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Abstract. The possibility of writing the repulsive energy in the Born model of
binary ionic crystals as a sum ol (wo separate contributions from the two ions has
been investigated. Such an approach leads to two identities, one connccting the
lattice spacings of a family of ionic ctystals and the other connccting their compres-
sibilities. These identities have been tested on the alkali halide crystals over a range
of pressures. The agreement is found to be quite satisfactory. Some futther pre-
dictions with respect to crystals which exist as two polymoiphs have also been tested.
In all cases, the deviations of the experimental valucs from the exact identities can
be tracedto the fact that sccond neighbour repulsions in the crystals have been
neglected. Tt is hencz concluded that individual compressive energies for jons in
ionic crystals is a very altractive possibility.

Keywords. Alkali halides; atomic compression; Born model; ionic crystals;
repulsive energy.

Introduction

The introduction of concepts like ionic radius, ionic polarisability, etc., that are
dependent on individual ions has proved of immense value in the development
of the theory of ionic crystals. In this context it seems relevant to ask whether
one could extend these ideas to more complicated properties like compressibility.
The concept of ionic compressibility would require two postulates: (@) the inter-
n:! energy of an fon is a function of its size, and (b) the repulsive encrgy
in an ionic crystal arises from the increase in the internal energy of the
ions when they are compressed. The repulsive energy would then have to be
written as the sum of contributions from the two ions as in eq. (1) below. This
is a classical picture which would not get theoretical support from the quantum
mechanical approach where repulsion is caused by the overlap of necighbouring
electron clouds. But then one must note that even the concept of the ionic radius
for which there is definite experimental evidence cannot really be justificd from
the overlap theory. The full quantum mechanical treatment, in fact, lzads to
very messy numerical computation which has only been carried out approximately
for a few compounds, and does not appear to lead to any physical insight. There
seems therefore to be some need for postulating empirical functions for the form
of the repulsive energy. Almost all earlier workers have tried either the function
Alr" or b exp (— r/p) where r is the interionic distance and have succeeded to some
extent in explaining the behaviour of ionic crystals. In this paper, we investigate
the consequence of postulating a function of the type in eq. (1). All functions
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pro osdpe are only attempted approximations to the true repulsive function. How
ever, the function we have proposed, if found acceptable, has some advantages.-
Firstly, this would directly lead to a kind of inverse additivity rule for the com-
pressibilities of jons. Further, if we consider a family of binary ionic crystals
made up of all combinations of m positive ions and n negative ions, whereas all the
earlier approaches mentioned above would require mn functions to be determmined,
the present alternative would require only (m +- n) functions.

In this paper, we test this postulate [(eq. (1)] on the alkali halides. The various
attractive forces between the ions have been treated as in the Born model [for a
good review of the Born model, see Tosi (1964)].

Just from the functional form of the repulsive potential assumed, we are able
to derive two identitics which have to be satisfied by certain experimentally deter-
minable quantities in sets of crystals. These identities have been tested on the
alkali halides.  The agreement appears to be satisfactory implying that the concept
of individual compressive energy for ions is an attractive possibility worthy of
further investigation and evaluation.

Theory

In this paper we investigate the possibility of the repulsive energy being completely
separated out into the sum of contributions from the two ions. Thus

Wup = W+(r+) + w_ (r—) (l)

where, W, and W_ are functions of r, and r_, the radii of the two ions. The func-
tions W, and W._ are presumed to be unique for a given ion and hence transferable
from one crystal to another. Geometrically, we can visualize an ion as a soll
flutly sphere, the repulsive energy being produced by compression and distortion
at the points of contact with its neighbours. The repulsive energy in this formu-
lution does not depend on the agency causing the distortion. 1t should be noted
that in the present formulation r, and r_ are variables which can vary for a given
jon from crystal to crystal and also with pressure in the same crystal,

10 keep the discussion as general as possible, we do not specily any parti-
cular functional form for W, and W_. We thus write the total lattice energy per
molecule of a binary ionic crystal as

2 .
=—‘if¥—g—£+W+(r+)+W(r_) . @)
where the first three terms on the right hand side give respectively the Madelung
electrostatic energy, the van der Waals dipole-dipole interaction energy and the
van der Waals dipole-quadrupole interaction energy. As it stands, W is a function
of three variables—r, the nearest nexghbour distance, r+, the radius of the positive
ion, and r_, the radius of the negative ion.
Now, in our geometrical picture of the crystal, the nearest neighbours are in
contact with one another, so that we immediately have the relation

r=ro+tr- | 3)

In addition, we have one further relation expressing the internal equilibrium
of the lattice, This arises from the minimisation of the energy of the crystal with
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respect to its internal co-ordinates r, and r_. Physically we can picture this as
the two ions pushing against each other and so adjusting their radii {subject always
to equation (3)] that the forces they exert on each other are balanced. This
requires the condition

dW, (ry) _dW_(r)
c;r++r T T dr ) )

Relation (4) like relation (3) is always valid.

Because of relations (3) and (4), r, and r_ are functions of r. Thus, in equation
(2), W becomes a function of only r and we are justified in talking of total deriva-
tives of the type dW (r)/dr, d*W (r)/dr?, etc. Differentiating (2) with respect to
r and using relations (3) and (4), we then have '

Wl =W )=~~~ —7— 5 =/ %)

where for convenience in later discussion, we have called the function on the right
f(r). f(r)is a unique function of r for a given crystal though it is, in general,
dificrent for different crystals. In the present picture of the crystal, r, and r. are
perfectly meaningful physical parameters. The reason why it is necessary to con-
vert back into a description in terms of r is that the various quantities of interest
arc cxperimentally determined only as functions of r. All the quantities in f(r)
can be calculated from experimental data as will be shown in the next section.
Hence, one can calculate the derivative of the two ionic repulsive functions. This
derivative varies with the lattice spacing as can be seen from (5), and hence for a
range of pressures, one gets a range of values for W.,’ (r,) and W_ (r)).

Now suppose we consider the same ion occurring in two different crystals. To
tix ideas, let us say the positive ion is common to two crystals. In general, W.'
(r,) will not be the same for both the crystals, However, it is possible to find two
pressures Py and P, such that the value of f(r) is the same in both the crystals.
The function W' (r), we have assumed, is a property of the ion alone and so is
the same in both crystals. Thus, if W,’ (r,) is a monotonic function of r,, we can
suy that the ion has the same radius r, in crystal 1 at pressure P, and crystal 2 at
pressure P,.  This is somewhat similar to the original idea of Goldschmidt (1926)
and Pauling (1927) of assigning ionic radii except that in the present treatment,
the ionic radii are variables and so are equal in two crystals only when f(r) is the
same.

Now consider four ions A*, B+, C-, D~ and the four crystals they form
AtC-  A*D-  B*C-  BtD-
I 1§ 111 |AY (6)

Suppose we consider these four crystals under such pressures that the value of
S (r) defined in (5) is the same for all four. Then by the above arguments, ion A+
_has the same radius in crystals T and 11, ion B* the same radius in crystals JIT and
1V, etc.,, and it is easily shown that

(htry)—(utry)=@Er+r)+ 2 +r2) — @r 4 1)
—(r*+rS =0 Q)]
Equation (7) is an identity among the lattice spacings of any four crystals of the
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type (6) considered under conditions of equal f{(r). Eq. (7) follows from the
original assumption of additivity of separate ionic repulsive energies which we have
seen leads to the concept of uniqueness of jonic radius under identical forces,
regardless of the actual crystal considered. Hence a verification of . (7) may be
considered a justification of the assumption.

Now, differentiating (5) with respect to r once again, we have

vondre o, dr. dW | 2ae* | 42C | 72D
W) G =W g =gwt et tiw ®
Diilerentiating (3) with respect to r and solving with the help of (8), we have
dr,. W2 (r)
s 9
i WG+ W) ©)

and u similar expression for dr_/dr. Substituting back in (8) and inverting the
whole equation, we have '
1 | 1
W) T WIS @, 2ae #¢ b W o)

dr? 3 T 5y

where, for convenience, we have called the function on the right g (r). The left
hand side of (10) is again the sum of two terms each of which is exclusively the
function of one of the ions. Hence, exactly as before, if we consider four crystals
of the type (6) under conditions of equal values of f(r), we have

{g h+ gU)ht — ¥4 r)s + g (r)m}, =0 (1 l)

g (r)is related to the compressibility through d®W/dr? {eqs (10) and (15)] and hence
(11) is essentially an identity among the compressibilities of the crystals I to IV.
The verification of (11) may be considered another justification for the additivity
of ionic repulsive energies assumed in (l).

It should be noted that in eqs (7) and (11), the four crystals compared have
to be of the same crystal structure, This is "an obvious precaution since the repul-
Jive potential is a function of the co-ordination number. However, we could cor-
rect for the change in crystal structure by postulating that the repulsive potential
is dircctly proportional to the number of nearest neighbours », i.e.,

Wilry) =nhi(ry ) ' 12)
where /1y (ry) is a unique function for a given ion, independent of the crystal
structure, This seems. reasonable in our geometrical picture of the repulsive
potential arising from the distortion and compression of the spherical ion at the
points of contact with its neighbours. Thus, if a crystal exists in two differcnt

structures {at different pressures, of course) having the same nearest neighbour
distance, then (12) implies that

. f.(r) 13
AN NGOG ( )

This is yet another result that can be tested.
It should be mentioned that the results (7), (11) and (13) cannot be exact il

second neighbour repulsions are also present. This is because second neighbour
repulsion cannot be separated into two functions of r, and r_ alone, but depends
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on the inter-ionic spacing r (= r, +r_). Thus, the expression (2) for the lattice
energy does not include the contribution from second neighbour repulsion.

Rhsults

The above identities, eqs (7), (11) and (13), have been tested for the alkali halides.
The experimental values for the calculations were taken from the following
sources. The room temperature atmospheric pressure lattice spacings were taken
from NBS (1953-1957). For variations of r with pressure, the compressibility
data of Vaidya and Kennedy (1971) were used. The van der Waals coefficients
C and D were taken from Mayer (1933). For dW/dr and d?W/dr, the Hildebrand
(1931) equations of state were used

:,L{/‘V —p+ I8 13 (14)
S [0+ D), + 2 )] - w

where P is the pressure, V is the volume per molecule, T is the temperature, B is
the isobaric volume expansivity !/V (3V/dT)e and K is the isothermal com-
pressibility — 1/V (Q¥/oP),. The room temperature, atmospheric pressure
values of the thermodynamic quantities were taken from Cubicciotti (1959, 1960,
1961). Since there are no experimental data at high pressures, the following
approximate relations were used:

KpV
ﬂp—-ﬁo =

T (/K B 3K BTy K B (3K )

[R{(ﬁ)ﬁ z ()] =izt Gr), + 2 (7)1 ], (7
where Kp, the compressibility at pressure P was obtained from the PV data of
Vaidya and Kennedy (1971). Relations (16) and (17) were derived assuming that
the Griineisen’s constant y ( = V8/C,K) is independent of pressure. It should
be mentioned that the approximations (16) and (17) are not very important since
the corresponding terms in (14) and (15) are only in the nature of small correc-
tions,

Using the above values, the quantity /' (r) was calculated as a function of pres-
sure for 15 alkali halides, viz., the chlorides, bromides and iodides of lithium,
sodium, potassium, rubidium and caesium. The fluorides were not included because,
in many cases, sufficiently reliable high pressure data were not available, Taking
the crystals in groups of four as in (6), the quantity

Ar=("| +rw)—(rn+rm) (18)

was calculated for a range of common value of f(r). The mean results are tabu-
lated in table 1. It is seen that { Ar) is not exactly zero as expected by eq. (7) but
is invariably a small negative quantity. The significance of this is discussed in
the next section. The r.m.s. deviations of Ar, also given in table 1, are seen
to be of the order of 0-0020 A (r is of the order of 3 A).

(16)
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Table 1. Testing relation (7) among lattice spacmgs and relation (11) among com-
pressibilities for sets of alkali halides :

o, 3

Type of Combination of Alkali ardy Ag (1074 cmn'/ere)
structure . Halides {Ar) rms. {Ag) rms.
deviation deviation

NaCl LiCl, LiBr, NaCl, NaBr ~—0-0048 0-0010 +0-134 0-002

. LiCl, Lil, NaCl, Nal —0-0116 0-0012 +0-133 0-12

LiBr, Lil, NaBr, Nal —0-0064 0-0010 —-0-121 0-15

NaCl NaBr, KCl, KBr ~0-0147 0-0005 —0-310 0-021

NaBr, Naf, KBr, KI -0-0128 0-0008 -0-718 0-013

CsCl KCl, KBr, RbCl, RbBr —0-0065 0-0007 +0-180 0-13

KCl, KI, RbCl, RbI —0-0123 0-0010 —0-080 0-07

KBr, KI, RbBr, Rbl -0-0060 0-0003 —0-190 0-065
KCl, KBr, CsCl, CsBr —0-0121 0-0009 —0-169 0-204 °

KCl, KI, CsC), Csl ~0-0344 0-0019 +0-160 0-171

KBr, KI, CsBr, Csl ~0-0213 0-0030 +0-329 0-083

RbC], RbBr, CsCl, CsBr —0:0071 0-0023 —0:353 0-11

RbCI, Rbl, CsCl, Csl ~0:0208 0-0024 +0-180 0-084

RbBr, Rbl, CsBr, Csl —0-0131 0-0041 4+0-505 0-058

In a similar manner, at constant f(r), the quantity Ag given by

Ng={g (r)x‘+ g(r)w}— g () + &)} (19)

was also calculated for the same groupé of crystals. The mean results are tabu-
lated in table 1. The r.m.s. deviations of Ag are seen to be of the order of 0-15
X 10~ cm?ferg. (g is of the order of 5 X 10-% cm?/erg).

To get a better idea of the quantities entering in the calculations above, a few
sample tables and graphs are shown in Appendix 1.

Equation (13) was tested in the case of potassium and rubidium halides which
~exist in a NaCl type structure (n, = 6) at low pressures and a CsCl type structure

Table 2. Testing relation (13) (ligancy effect) for potassxum and
rubidium halides

nefi (r) ngy (r)
INAG] mgs (r
Crystal
nafi P\ r.m.s, /Mg (r O\ .S,
mfsr)/ deviation - \nlg, )/ deviation
KCl 0-026 0-002 0-895 0-005
KBr 0-894 0-003 0:905 0-025
KI © 0-830 0-002 0:854 0-007
RbCl 0-974 0-001 0:986 0:017
RbBr 0-948 -00 .

.. 1
Rbl 0-897 . 0-939 .
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(n; =8) at high pressures. The quantities nyfy (r)/mf>(r) and nyg; (r)/ng, (r)
have been calculated for these crystals for a range of common values of r and the
mean values are tabulated in table 2. The deviations of these quantities from the
expected value of 1-0 are discussed in next section.

Di_scussion of the results and effect of second neighbour repulsion

Tables 1 and 2 show that the relations (7), (11) and (13) are not exactly satisfied.
It is. possible to explain the deviations as due to the effect of second neighbour
repulsions which have been neglected in the above theory. The effect of second
neighbour repulsion is to increase the total repulsive potential and thus to shift
the equilibrium to larger inter-ionic distances. Whereas this effect is present in
all the crystals, the effect can be expected to be much larger in those cases where
the ions are of widely differing sizes. In table 1, the crystals have been arranged
so that crystal II has the largest disparity in the sizes of the ions. Thus, the
increase in r,, would be expected to be much larger than the increase in r,, r,,
or r,, and hence Ar is expected to be always negative, as indeed it is in table I.
There are some further trends which strengthen the belief that second neighbour
repulsions might be responsible for the deviations. The deviations in Ar would
be expected to be greater where there is greater disparity in size between the lar-
gest and smallest ion in a group. This is verified in table 1 where Ar is larger
whenever Ci~ and I~ are compared than when Cl- and Br- or Br- and I- are com-
pared ; so too, Ar is larger whenever K* and Cst are compared than when K+ and
Rb* or Rb* and Cs* are compared. Further, Ar is in general larger in CsCl type
structures than in’NaCl type structures which is explained by the fact that second
neighbour distances are much smaller in the former type (' = 1-154r) than in
the latter (r' = 1-414r).

The values of Ag in table 1, however, do not show any systematic deviations.
The agreement with eq. (15) is fairly good — Ag which is the difference of two
quantities of the order of 10 is of the order of 0-2. It is not very obvious how
second neighbour repulsion will affect the function Ag (r) and so no explanation
of the deviations is attempted.

Considering the values calculated in table 2, it is seen that they deviate from the
theoretically expected value of 1:0. Again the deviations can be traced to second
neighbour repulsion which increases f(r) and decreases g (r), the changes being
more in CsCl type structures than in NaCl type structures (due to the reason dis-
cussed above). Thus, we expect all the quantities to be less than 1-0 and this is
80. Also, the deviations are proportional to the disparity in the sizes of the ions
as expected, being largest for KI and smallest for RbCl

As regards the sensitivity of the above tests, we can make the following remark.
In calculating Ar, we take crystals I to IV at four pressures. The maximum diffe-
rence in pressure, viz., (P, — P,) is about 10-25 kbar. We could determine the
AP which has to be made on any of the pressures, say P,,, which will bring Ar
to the expected value of 0. Such a check is meaningful only where the second
neighbour repulsion is minimum since the major deviations have any way been
traced to it. Thus, if we consider the most favourable case of LiCl, LiBr, NaCl,
NaBr, (P,, — P,) is about 25 kbar whereas a change in P,, of — ]-5 kbar causes
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Ar to become 0. But, apart from this, the very fact that the deviutions are so
systematic and are amenable to a consistent explanation is itself a pointer to the
plausibility of the approach taken in this paper.

Corrections for second neighbour repulsion

It is not possible to develop a theory with a general repuisive function with second
neighbour repulsions also included. However, an approximate correction has
been attempted as follows. In the repulsive potential of Tosi and Fumi (1964),
we note that there are two terms, one for nearest neighbour repulsion and the other
for next nearest neighbour repulsion.. It is assumed here that this potential func-
tion doés indeed describe how the two contributions are split up [there is no justi-
fication for this, since in the procedure of Tosi and Fumi (1964) it is only the
total function that has been made to fit the experimental data]. Then eq. (5)
is modified to : .

Table 3. Tosting relation (7) among lattice spacings and relation an
among compressibilities for sets of alkali halides after applying correction
for second neighbour repulsion.

Type Combination of Alkali ard)
of Halides -
structure { Ar) r.m.s.
deviation

. NaCl LiCl, LiBr, NaCl, NaBr +0-0127 00021
LiCl, Lil, NaCl, Nal . +0-0210 0:0010
LiBr, Lil, NaBr, Nal -0-0150 0-0024
NaCl, NaBr, KCl, KBr —0-0003 0-0005

NaCl, NaI, KCl, KI +0-014 ..
NaBr, Nal, KBr, KI +0-0133 0-0013
CsCl KCl, KBr, RbCl, RbBr —0-0025 0-0008

- KCl, KI, RbCI RbI +0-0050 00
KBr, KI, RbBr, Rbl +0-0074 0+0005

Table 4. Testing relation (13) (ligancy effect) for potassium and rubidiun:
halides after applying correction for second neighbour repulsion.

mfi(r) nafi(r)
”lfl(r) n‘f‘(r)
Crystals Crystals
Zmfi()\  rms. <ﬂ'_ (N rms.
N fs(r)/  deviation e ~ deviation
KCl 1-06 00 RbCl 1-12

KBr . 103 0006 RbBr 1-08
KI 0-99 0006 RbI 1-04
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aw 6 D W
W+(r+)—W (,_.)————o'i__.c._8 +d Znn

(20
where d W, /dr, the derivative of the second neighbour repulsive energy, is calcu-
lated from the potential of Tosi and Fumi (1964).

Table 3 shows the mean values of Ar calculated after applying this correction,
All the combinations in table I could not be corrected since Tosi and Fumi (1964)
have not given their repulsive potential for the caesium halides. It is seen that
Ar in table 3 has become positive in most cases showing that the correction for
second neighbour repulsion is in the right direction, There is, however, an over-
correction in most cases which is probably due to our questionable procedure of
splitting the potential of Tosi and Fumi (1964) into two parts and attaching a physi-
cal significance to each.

Table 4 shows the values of nyf) (r)/n,f:(r) calculated after applying the correc-
tion (20). Again it is seen that the values are pulled towards the expected value.
of 1:0, although over corrected in some cases.

The above corrections for second neighbour repulsion are not meant as any
quantitative checks. Their chief function is to illustrate that corrections for second
neighbour repulsion do alter the values in tables 1 and 2 in the required direction.

Conclusion

Starting from the physically pleasing postulate [equation (1)] that the repulsive
potential is the sum of two contributions, one from each ion, we have derived
certain results which have been verified numerically for the family of alkali halides.
It has been possible to explain the deviations consistently in terms of second neigh-
bour repulsions. By putting in an explicit functional form for the individual ionic
repulsive potentials, it would then be possible to include second neighbour repul-
sions directly in the theory.

If we introdice two parameters for each repulsive function (as has been done
-by most earlier workers) then, in the above approach, we would require sixteen
parameters to describe the set of alkali halides considered. For the same alkali
halides, the original approach of Born requires thirty parameters whereas the Tosi
and Fumi approach requires twenty-three. Also, some of the above tests seem
to indicate that we might expect the same parameters to describe a crystal over
a range of pressures and even in two different structures. This means we could
- do away with the idea of structure-dependent parameters introduced by Tosi and
Fumi (1962).

We should mention that recently Smith (1972) has postulated atom dependent
potentials to account for the repulsive potential of rare-gas atoms in binary colli-
sions, His approach seems to lead to better results in that problem.

Appondix

To facilitate a better appreciation of the quantities entering in the analysis, we
present here a few sample calculations and results. Table 5 shows the quantities
enlering in the calculation of /' (r) and g (r) for the crystal LiCl at various pressures
from O to 45 kbar. Figure 1 shows f(r) plotted as a function of r for the four
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Table 5. Details of calculations of f(r) and g (r) for the cryktal LiCl.

(kll;ar) (i) (lO'ﬁcm’. (lO“dgg") awidr _aetlr? ScCl 3o J©)
dyne-?) (10-%erg cm™?)
0 2570 3-36 1-22 4:32 610 916 170 ~67-5
5 2:557 31 115 2441 617 949 1-78 =706
10 2545 2:90 1-08 0-456 622 980 1-86 —73-4
15 2533 273 1-04 ~-1-37 628 101 1:94  —76-2
20 2.522 2:59 1-00 ~3-21 634 104 2:02 =790
25 251 2.46 0-958 -5.04 639 108 210 —81-8
0 2:501 2:33 0:918 —6-82 645 11-1 217 - —84-6
35 24491 2:21 0-881 ~8:58  65-0 11-4  2:25  —87-2
40 2-482 2-11 0-851 —10-3 654 11-7 233 —89.7
45 2:473 2:02 0-823 —12:0. 659 12:0 2:40 —923
Tr (3K
(kll’)ar) K B baﬁ » - d*W/dr? 2aé%r® Q2Cr® 2D(r" a é{ .(I;)mﬁ'
+'l?(b—l’ - 10®erg cm™* ere-?)
(10-?)
0 —0-805 1-40 0-475 0-249 0-065 4:53
5 ~0-759 1-49 0-482 0-260 0-068 4.35.
10 —0-713 1-57 0-489 0:270 0-071 4-17
15 —0-686 1-65 0-496 0-280 0-075 4-00
20 —0-660 172 0-503 0-290 0-078 3.86
25 —0-632 1-79 0-509 0-300 .  0-082 373
30 —0-606 1-87 0-515 0-310 0-085 3:60
3s —0:582 1-95 0-522 0-320 0-088 347
40 —0-562 202 0-527 0-330 0-092 " 3.37
as ~0-543  2:09 0-533 10-339 0095 3.27
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' Figure 8. Curves of f(r) vs r for LiCl, LiBr, NaCl and NaBr to test relation
(7) among their lattice spacings.
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Figure 2. Curves of f(r) vs g(r) for LiCl, LiBr, NaCl and NaBr to test relation
(11) among their compressibilities,



Table 6. Testing relation (7) among lattice spacings and relation (11) among compressibilities for the set of alkali halides: LiCl, LiBr, NaCl, NaBr.

—f(r)

(10; ::_118)- rue Trige Tyact Tyanr or lAr—(an] Bua  Zur  ELmci Ewamr Lg | Ag—(ng) ]
All values in 10-8cm ) Al values in 10-% cm®/erg
68 2568 2709 2-758 2892  —0-007 0-0022 45 471 444 4T 012 0-014
69  2-564 2-704 2-753 2:888  —0-005 0-0002 444 465 437 470 012 0-014
70 2-560 2:699 - 2-749 2-883 —0-005 0-0002 4-38 4-59 4-30 4-63 0-12 0-014
71 2:555  2:694 2-744 2-879  —0-004 0-0008 432 454 423 457 012 0-014
72 2-'551 2-689 2-740 2-874 —0-004 0-0008 © 4-26 4-49 4-17 4-5]1 0-11 0-024
13 2-547 2-684 2-736  2-870 —0-003 0-0018 4-19 4-44 4-10 4-46 .0-11 0-024
74 2-542 2-680 2-732 2-866 —0-004 ’ 0-0008 4-13 4-38 4-03 4-42 0-14 0-006
15 2-538 2:676 - 2-728 2-861 —0-005 0-0002 4-07 4-33 3.97 4-36 0-13 © 0-004
76 2-534 2-671 2-724  2-857 -—0-004 0-0008 4-01 4-27 3-90 4-30 0-14 0-006
77 2-530 2-667 2-720 2-853 —0-004 0-0008 : 3-96 4-22 3:-84 4-25 0-15 0-016
78 2-526 2-663 2-716  2-848 —0-005 0-0002 A 3-91 . 4-17 3-77 4-19 0-16 : 0-026
79 2-522 2-658 2-712 2-844 —0-004 0-0008 3-86 4-12. 5’71 4-13 0-16 0-026
80 2-518 2-654 2-708 2-840 —0-004 0-0008 3-8 4-07 3-66 4-08 0-16 0-026
{ Ar)= —0-0048 (Lg)=0-134

[¢Ar?)— (Ar)2]E = 0-0010 ’ . [(2e*y~(ng»]=0-002
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crystals LiCl, LiBr, NaCl, NaBr, With respect to this figure we can distinguish
between our additivity of jonic- radii and the classical approach of Pauling (1927) "
and Goldschmidt (1926). In the classical approach, the comparison is made among

the lattice spacings corresponding to the circled points in figure 1 (which are the
atmospheric pressure values). In our approach on the other hand we are comparing
r-values at constant f(r) as for instance the set of points marked with a cross in
ligure 1. Figure 2 similarly shows g(r) against f(r). Again, the additivity bet-

ween the four values of g (r) occurs at constant f(r), for instance at the points
marked with a cross. The above comparisons are made at various constant values

of f (r). Table 6 gives the results for the set of crystals LiCl, LiBr, NaCl, NaBr. -

The mean values ( Ar), ( Ag) and their root mean square deviations have been

calculated as shown. It is these quantities for various sets of crystals that are
tabulated in table 1.
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