective
free energy as a functional of the u- field alone -

Feff [u] =
1

2

B

ξ5

∫
d3p

(2π)3
g(p)

1 + κ2c p
2
u(p)u(−p), (3.9)

where the dimensionless wavevector p ≡ q ξ, and the anisotropic function g(p) is described
in Eqs. (3.10) and (3.11) below. In order to simplify the discussion of stability conditions we
have introduced the rescaled dimensionless parameters lB = αL/B, dB =

√
α2D/B, κu =

λu/ξ, κc = λc/ξ, and the lengths λu =
√
Ku/B, λc =

√
Kc/D. In terms of these parameters

g(p) = g2(p) + g4(p) + g6(p), (3.10)

where

g2(p) = [1− (lB/dB)
2] p2z,

g4(p) = [κ2u p
2 + κ2c{(pz − dBpx)

2 + 2(dB − lB)pxpz}]p2,

g6(p) = κ2u κ
2
c p

6. (3.11)

Thus any equilibrium configuration has to satisfy the condition δFeff/δu(−p) = 0, which
gives

g(p)

1 + κ2c p
2
u(p) = 0. (3.12)

The denominator of the Euler-Lagrange equation (3.12) is positive. Therefore it is sufficient
to consider the algebraic equation g(p)u(p) = 0 in analysing the stability of the SmC phase.
Notice that for the terms constituting g(p) the inequalities
(i) g2(p) > 0 if l2B < d2B, that is, L2 < BD,
(ii) g4(p) > 0 if l2B < (d2B + (κu/κc)

2)(1 + (κu/κc)
2), and
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Figure 3.2: The components of modulation wave-vector (measured in units of ξ−1), qx (continu-
ous) and qz (dashed), as functions of µ ≡ (l2B/d

2
B − 1), for κc = 3, κu = 1 and dB = 1/3.

(iii) g6(p) > 0 hold for all p.
The above inequalities ensure that that the Euler-Lagrange equation (3.12) is satisfied only for
p = 0, which corresponds to the SmC ground state. Condition (ii) is always satisfied if the
inequality for the elastic coefficients in (i) holds. If condition (i) does not hold, i.e., if L2 > BD,
and if g4(p) > 0, the equation for stability Eq. (3.12) has solutions u(p) with nonzero p. Thus
the range of parameters over which the modulated phase occurs is

d2B < l2B < (d2B + (κu/κc)
2)(1 + (κu/κc)

2). (3.13)

We note that in the elastic free energy density (Eq. (3.4)) we have not taken into consideration
certain symmetry- allowed terms fourth order in q and second order in fields (e.g., (∇2δc)2).
Inclusion of such terms broadens the stability range of the modulated phase.

3.3 The modulated phase

To analyse the modulated phase we use the single- wavevector ansatz

u(x) = a cos(pxx+ pyy + pzz), (3.14)
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where a is the modulation amplitude. The δc- field corresponding to this ansatz is given via
Eq. (3.8). The average free energy of the modulated phase obtained by using the ansatz Eq. (3.14)
and the corresponding δc- field, in the free energy (given via Eq. (3.4), with the Kϕ- term ne-
glected), and integrating over one spatial period is

⟨feff⟩ =
A2B

4

g(p)

1 + κ2c p
2
, (3.15)

with the rescaled modulation amplitude A = a/ξ. Introducing any additional and independent
periodic variation in the decoupled field δϕ in the ansatz for the modulated phase increases the
average free energy over one period, and is therefore ruled out.

Minimization of the averaged effective free energy (Eq. (3.15)) (neglecting the sixth order
term in g(p)) with respect to p yields the square of the wavenumber

p2 ≃ (lB/dB)
2 − 1

κ2u + (lB/dB)2 κ2c
, (3.16)

and the direction of the wavevector via

tan 2θ ≃ 2 lB κ
2
c

κ2u + (lB/dB)2 κ2c
, (3.17)

where tan θ = px/pz. The modulation wavevector lies in the xz- plane. This is expected, since
the L- term couples distortions in the xz- plane alone. Taking Ku and Kc to be of the order of
the Frank elastic constants (∼ 10−7 dyne), the layer compression modulus B ∼ 107 dyne cm−2

[10], and using the fact that the correlation length ξ is of the order of the smectic layer spacing
d ∼ 10−7 cm [1], we get κcdB = α d−1

√
Kc/B ∼ 1 and κu ∼ 1. Numerical minimization the

full, averaged effective free energy (Eq. (3.15)) (retaining the sixth order term in g(p)) with these
parameter values gives us the dependence of the components of the dimensionless wavevector
on µ ≡ (l2B/d

2
B − 1) (see Fig. 3.2). For parameter values mentioned in Fig. 3.2, the stability

range (Eq. (3.13)) of the modulated phase is 0.1 . l2B . 0.25. The amplitude of modulation is
governed by higher order terms in the fields δc- and u- in the free energy, and cannot be obtained
within the linear theory considered here.

The condition L2 > BD suggests that the modulated phase can be expected only in materials
which are very soft (in that D is small). The modulated instability is primarily driven by a
competition between the elastic constants L,D andB. The instability condition does not directly
depend upon the nature (type-I or -II) of SmC. However, for small values of D the penetration
depth λc is likely to be large. It is therefore quite possible that the modulated phase is favoured
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(a) Layer structure. (b) Director field n.

Figure 3.3: Schematic (exaggerated) of the modulated phase. The bold segment in (b) shows
director orientation in undistorted SmC. In the experiment discussed (see the text), the polarizer
was placed along this direction, and the analyser orthogonal to it. Although there is no trans-
lational order within the layers, line segments are placed periodically to emphasize the stripe
structure.

in type-II materials.

3.4 A previous experimental observation

In what follows, we discuss a previous experiment in which stripe patterns consistent with the
proposed structure were observed. We first examine properties of the material used in this exper-
iment. Some dopants are known to enhance the type-II character of mixtures of mesogens. For
example, 2-cyano-4-heptylphenyl-4’-pentyl-4-biphenyl carboxylate (7CN5) exhibits the nematic
phase with SmC-like (also called skew cybotactic) short-range order over a wide range of temper-
atures. Adding 7CN5 to a chiral compound exhibiting the SmC∗ phase induces the TGBA phase,
and at a higher concentration, a second, three-dimensionally modulated TGB phase [35]. Elec-
troclinic measurements clearly show a rapid decrease in the elastic constantD with concentration
of 7CN5 [41]. Indeed, freeze- fracture electron microscopic studies on the three-dimensionally
modulated phase demonstrate that the mixture has an extreme type-II character, with Ginzburg
parameter ∼ 100, two orders of magnitude larger than that needed for the type-II label [37].

Interestingly, experimental studies have also been made on mixtures of an achiral compound
exhibiting the SmC phase with 7CN5 [7]. When the mixture is taken in a cell with walls treated
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Figure 3.4: The stripe pattern described in [7] and discussed in the text. The orientation of n
differs by ∼ 3◦ between the adjacent domains. The width of the domains is ∼ 40µm. The
polarizer was aligned so as to cross out one of the domains (Courtesy: [8]).

for planar alignment of the Frank director n, the transmitted intensity is crossed out in the nematic
phase between appropriately placed crossed polarizers. As the sample is slowly cooled across the
two-phase region to the SmC phase, it develops a stripe pattern oriented along n (see Fig. 3.4).
The cell has to be reoriented by ±1.5◦ to get a dark field of view in adjacent stripes, which
have a width of about 40µm [7, 8]. This observation can be understood if the director pattern
of the mixture, which is expected to have a very low value of D, is as shown schematically in
Fig. 3.3(b). The wavelength of the observed modulation is ∼ 80µm, and the tilt angle amplitude
is ∼ 1.5◦. This would imply that the deviations from a planar layer structure are quite small.

3.5 Some other well known instabilities

Here we discuss some other well known instabilities in layered systems. We compare the mech-
anism and the structures formed in these cases, to the modulated phase we propose.

3.5.1 The Helfrich instability

The Helfrich instability is well known in smectics. If a uniform stretching deformation is applied
to a sample of SmA, of thickness h, undulations are produced with a characteristic wavenumber
that depends on the sample thickness.
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The rotationally invariant nonlinear free energy density for SmA is [42] F =
∫
d3xf where

f =
1

2
ρ0B

′
[
(∇zu)−

1

2
(∇xu)

2 − 1

2
(∇yu)

2)

]
+K1 (∇2u)2 (3.18)

To see that this free energy is indeed rotationally invariant, consider a SmA sample with the
layer normal along z- direction. Under a uniform rotation around the y-axis, the wavevector q0

describing the smectic density modulation goes to q0 = q0(cos θ ez − sin θ ex). Then (see [1]),

q0 u = q0 [(1− cos θ) z − sin θ x]

∇∥u = ∇zu = 1− cos θ

∇⊥u = ∇xu = − sin θ. (3.19)

Therefore, the combination
[
(∇zu)− 1

2
(∇xu)

2 − 1
2
(∇yu)

2)
]
= 1−cos θ−

[
(1− cos θ)2 + sin2 θ

]
=

0 is independent of θ.
We assume that the sample is finite, with thickness h in the z- direction and that the xy-

plane lies in the middle of the sample (h = 0). Putting u = γz+ δu(x, z), where δu is small and
satisfies the boundary conditions δu = 0 for z = ±h, we get,

F =
1

2

∫ [
ρ0B

′ (∇zδu)
2 − ρ0B

′γ(∇xδu)
2 +K1(∇2

xδu)
]
dxdz. (3.20)

Using the ansatz δu = a× cos kzz cos kxx, where a is the amplitude of modulation and kz = nπ
h

for n = 1, 2, 3..., we obtain the stability condition

ρ0B
′(k2z − γk2x) +K1 k

4
x > 0 (3.21)

The critical value of γ for which the above stability condition is violated, and the corresponding
value of kx is given by

γcr =

(
2π

h

)(
K1

ρ0B′

) 1
2

, kcr =
(π
h

)( K1

ρ0B′

) 1
2

(3.22)

3.5.2 Striped structures in SmC and SmC∗ materials

Johnson and Saupe [43] found that a material undergoing SmA-SmC transition exhibited a
striped pattern upon step-by-step cooling across the transition temperature, with the stripes par-
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allel to the c-vector. Upon further cooling, the material developed a rectangular grid pattern. The
Johnson-Saupe instability has two orthogonal wavevectors in the plane of the layers and occurs
in cells treated such that the smectic layering is parallel to the cell walls. The instability occurs as
a result of the reduction in the smectic layer thickness as the director tilt increases. The spacers
holding the sample contract less than the smectic layers themselves, which undulate to fill the gap
created by the contraction of the layers. This is a metastable undulation instability which falls in
the class of other well known field-induced instabilities such as the Helfrich instability described
above. The modulated phase we propose is an equilibrium structure and has a wave-vector in the
N0-c0 plane.

Stripe structures have been observed in SmA∗ materials in samples treated for “bookshelf”
alignment, when cooled to the SmC∗ phase. The samples taken were thin (∼ 10µm), so that
the SmC∗ helix is suppressed. These stripe structures have been attributed to chiral (and hence
polarization terms) in the free energy. Strangi et al. [44] have reported the observation of a
“horizontal chevron structure”, whose origin has been traced to the surface anisotropy of the
cell boundaries. The polarization vector prefers to align parallel to the bounding surface, and
the formation of domains with parallel and anti-parallel alignment of the polarization vector
minimizes the energy. Tang et al. [45] have used a Landau-de Gennes free energy involving a
chiral term to analyse stripes formed in a similar system:

F =
a

2
|c|2 + b

4
|c|4 + λ |c|2 ez · (∇× c) +

Ks

2
(∇ · c)2 + KB

2
(∇× c)2 (3.23)

where c is the c-vector in the SmC∗ phase and the SmA∗-SmC∗ transition occurs when the
coefficient a goes negative. Chirality is taken into account through the term λ |c|2 ez · (∇× c) in
the free energy. The modulated phase we propose does not require the material to be chiral, and
is not a surface effect.

3.5.3 Ripple phases in lipid bilayers

Modulated equilibrium structures (ripple phases) are observed in lamellar lyotropic systems on
lowering the temperature across the chain- melting transition [46]. Chen, Lubensky and MacK-
intosh [47, 48] have proposed a theoretical model, which is based upon a free energy exhibiting
a Lifshitz point. In this model, the instability is driven by an elastic coupling between membrane
curvature and molecular tilt. They work with the elastic variables m, which is the projection
of the molecules on to the plane of the layers, and h(x, y), which is the height of the distorted
membrane relative to some Euclidean plane with coordinates (x, y) (so that ∇i∇jh(x, y) is the
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curvature tensor). The model free energy is composed of two parts: one describing the distor-
tions of m, and the other describing the curvature of the layers. The second part involves a term
that couples the layer curvature to the gradients in molecular tilt.

The distortions in m are described by the elastic free energy density

fm =
1

2
C∥ (∇ ·m)2 +

1

2
C⊥ (∇×m)2 +

1

2
D (∇2m)2 +

1

2
tm2 + um4, (3.24)

and the free energy density for the curvature of the layers is

fc =
1

2
κ (∇2h)2 − γ (∇2h)2(∇ ·m). (3.25)

In equilibrium, h(x, y) is given by the Euler-Lagrange equation

(∇2h)2 =
γ

κ
(∇ ·m). (3.26)

Using this in Eq. (3.25), we obtain the total free energy density in terms of the m- field alone:

fm =
1

2
C ′

∥ (∇ ·m)2 +
1

2
C⊥ (∇×m)2 +

1

2
D (∇2m)2 +

1

2
tm2 + um4, (3.27)

where C ′
∥ = C∥− (γ2/κ). If C ′

∥ > 0, the equilibrium phases are spatially uniform. If C ′
∥ < 0, the

the equilibrium phases are spatially modulated with a characteristic wavenumber q0 =
√
C ′

∥/2D.
Chen, Lubensky and MacKintosh work with a single wavenumber ansatz and predict mod-

ulated phases with four different symmetries. They call this the P (1)
β′ , P (2)

β′ , P (3)
β′ and the square

lattice vortex phase. The first three are modulated in one direction, whereas the square lattice
vortex phase has two-dimensional modulation and exhibits a vortex-antivortex square lattice in
the m- field.

Asymmetric ripple phases have been studied and a theoretical model has been proposed [49].
This model includes nonlinear terms in addition to the ones used above (see Eqs. (3.24) and
(3.25)) to describe the observed asymmetry in the bilayer thickness of the two arms of the ripple.
The additional nonlinear terms introduced are

fnl =
β

4
(∇ ·m)4 +

ξ

2
[(m · ∇)m)]2 +

ζ

2
[(m×∇)m)]2 , (3.28)

where the first term is required for stability, and the second and third terms describe gradients of
m along m and perpendicular to m respectively. The last two terms account for the symmetry-
allowed anisotropy in the elastic field m. In this model, the square lattice vortex phase is not an
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stable equilibrium phase.
The modulated phase we predict differs from the ripple phase in both the mechanism and the

resulting structure.
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Chapter 4

SmC dislocation energetics and the
structure of the TGBC phase

4.1 Introduction

In this chapter, we derive the equations for the elastic free energy of an arbitrary dislocation
density in a SmC material. Our discussion follows that of [18]. The crucial difference in our
calculations is the inclusion of the L term in the free energy, which couples layer compression
with changes in the director tilt angle. We find that the inclusion of this term in the free energy
gives rise to qualitatively new results. The show that the lowest energy dislocation line is a mixed

dislocation line. This is markedly different from that for SmA, where the screw dislocation line
is the lowest energy dislocation line. We calculate the interaction energies between dislocation
lines and between low angle grain boundaries (modelled as arrays of dislocation lines).We find
that the lowest energy grain boundary is made of the lowest energy dislocation lines, which are
mixed dislocation lines.

Though the TGBC structure originally predicted by Renn and Lubensky [17] involved screw
dislocations, subsequent X-ray studies [27] have indicated the presence of a TGBC phase made
up of mixed dislocation lines (the Bordeaux TGBC structure). Motivated by our result that
the lowest energy dislocation line in the SmC phase is a mixed dislocation line, we study the
energetics of the TGBC phase in order to see if the presence of the L term stabilizes the Bordeaux
structure. Our analysis is close to the lower critical field, where the SmC phase becomes unstable
to the TGBC phase. Here, the angle of rotation between the adjacent grain boundaries is small
and we can treat the grain boundaries as arrays of dislocation lines. The analysis we do is based
on a linear theory [18] and the dislocation complexion is similar to that discussed in Chapter
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2. We study the structure of the TGBC phase close to the lower critical field and find that even
though at the lower critical field, the minimum energy dislocation line is a mixed dislocation
line, minimizing the Gibbs free energy (including interactions) suggests that a TGBC structure
made of screw dislocation lines is preferred. Further work on this is in progress.

4.2 Dislocations in Smectic-C

As shown in Chapter 3, the elastic free energy for SmC can be written in terms of the layer
displacement field u(x), and the change in the magnitude of the c-vector, δc(x). In the presence
of dislocations, the the gradient of the u- field can be written as the sum of an analytic and a
singular part as

∇u(x) = ∇u(a)(x) + v(x), (4.1)

with
∇× v(x) = b(x), (4.2)

where
b(x) = ez

∑
µ

kµ d

∫
ds δ(x−Rµ(s)) (4.3)

is the dislocation line density and d is the layer spacing. Here Rµ(s) is the position of disloca-
tion µ with strength kµ as a function of arclength s. v(x) can always be chosen to have zero
divergence (see section 2.2.2). Therefore, in the Fourier domain, we can write

v(q) = i
q× b(q)

q2
. (4.4)

As discussed in Chapter 3, the elastic free energy for distortions from the SmC ground state is
F =

∫
d3x f , where f is given by

f =
B

2
(∂zu)

2+
D

2
(δc+α ∂xu)

2−L(δc+α ∂xu)(∂zu)+
Ku

2
(∇2u)2+

Kc

2
(∇δc)2+ Kϕ

2
(∇ϕ)2.

(4.5)
This expression for the free energy is quadratic in the the gradients of the u- field and the δc-
field. In the presence of dislocations, the gradients of the u- field can be expressed solely in
terms of the dislocation source b(x) using Eqs. (4.1) and (4.2), and we can write the elastic free
energy uniquely in terms of the dislocation source. To recast the above equation in terms of the
dislocation density b(x), it is convenient to work in the Fourier domain. We proceed as follows.
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Putting Eq. (4.1) in Eq. (4.5), and going to the Fourier domain, we can write

F =
1

2

∫
d3q

(2π)3
[
Φ†

aG
−1
ab Φb + λa

† Φa + Φa
† λa +Bvz

2 + α2Dvx
2 − 2αLvxvz

]
, (4.6)

where Φ1 = u(a)(q) and Φ2 = δc(q),

G−1(q) =

(
Bq2z + α2Dq2x − 2αLqxqz +Kuq

4 i(Lqz − αDqx)

−i(Lqz − αDqx) D +Kcq
2

)
, (4.7)

and

λ(q) =

(
i [αL qxvz(q) + αL qzvx(q)− α2D qxvx(q)−B qzvz(q)]

αD vx(q)− Lvz(q)

)
. (4.8)

Equation (4.6) gives Euler Lagrange equation for the fields u(q) and δc(q) as

G−1
ab(q)Φb = λa(q), (4.9)

whose solution is Φa = Gab(q)λb(q). This gives us an expression for the analytic fields u(q)
and δc(q) in terms of v(q), the singular part of the gradient of the u- field (in Fourier space).
Substituting this expression for Φ in Eq. (4.6) for the free energy, we obtain the free energy in
the presence of dislocations:

F =
1

2

∫
d3q

(2π)3
[
−λ†a(q)Gab(q)λb(q) + B |vz(q)|2

+α2D |vx(q)|2 − αL (vx(q)vz(−q) + vx(−q)vz(q))
]
.

For simplicity, we set α2D = B in the following analysis. Then, using Eq. (4.4), we can express
the free energy in terms of the dislocation source b(q) as

F =
1

2

∫
d3q

(2π)3
bi(q)Uij(q)b

j(−q), (4.10)

where

Uij(q) =
Ũij(q)

q2∆(q)
, (4.11)

∆(q) = (α−2B +Kcq
2)(B(q2x + q2z) +Kuq

4 − 2αLqxqz)− (Lqz − α−1Bqx)
2, (4.12)
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and Ũij(q) are given by

Ũxx(q) = BKcKuq
4q2y +BLKcq

2
xq

2
y + α−2BLKuq

2q2y,

Ũyy(q) = BKcKuq
4(q2x + q2z) + BLKc(q

4
x + q4z) + α−2BLKuq

2q2x

+ 2BLKcq
2
xq

2
z + 2αLKcKuq

4qxqz,

Ũzz(q) = BKcKuq
4q2y +BLKcq

2
zq

2
y,

Ũxy(q) = −BKcKuq
4qxqy −BLKcq

3
xqy − α−2BLKuq

2qxqy

−BLKcqxqyq
2
z − αLKcKuq

4qyqz,

Ũyz(q) = −BLKcq
2
xqyqz − αLKcKuq

4qxqy −BLKcqyq
3
z

−BKcKuq
4qyqz,

Ũzx(q) = BLKcqxq
2
yqz + αLKcKuq

4q2y, (4.13)

where BL = (B2 − α2L2).

4.2.1 Energy per unit length of a single dislocation line

A single straight dislocation line with its core along a unit vector e, with a Burgers vector of
magnitude d is described by

b(x) = e d δ(2)e (x⊥), (4.14)

where δ(2)e (x⊥) is the two-dimensional Dirac delta function in a plane perpendicular to e. In
Fourier space, we can write

b(q) = e 2πd δ(q · e) = e dL δq·e,0. (4.15)

The energy per unit length of this dislocation line is then (from Eq. (4.10))

F

L
=

1

2
d2
∫ ξ−1

0

d2qe
(2π)2

U(e), (4.16)

where qe = q− (q · e)e lies in the plane perpendicular to e and

U(e) = ei Uij(qe) e
j. (4.17)

In Eq. (4.16), the upper limit of the integral, ξ−1, is the inverse of the smectic correlation length.
The upper limit is essential in this expression because elasticity theory for the SmC phase is not
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valid at extremely short distances (∼ ξ) where the smectic order breaks down. The diameter of
the dislocation core is also of the order of ξ.

Dislocation line in the xz- plane

z
z1

x1

x

(a) The coordinate system (b) Schematic of SmC, with orientation of
the the mixed dislocation line shown in
red.

Figure 4.1: The coordinate system. The layer normal N0 points along ez. The x1 = (x1, y1, z1)
coordinate system is rotated with respect to the x = (x, y, z) coordinate system by an angle γ
about the y− axis. The dislocation line lies in the xz− plane and makes an angle γ with ez, i.e.,
it points along ez1

For a dislocation line in the xz- plane, e = sin γ ex+cos γ ez as shown in the Fig. 4.1, where
ez is along the layer normal. For this dislocation, it is convenient to go to the x1 = (x1, y1, z1)

coordinate system, which is related to the x = (x, y, z) coordinate system through a rotation by
an angle γ around the y- axis. x1

y1

z1

 =

 cos γ 0 sin γ

0 1 0

− sin γ 0 cos γ


 x

y

z

 , (4.18)

Expressed in the x1 coordinate system, b(x1) = ez1 d δ(x1)δ(y1) (see Fig. 4.1) and

b(q1) = ez1 d

∫
d3x1 δ(x1)δ(y1)e

iq1·x1 (4.19)

= 2πd ez1 δ(q3),
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where the rotated wave-vector q1 = (q1, q2, q3) is given by q1

q2

q3

 =

 cos γ 0 sin γ

0 1 0

− sin γ 0 cos γ


 qx

qy

qz

 . (4.20)

Then, qe = (q1, q2) and Eq. (4.16) can be written as
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Figure 4.2: The elastic energy per unit length F/L (measured in units of Bd2/4π2) of a single
dislocation line in the xz- plane, versus the angle γ it makes with the layer normal. The plots
are shown for δ = −0.75 (black), δ = −0.25 (blue) and δ = 0 (red). For these plots we have
chosen β = 3 and ξ−1λ̃c = 10. The minimum energy dislocation line for nonzero δ is a mixed
dislocation line.

F

L
=

1

2
d2
∫ ξ−1

0

d2qe
(2π)2

[
cos2 γ Ũzz(qe) + 2 cos γ sin γ Ũxz(qe) + sin2 γ Ũxx(qe)

q2∆(qe)

]
. (4.21)

With the substitutions λ2u = Ku/B, λ2c = Kc/B, λ̃2c = α2λ2c , δ = αL/B and qe = (q1, q2) =

(q cos θ, q sin θ), Eq. (4.21) can be written as

F

L
=

1

2

Bb2

4π2

∫ ξ−1

0

dq

∫ 2π

0

dθ

[
λ̃2cq

2 (1 + 2δ sin γ cos γ) + (1− δ2) sin2 γ
]
sin2 θ

λ2uq
2(1 + λ̃2cq

2) +
[
λ̃2cq

2 (1 + 2δ sin γ cos γ) + (1− δ2) sin2 γ
]
cos2 θ

.

(4.22)
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In terms of p = λ̃c q, using β = λ̃c/λu, and choosing ξ−1λ̃c = 10 we have,

F

L
=

1

2

Bb2

4π2

∫ 10

0

dp

∫ 2π

0

dθ

[
p2 (1 + 2δ sin γ cos γ) + (1− δ2) sin2 γ

]
sin2 θ

β−2p2(1 + p2) +
[
p2 (1 + 2δ sin γ cos γ) + (1− δ2) sin2 γ

]
cos2 θ

.

(4.23)
The above integral was numerically evaluated. From Fig. 4.2, we can immediately see that

the minimum energy dislocation line is not a screw dislocation line (as in SmA), but a mixed
dislocation line. Previous calculations [18] neglecting the L- term in the free energy density
give the result that the minimum energy dislocation line in the SmC phase is a screw dislocation
line. One can understand our result from the observation that the L- term couples gradients of u
along the x- and z- directions, which implies that the system may favour a deformation involving
both ∇zu and ∇xu to one that involves ∇xu or ∇zu alone . Indeed, tracing back each term in
Eq. (4.23) to the free energy in Eq. (4.5), we find that it is the term −L(∇zu)(∇xu) which gives
rise to this result.

Dislocation line in the yz- plane
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Figure 4.3: The elastic energy per unit length F/L (measured in units of Bd2/4π2) of a single
dislocation line in the yz- plane, versus the angle γ it makes with the layer normal. The plots are
shown for δ = −0.75 (black), δ = −0.25 (blue) and δ = 0 (red). For these plots we have chosen
β = 3 and ξ−1λ̃c = 10. The minimum energy dislocation line is a screw dislocation line.

For a dislocation line in the yz- plane, e lies in the yz- plane, and makes an angle γ withez.
The x1 = (x1, y1, z1) coordinate system is related to the x = (x, y, z) coordinate system through
a rotation by an angle γ around the x- axis. The rest of the calculation is similar to that for the
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dislocation line in the xz- plane. Figure 4.3 shows the results. The screw dislocation line has a
lower energy as compared to a mixed dislocation line in the yz- plane.

4.2.2 Interaction Potential Energy

Dislocation lines in the xz- plane

Consider two parallel dislocation lines, tilted by an angle γ in the xz- plane (see Fig. 4.1). One
dislocation line passes through the origin of the (x1, y1, z1) coordinate system and extends along
z1, and the other passes through the point (0, ȳ) and is parallel to the first one.

These dislocation lines can be described by b1(x1) = ez1 d δ(x1)δ(y1) and
b2(x1) = ez1 d δ(x1)δ(y1 − ȳ) respectively. In Fourier space,

b1(q1) = ez1 d

∫
d3x1δ(x1)δ(y1)e

iq1·x1 (4.24)

= 2πd ez1 δ(q3),

and

b2(q1) = ez1 d

∫
d3x1δ(x1)δ(y1 − ȳ)eiq1·x1 (4.25)

= 2πd ez1 δ(q3)e
iq2ȳ.

The interaction potential energy between these two parallel dislocation lines is given by Eq. (4.10)

1 2 3 4 5
y1
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(a) δ = 0.75
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1.0

UintHy1L

(b) δ = 0

Figure 4.4: The interaction potential energy per unit length Uint(y1) (measured in units of
Bd2/4π2) between parallel dislocation lines in the xz- plane, versus the separation (measured
in units of λ̃c) between them along the y1-axiz. The curves are plotted with β = 3, for γ = 0
(green), γ = π/5 (blue) and γ = π/2 (purple).

69



1 2 3 4 5
x1

1

2

3

4

5

UintHx1L
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(b) δ = 0

Figure 4.5: The interaction potential energy per unit length Uint(x1) (measured in units of
Bd2/4π2) between two parallel dislocation lines in the xz- plane, versus the separation (mea-
sured in units of λ̃c) between them along the x1-axis. The curves are plotted for γ = 0 (green),
γ = π/5 (blue) and γ = π/2 (purple). Here, β = 3.

and can be written as
Uint(ȳ) = d2

∫ ∞

−∞

d2qe
(2π)2

U(e)ei q2ȳ, (4.26)

where qe = (q1, q2). Using λ2u = Ku/B, λ2c = Kc/B, λ̃2c = α2λ2c , δ = αL/B (as defined
before), the rescaled dimensionless wavenumber p = λ̃cq and β = λ̃c/λu, we get

Uint(Ȳ ) =
Bd2

4π2

∫ ∞

−∞
dp1dp2 U(p1, p2) ei p2Ȳ , (4.27)

where Ȳ = ȳ/λ̃c, U(p1, p2) = N (p1, p2)/D(p1, p2) and the polynomials N (p1, p2) and D(p1, p2)

are given by

N (p1, p2) = (1 + 2δ sin γ cos γ)p42 + ((1− δ2) sin2 γ + p21(1 + 2δ sin γ cos γ))p22, (4.28)

D(p1, p2) = p62 +
(
1 + 3p21

)
p42 +

(
3p41 + p21

(
2 + β2 (1 + 2δ sin γ cos γ)

))
p22

+ p61 +
(
1 + β2 (1 + 2δ sin γ cos γ)

)
p41 +

((
1− δ2

)
β2 sin2 γ

)
p21. (4.29)

A plot of numerically evaluated Uint(Ȳ ) vs. Ȳ is shown in Fig. 4.4. We can see that the the
interaction along the y- direction is not purely repulsive (as in SmA). This interaction potential
has a minimum at y ∼ λ̃c, is attractive over large distances (y >> λ̃c) and repulsive over short
distances (y << λ̃c).
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Similarly, the interaction potential energy between two parallel dislocations in the xz- plane,
separated by a distance x̄1 along the x1- axis (see Fig. 4.1) can be written as

1 2 3 4 5 6
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(a) r = 1
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(b) r = 3
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(c) r = 8

Figure 4.6: The interaction potential energy per unit length Uint(θ) (measured in units of
Bd2/4π2) between two parallel dislocation lines in the xz- plane for separations r (measured
in units of λ̃c) between them. The curves have been plotted for γ = −π/10 (red), γ = 0 (green)
and γ = π/10 (blue). Here, β = 3 and δ = 9/10.

Uint(X̄) =
Bd2

4π2

∫ ∞

−∞
dp1dp2 U(p1, p2) ei p1X̄ , (4.30)

where X̄ = x̄1/λ̃c. A plot of numerically evaluated Uint(X̄) vs. X is shown in Fig. 4.5. The
interaction potential between dislocation lines separated along the x1- direction is repulsive, as
in a SmA material. The anisotropy in the interaction potentials is shown in Fig. 4.6, which is a
plot of the interaction potential energy between two parallel dislocation lines along z1- direction
(see Fig. 4.1), as a function of the polar angle θ in the x1y1- plane. Here, the distance r between
the dislocation lines is kept constant. The difference in the interaction energies along the x1- and
y1- directions is clearly visible. We can see from the graphs that for small separations mixed
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dislocation lines have a lower energy of interaction along θ = π/2 and θ = 3π/2 (Fig. 4.6(a)),
but as for large separations, the screw dislocation has the lowest energy of interaction for all θ
(Fig. 4.6(c)).

Dislocation lines in the yz- plane
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Figure 4.7: The interaction potential energy per unit length Uint (measured in units of Bd2/4π2)
between two parallel dislocation lines in the yz- plane, versus the separation (measured in units
of λ̃c) between them, along the (a) x1-axis, and, (b) y1- axis. The curves are plotted for γ = 0
(green), γ = π/5 (blue) and γ = π/2 (purple). Here, β = 3 and δ = 0.75.

Consider two parallel dislocation lines, tilted by an angle γ in the yz- plane. The (x1, y1, z1)

coordinate system is rotated through an angle γ about ex. The calculation is similar to that
described above for dislocation lines in the xz- plane. The results are shown in Fig. 4.7. Screw
dislocation lines have the lowest interaction energy.

4.2.3 Energy per unit area of an array of dislocation lines

Motivated by the results for the elastic energy per unit length and the interaction energy of dislo-
cation lines tilted in the xz- plane, we explore the energetics of a grain boundary made of such
dislocation lines. A grain boundary can be modelled as an infinite array of parallel dislocation
lines. The energy of an infinite array of dislocation lines, with the plane of the grain boundary
being the y1z1- plane and the dislocation lines themselves oriented along z1, can be calculated
using Eq. (4.10) if

b1(x) = ez1 d δ(x1)
∞∑

n=−∞

δ(y1 − nld), (4.31)
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and

b2(x) = ez1 d δ(x1)
∞∑

m=−∞

δ(y1 −mld), (4.32)

where ld is the spacing between the dislocation lines and e is the unit vector along the direction of
the core of the dislocation line. For a finite array with N dislocations lines, the above summations
will be from 1 to N. For an array, the total energy can be written of the sum of (i) elastic energy
of each dislocation line in the array, and, (ii) the energy of interaction between each pair of
dislocation line.
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Figure 4.8: The energy per unit area of a grain boundary in the yz1- plane, F (1)
gb /A (measured

in units of Bd2/4π2λ̃c), as a function of the separation ld (measured in units of λ̃c) between the
dislocation lines that make up the grain boundary. Each dislocation line is oriented along ez1 .
The curves are plotted for γ = −π/2 (blue), γ = 0 (green) and γ = 6π/25 = angle of the
minimum energy dislocation line (black), for N = 50, δ = −3/4 and β = 3, with ξ−1λ̃c = 10.
Figure (b) clearly shows that the minimum energy grain boundary is made of the minimum energy
dislocation lines.

The energy per unit area for a finite array is given by

F
(1)
gb

A
= Fint +

N

(N − 1)Ldλ̃c

F
(1)
el

L
, (4.33)

where

Fint =
Bd2

4π2 λ̃c

N∑
n>m

N∑
m=1

∫∞
−∞ dp1dp2 U(p1, p2)ei p2(n−m)Ld

(N − 1)Ld
(4.34)

is the interaction potential energy per unit area for this array and F (1)
el /L is the self energy per

73



unit length of a single dislocation line given in Eq. (4.23). Here, p = λ̃cq and Ld = ld/λ̃c.
The curves in Fig. 4.8 are monotonically decreasing. This is expected, since the ground state

(lowest energy state) of the system is the SmC phase without any dislocations. As ld increases,
the dislocation lines in the array become more and more sparse, and the number of dislocation
line in a given area decreases, ie., the system approaches the dislocation-free SmC configuration.
It is found that F (1)

gb /A is the lowest for a grain boundary made of the lowest energy dislocation

line.

4.3 The TGBC phase

The Gibbs free energy per unit volume (see Section 2.6) in the TGBC phase, in the presence of
a chiral field h is obtained by subtracting the chiral energy per unit volume from the energy per
unit volume of a lattice of dislocation lines.

Gtgb

V
=
Flattice

V
− hd

lbld
. (4.35)

4.3.1 Energy per unit volume of a lattice of dislocation lines

The energy per unit volume for an infinite rectangular lattice (lattice vectors along the x1- and
y1- directions) of parallel dislocation lines (each dislocation line oriented along z1-)is given by
Eq. (4.10), with the dislocation source given by

b(x) = e d
∞∑

k=−∞

δ(x1 − klb)
∞∑

n=−∞

δ(y1 − nld), (4.36)

where ld is the spacing between the dislocation lines in the y1- direction and lb is the spacing
between the dislocation lines in the x1- direction. e is the unit vector in the direction of the core
of the dislocation lines.

For a finite K ×N lattice, the total energy per unit volume is given by

Flattice

V
=

1

2

Bd2

4π2 λ̃2c

K∑
k=1

K∑
l=1

N∑
n=1

N∑
m=1

∫∞
−∞ dp1dp2 U(p1, p2) ei p1 (k−l)Lbei p2 (n−m)Ld

(K − 1)(N − 1)LbLd
, (4.37)

where Lb = lb/λ̃c and Ld = ld/λ̃c. The summation can be simplified so that the above integral
can be expressed in terms of four different integrals. The total energy per unit volume can then
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be written as

Flattice

V
=

Bd2

(K − 1) (N − 1) 4π2 LbLd

[
2

K∑
k>l

K∑
l=1

N∑
n>m

N∑
m=1

∫ ∞

−∞
dp1dp2 U(p1, p2)eip1(k−l)Lbeip2(n−m)Ld

+N
K∑
k>l

K∑
l=1

∫ ∞

−∞
dp1dp2 U(p1, p2)eip1(k−l)Lb

+K
N∑

n>m

N∑
m=1

∫ ∞

−∞
dp1dp2 U(p1, p2)eip2(n−m)Ld

+NK

∫ ∞

−∞
dp1dp2 U(p1, p2)

]
(4.38)

The first integral relates to the interaction energies of dislocation lines which have components
of separation along both the x1- and y1- directions. The second integral relates to the interaction
energies of the dislocation lines in an array along the x1- direction. There are N such arrays. The
third integral relates to the interaction energies of the dislocation lines in an array along the y1-
direction. There are K such arrays. The last integral in the above equation relates to the elastic
energies of the individual dislocation lines. There are NK dislocation lines in the lattice.

4.3.2 The lower critical field hc1

The lower critical field hc1 is defined as that value of the chiral field h, where it becomes ener-
getically favourable to create a single dislocation in the uniform smectic phase. At the transition
from the smectic phase to the TGB phase, the dislocation density is low, and therefore the dis-
tances between the individual dislocation lines (lb and ld) are large. Then we can ignore the
dislocation interaction terms in the free energy Eq. (4.38). Then, the Gibbs free energy of the
system may be written as [1]

Gtgb

V
=

1

lb ld

(
f
(1)
el − h d

)
, (4.39)

where f (1)
el = F

(1)
el /L is the elastic free energy per unit length of a single dislocation line (see

Eq. (4.23)). The smectic phase becomes unstable to the TGB phase whenGtgb/V becomes zero.
This gives us an expression for the lower critical field hc1:

hc1 =
f
(1)
el

d
(4.40)
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Since the minimum energy dislocation line in the SmC phase is a mixed dislocation line, in the
above expression, f (1)

el is the elastic free energy per unit length of a mixed dislocation line, unlike
the equivalent expression for SmA (see [1]).

4.3.3 The structure of the TGBC phase

We evaluate Gtgb/V (including the interaction terms in Eq. (4.38)) for a rectangular reference

lattice. A plot of Gtgb/V as a function of lb is shown in Fig. 4.9. We find that for large enough
lattice sizes, a lattice made up of screw dislocations has the lowest energy. The lowest energy
rectangular lattice is not a square lattice (lb = ld). This is in contrast with the result obtained
for TGBA. The method developed in Section 4.3.1 is general, and easily extended to arbitrary
oblique lattices. Detailed numerical exploration of the energetics of arbitrary oblique lattices is
in progress.

Figure 4.10 shows plots of lb and ld which minimize the Gibbs free energy for a TGBC

structure corresponding to a rectangular reference lattice made of screw dislocations. Here, E
is the elastic energy for a single screw dislocation. We can clearly see that in the TGBC phase,
lb ̸= ld. This is expected, since the interaction potential between dislocation lines in SmC (see
Fig. 4.6) is anisotropic.
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Figure 4.9: The Gibbs free energy per unit volumeGtgb/V (measured in units ofBd2/4π2 λ̃2c) for
a 100× 100 lattice of dislocation lines, as a function of lb, for ld = 1.8. Distances are measured
in units of λ̃c. Gtgb/V for the lattice made of screw dislocation lines (γ = 0) is shown in purple,
and that for the lattice made of the minimum energy dislocation lines (γ = 6π/25) is shown in
blue. The plots are for δ = −0.75, h d = 15, ξ−1λ̃c = 1 and β = 3.
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Figure 4.10: The lattice parameters lb (blue) and ld (purple) (measured in units of λ̃c) as a func-
tion of (h d − E) (measured in units of Bd2/4π2) close to the lower critical field, obtained by
numerically minimizing Eq. (4.35) for a TGBC structure made of screw dislocations. Here,
δ = −0.75, β = 3 and ξ−1λ̃c = 1.
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